Solid and procedural textures

15-468, 15-668, 15-868 Physics-based Rendering Spring 2025, Lecture 5

Course announcements

- Programming assignment 1 is due on Friday 2/14.
 - Any issues with the homework?
- Take-home quiz 1 due tonight.
- Make-up lecture tomorrow, Wednesday 2/5, 11 am, in GHC 6115.

Overview of today's lecture

- 3D textures.
- Procedural textures.
- Generating "realistic noise".

Slide credits

Most of these slides were directly adapted from:

Wojciech Jarosz (Dartmouth).

3D textures

Texture is a function of (u, v, w)

- can evaluate texture at 3D point
- good for solid materials
- often defined procedurally

Procedural texturing

Instead of using rasterized image data, define texture procedurally

Simple example:

- color = 0.5*sin(x) + 0.5

Often called "solid texturing" because texture can easily vary in all 3 dimensions.

- but you can also do 2D or 1D procedural textures

Raster vs. procedural textures

Why use procedural textures?

- low memory usage
- infinite resolution
- solid texture: no need to parametrize surface


```
color stripe(point p):
   if (sin(p<sub>x</sub>) > 0)
      return c<sub>0</sub>
   else
   return c<sub>1</sub>
```



```
color stripe(point p, real w):
   if (sin(πp<sub>x</sub>/w) > 0)
     return c<sub>0</sub>
   else
   return c<sub>1</sub>
```


color stripe(point **p**, real w):

 $t = (1 + \sin(\pi \mathbf{p}_x/w))/2$ return lerp(c_0 , c_1 , t)

2D checkerboard texture

```
color checkerboard(point p):
    real a = floor(\mathbf{p}_x)
    real b = floor(\mathbf{p}_{V})
    real val = a+b
   if (isEven(val))
       return co
   else
       return C1
```

4	5	6
3	4	5
2	3	4
1	2	3
	3	3 4

3D checkerboard texture

```
color checkerboard(point p):
    real a = floor(\mathbf{p}_X)
    real b = floor(\mathbf{p}_V)
    real c = floor(\mathbf{p}_z)
    real val = a+b+c
   if (isEven(val))
       return co
   else
        return C1
```


Digital matte painting for Pirates of the Caribbean 2; created using Vue Infinite 17

Procedural textures

Our procedurals are "too perfect"

Often want to add controlled variation to a texture

- Real textures have many imperfections

Just calling rand() is not that useful.

Random noise

albedo = randf();

Not band-limited, white noise.

Noise functions

Function: $\mathbb{R}^n \longrightarrow [-1, 1]$, where n = 1, 2, 3, ...

Desirable properties:

- no obvious repetition
- rotation invariant
- band-limited (i.e., not scale-invariant)

Fundamental building block of most procedural textures

Value noise

Values associated with integer lattice locations

Given arbitrary position, interpolate value from neighboring lattice points

Random values on grid

Random values on grid

Cell noise: use value of nearest point on grid

(Bi-) linearly interpolated values

Interpolate between 2ⁿ nearest grid points

(Bi-) cubic interpolation

Interpolate between 4ⁿ nearest grid points

Value noise - implementation issues

Not feasible to store values at all integer locations

- pre-compute an array of pseudo-random values
- use a randomized hash function to map lattice locations to pseudo-random values

Value noise - implementation details

```
// randomly permuted array of 0...255, duplicated
const unsigned char values [256*2] = [1, 234, ...];
float noise1D(float x)
  int xi = int(floor(x)) & 255;
  return lerp(values[xi], values[xi+1], x-xi)/128.0-1;
// 2D hashing:
// values[xi + values[yi]];
// 3D hashing:
// values[xi + values[yi + values[zi]]];
// etc.
```

Value noise - limitations

Value noise - limitations

Lattice structure apparent

- Minimal/maxima always on lattice

Slow/many lookups

- 8 values for trilinear
- 64 values for tricubic
 - 4ⁿ for *n* dimensions

Perlin noise

Perlin noise, invented by Ken Perlin in 1982

- First used in the movie Tron!

Store random vectors/gradients on lattice

- Use Hermite interp.
- a.k.a. "gradient noise"

Classic Perlin noise

Classic Perlin noise

Classic Perlin noise

Perlin noise vs. value noise

Why is Perlin noise better?

Perlin noise

Typically signed by default, ~in [-1,1] with a mean of 0

offset/scale to put into [0,1] range

(noise(p)+1)/2

take absolute value

noise(**p**)

3D Perlin noise

Perlin noise

Change frequency: ?

Change amplitude: ?

