Ray tracing and simple shading

http://graphics.cs.cmu.edu/courses/15-468

15-468, 15-668, 15-868 Physics-based Rendering Spring 2025, Lecture 3

Course announcements

- Vote on Slack for first make-up lecture. •
- Programming assignment 0 available on Canvas.
 - Ungraded, no due date.
 - Used to set up rendering environment and github-based submission system.
 - Should take no more than 1-2 hours max.
- Due dates for remaining homework shifted: •
 - Programming assignment 1 will be posted on Friday, will be due two weeks later.
 - Take-home quiz 1 will be due next Tuesday.

Overview of today's lecture

- Leftover from previous lecture: intersections, meshes, acceleration structures. ullet
- Basics of shading. ullet
- Basic reflection models. \bullet

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

4

Recap: Raytracing

Shading

When ray hits a surface we perform *lighting/shading* Determine "what color/light should we see at this location?"

Surfaces can scatter and/or emit light

- Surface emits light? just return emitted color (determined by the material)
- Surface scatters/reflects/refracts light? (recursively) trace a ray in a scattering direction (determined by the underlying material)

Overview

Diffuse shading

Specular reflection

Refraction

Diffuse emission

8

Light-material interactions

The reflection equation

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta$$

This describes a local illumination model

 $s\theta_i d\vec{\omega}_i$

The BSDF

Bidirectional **S**cattering **D**istribution **F**unction

- informally: how much the material scatters light coming from one direction 1 into some other direction v, at each point p

The BSDF

Bidirectional **S**cattering **D**istribution **F**unction

- informally: how much the material scatters light coming from one direction 1 into some other direction v, at each point p

Real-world materials

Metals

Dielectric

Real-world materials

Metals

Dielectric

Idealized material models

Diffuse reflection

- light is reflected in all directions
- colored by surface color

Smooth specular reflection/refraction (e.g., chrome, glass, glaze/varnish)

- light reflected/refracted only in a single direction
- colored by source color

15

Idealized materials

Diffuse reflection

Diffuse reflection

Real surface

Lambertian reflection

Lambertian surface

Basic Ray Tracing Pipeline

What direction should we trace a new ray towards?

Basic Ray Tracing Pipeline

What direction should we trace a new ray towards?

• Pick a direction at random!

From what distribution should we sample directions?

The reflection equation

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta$$

This describes a local illumination model

 $s\theta_i d\vec{\omega}_i$

From what distribution should we sample directions?

- Probability proportional to $\cos(\hat{n} \cdot \hat{\omega})$.
- Even though BSDF scatters to all directions uniformly, we need to account for foreshortening.

How do we sample directions based on this *cosine-weighted* distribution?

Generate points uniformly on sphere (unit directions)

25

Generate points

uniformly on sphere

(unit directions)

unit normal

Generate points uniformly on sphere

(unit directions)

unit normal

Vector3D v;

v.x = 1-2*randf();v.y = 1-2*randf();v.z = 1-2*randf();

Vector3D v; do { v.x = 1-2*randf(); v.y = 1-2*randf(); v.z = 1-2*randf(); } while(v.length²() > 1)

Vector3D v; do { v.x = 1-2*randf(); v.y = 1-2*randf(); v.z = 1-2*randf(); } while(v.length²() > 1)

Vector3D v; do } while(v.length²() > 1) // Project onto sphere v /= v.length();

v.x = 1-2*randf();v.y = 1-2*randf();v.z = 1-2*randf();

Sampling a Sphere using normal samples

- Vector3D v;
- v.x = randnf(); v.y = randnf(); v.z = randnf(); // Project onto sphere v /= v.length();

- No rejection sampling required (no while loop).
- Need to use normal, rather than ulletuniform, samples.

Accounting for Lambertian albedo At each diffuse shading event, you also need to multiply by the

At each diffuse shading event, you also need to diffuse albedo (between 0 and 1).

Diffuse shading

34

Image so far

```
Scene::trace(Ray ray)
   hit = surfaces.intersect(ray);
   if hit
      [col, sRay] = hit->mat->scatter(ray)
      return col * trace(sRay);
   else
      return backgroundColor;
```


Rounding errors

Don't fall victim to one of the classic blunders:

What's going on?

affectionately called "shadow acne"

Rounding errors

Don't fall victim to one of the classic blunders:

intersection inside due to floating point error

ray blocked by self-intersection

Shadow rounding errors

Solution: recursive rays start a tiny distance from the surface

Do this by limiting the *t* range

Specular/Mirror reflection

Basic Ray Tracing Pipeline

What direction should we trace a new ray towards?

Basic Ray Tracing Pipeline

What direction should we trace a new ray towards?

• Just use law of mirror reflection, no need for random selection!

Consider perfectly shiny surface

- there's a reflection of other objects

Can render this using recursive ray tracing

- to find out mirror reflection color ask: "what color is seen from surface point in reflection direction?"

Evaluated by tracing a new ray:

Evaluated by tracing a new ray:

Implementation details:

- don't self-intersect ($t_{min} > \epsilon$)
- don't recurse indefinitely

Same pseudo-code

```
Scene::trace(Ray ray)
   hit = surfaces.intersect(ray);
   if hit
      [col, sRay] = hit->mat->scatter(ray)
      return col * trace(sRay);
   else
      return backgroundColor;
```


Diffuse & mirror spheres

What two properties defined reflection direction?

Assume **n** is unit length

view direction

What <u>two</u> properties defined reflection direction?

- co-planar view direction, reflected direction, and normal direction
- equal angles between normal-view directions, and normal-reflected directions

Assume **n** is unit length

view direction

ion ected directions

Assume **n** is unit length

view direction

view direction

50

view direction

51

view direction

52

view direction

Specular refraction

Refraction

Refraction

Index of Refraction

Speed of light in vacuum / speed of light in medium

Some values of η	
Vacuum	1
Air at STP	1.00029
lce	1.31
Water	1.33
Crown glass	1.52 - 1.65
Diamond	2.417

Specular transmission/refraction

Materials like water, glass, etc., also refract/bend light

Trace a recursive ray in the refraction direction

Specular transmission/refraction

 $\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$

view direction

η_1 η_2

Specular transmission/refraction

η_1 η_2

Index of Refraction

Speed of light in vacuum / speed of light in medium

Some values of η	
Vacuum	1
Air at STP	1.00029
lce	1.31
Water	1.33
Crown glass	1.52 - 1.65
Diamond	2.417

These are actually wavelength dependent!

Dispersion

Refraction in a Waterdrop

Double rainbow all the way across the sky!

Dispersion

What is this dark circle?

What is this dark circle?

Called "Snell's window" Caused by total internal reflection

Recall...

When can total internal reflection happen?

Can only happen when the ray starts in the higher index medium

Total Internal Reflection

Total Internal Reflection

Total Internal Reflection

Total Internal Reflection

Reflection vs. Refraction

How much light is reflected vs. refracted?

- in reality determined by "Fresnel equations"

view direction

 η_1 η_2

Fresnel Equations

Reflection and *refraction* from smooth *dielectric* (e.g. glass) surfaces

Reflection from *conducting* (e.g. metal) surfaces

Derived from Maxwell equations

Involves polarization of the wave

Fresnel Equations for Dielectrics

Reflection of light polarized parallel and perpendicular to the plane of refraction

$$\begin{split} \rho_{||} &= \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2} & \text{reflected:} \quad F_r \\ \rho_{\perp} &= \frac{\eta_1 \cos \theta_1 - \eta_2 \cos \theta_2}{\eta_1 \cos \theta_1 + \eta_2 \cos \theta_2} & \text{refracted:} \quad F_t \end{split}$$

What's happening in this photo?

source: <u>flickr user neofob</u> 77

Polarizing Filter

Polarization

Without Polarizer

With Polarizing Filter

source: photography.ca 79

Polarization

Without Polarizer

With Polarizing Filter

source: <u>wikipedia</u> 80

Effect of Polarization

Effect of Polarization

Fresnel Equations for Dielectrics

Reflection of light polarized parallel and perpendicular to the plane of refraction

$$\begin{split} \rho_{||} &= \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2} & \text{reflected: } F_r \\ \rho_{\perp} &= \frac{\eta_1 \cos \theta_1 - \eta_2 \cos \theta_2}{\eta_1 \cos \theta_1 + \eta_2 \cos \theta_2} & \text{refracted: } F_t \end{split}$$

- The Shirley book uses a faster approximation (Schlick), but to get full accuracy you'd need to use these equations

Fresnel equations for glass

Fresnel reflection

Fresnel reflection/refraction

Reflection vs. Refraction

During ray tracing, how do we decide whether to reflect or refract?

view direction

 η_1 η_2

Reflection vs. Refraction

During ray tracing, how do we decide whether to reflect or refract?

• Randomly! Using Fresnel coefficients as probabilities.

to reflect or refract? abilities.

view direction

η₁ η₂

So Far: Idealized BRDF Models

Diffuse

Ideal Lambertian surface

Specular Reflection and Refraction

89

CALCULUS ON MANIFOLDS Spivak

Real materials are more complex

S

Rough materials

In reality, most materials are neither perfectly diffuse nor specular, but somewhere in between

Imagine a shiny surface scratched up at a microscopic level

We will look at a more principled way to handle this later.

For now, we can easily approximate one important characteristic: blurred reflections

- Compute reflection direction, then add a random offset to it
- Sample random offset from sphere. Scale it to increase/decrease fuzziness

Diffuse & mirror spheres

Diffuse & rough mirror spheres

Diffuse & rough mirror spheres

Diffuse & rough mirror spheres

Putting it together

Lighting

Lighting

So far, the sky or background has been the only source of emitted light

But we can easily make any surface a light source!

- Just return an emitted color when a ray hits that surface
- Add a function to material that returns emitted color
 - Returns black (all zeros) for regular (non-emissive) surfaces
 - Color will often be greater than (1,1,1)
- Also possible for surfaces to emit & scatter (but not common)

Pseudo-code

```
Scene::trace(Ray ray)
   hit = surfaces.intersect(ray);
   if hit
      [col, sRay] = hit->mat->scatter(ray)
      return col * trace(sRay);
   else
      return backgroundColor;
```


Pseudo-code

```
Scene::trace(Ray ray)
hit = surfaces.intersect(ray);
if hit
    emit = hit->mat->emit(ray)
    [col, sRay] = hit->mat->scatter(ray)
    return emit + col * trace(sRay);
else
    return backgroundColor;
```