Perlin noise

Change frequency: noise(10*x)

Change amplitude: 10*noise(x)

Perlin noise - limitations

Perlin noise - limitations

Lattice structure apparent for | noise |

- all lattice locations have value 0

Lookups faster, but still slow:

- Perlin is 2ⁿ for *n* dimensions instead of 4ⁿ for value noise
- other variations: simplex noise (O(n))

Not quite rotation invariant

More reading

Fantastic explorable explanation by Andrew Kensler at Pixar

- eastfarthing.com/blog/2015-04-21-noise

Spectral synthesis

Representing a complex function $f_s(\mathbf{p})$ by a sum of weighted contributions from a scaled function $f(\mathbf{p})$:

$$f_s(\mathbf{p}) = \sum_i w_i f(s_i \, \mathbf{p})$$

Called a "fractal sum" if w_i and s_i are set so:

- increasing frequencies have decreasing amplitude, e.g.: $w_i = 2^{-i}$, $s_i = 2^i$
- when $s_i = 2^i$, each term in summation is called an "octave"

What function $f(\mathbf{p})$ should we use?

fBm - fractional Brownian motion

In graphics:

- Fractal sum of Perlin noise functions
- "Fractal noise"

fBm - 1 octave

fBm - 2 octaves

fBm - 3 octaves

fBm - 4 octaves

Turbulence

Same as fBm, but sum absolute value of noise function

Turbulence - 1 octave

Turbulence - 2 octaves

Turbulence - 3 octaves

Turbulence - 4 octaves

fBm vs Turbulence

Bump mapping

fBm

Turbulence

2D fBm

A fractional Brownian motion (fBm) terrain patch of fractal dimension ~2.1.

source: Ken Musgrave

Fractal dimension

Fractals have fractional dimension, e.g. D = 1.2.

- under some appropriate definition of dimension...

Integer component indicates the underlying Euclidean dimension of the fractal, in this case a line ("1" in 1.2).

Fractional part is called the fractal increment (".2" in 1.2).

Fractal increment varies from .0 to .999...

- fractal goes from (locally) occupying only its underlying Euclidean dimension (the line), to filling some part of the next higher dimension (the plane).

Continuous "slider" for the visual complexity of a fractal

- "smoother" ⇔ "rougher"

What determines the dimension of fBm?

Fractal dimension of fBm

Traces of fBm for H varying from 1.0 to 0.0 in increments of 0.2

fBm

fBm is statistically homogeneous and isotropic.

- Homogeneous means "the same everywhere"
- Isotropic means "the same in all directions"

Fractal phenomena in nature are rarely so simple and well-behaved.

Multifractals

Fractal system which has a different fractal dimension in different regions

Heterogeneous fBm

- Scale higher frequencies in the summation by the value of the previous frequency.
- Many possibilities: hetero terrain, hybrid multifractal, ridged multifractal

2D fBm

A fractional Brownian motion (fBm) terrain patch of fractal dimension ~2.1.

source: Ken Musgrave

A hybrid multifractal terrain patch made with a Perlin noise basis: the "alpine hills" Bryce 4 terrain model.

ave 68

The "ridges" terrain model from Bryce 4: a hybrid multifractal made from one minus the absolute value of Perlin noise.

source: Ken Musgrave

A hybrid multifractal made from Worley's Voronoi distance-squared basis

source: Ken Musgrave

A hybrid multifractal made from Worley's Voronoi distance basis

Domain Distortion

fBm distorted with fBm

Domain Distortion

A sample of the "warped ridges" terrain model in Bryce 4: the "ridges" model distorted with fBm.

Domain Distortion

A sample of the "warped slickrock" terrain model in Bryce 4: fBm constructed from one minus the absolute value of Perlin noise, distorted with fBm.

source: Ken Musgrave

Recall: 3D stripe texture

color stripe(point p, real w):

 $t = (1 + \sin(\pi \mathbf{p}_x/w))/2$ return lerp(c_0 , c_1 , t)

How can we make this less structured (less "boring")?

Marble

$(1 + \sin(k_1 \mathbf{p}_x + \text{turbulence}(k_2 \mathbf{p}))/w)/2$

Wood

$$(1 + \sin(\operatorname{sqrt}(\mathbf{p}_{x}^{2} + \mathbf{p}_{y}^{2}) + \operatorname{fBm}(\mathbf{p})))/2$$

Wood

$$(1 + \sin(\operatorname{sqrt}(\mathbf{p}_x^2 + \mathbf{p}_y^2) + \operatorname{fBm}(\mathbf{p})))/2$$

and more...

and more...

Source: twitter/minionsart

Worley noise

"Cellular texture" function

- Introduced in 1996 by Steve Worley
- Different from cell texture!

Randomly distribute "feature points" in space

- $f_n(x)$ = distance to n^{th} closest point to x

What do we call this image in geometry?

Worley Noise

fractal F1, bump map

Worley Noise

fractal F1, bump map

Worley Noise

fractal 1-f₁, color and bump map

2D Worley noise: f₁, thresholded

2D Worley noise: f₁, thresholded

2D Worley noise: f₂-f₁

2D Worley noise: f₂-f₁, thresholded

Worley Noise

fractal f1-f4 combinations

Other Resources

Demos

Amazing realtime demos using fractal noise:

- http://www.iquilezles.org/www/articles/morenoise/morenoise.ht
 m
- https://www.shadertoy.com/view/4ttSWf
- https://www.shadertoy.com/view/XttSz2