Inverse and differentiable rendering
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Course announcements

Take-home quiz 10 posted, due 4/23, worth 100 points.

Will try to have feedback for all proposals by Friday.



Overview of today’s lecture

Inverse rendering.

Differentiable rendering.
Differentiating local parameters.
Differentiating global parameters.
Path-space differentiable rendering.

Reparameterizations.



Slide credits

Many of these slides were directly adapted from:

* Shuang Zhao (UC Irvine).
e Tzu-Mao Li (UCSD).
» Sai Praveen Bangaru (MIT).



Forward rendering

l \ physically-accurate

‘ —> rendering

digital scene specification photorealistic
(geometry, materials, simulated image
optics, light sources)
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Inverse rendering

l \ physically-accurate

£<_> inverse rendering

digital scene specification photovagistic
(geometry, materials, syedsetienmage
camera, light sources)

L\




What | was doing in 2013
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| wanted to make images such as this one




Scattering: extremely multi-path transport

random walks
inside volume

volumetric density| o,
scattedte @bredo| a
phase function| f




Acquisition setup




Analysis by synthesis (a.k.a. inverse rendering)

not scalable .
solve-by optimization problem
exhaustiversearch? ) ,
min || = - |r =(m] |

m

Monte Carlo @

rendering | ceveral

7 hours

material m, *

material

material




Analysis by synthesis (a.k.a. inverse rendering)

optimization problem

min | HHH 1 - |[render(m] ||?
m

dimage(m) T

image(m) 3

Monte Carlo
D rendering

! T

material m

material m material m+om




Other scattering materials
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everyday materials industrial ispersions computed tomography
[Gkioulekas et al. 2013] [Gkioulekas et al. 2013] [Geva et al. 2018]

optical
tomography

[Gkioulekas et al.
woven fabrics clouds 2016]

[Khungurn et al. 2015, [Elek et al. 2017, 2019] [Levis et al. 2015, 2017]
Zhao et al. 2016]




Making sense of global illumination
X: 3D shape

X: surface reflectance

X: occluded imaging

scattering
M |:| X: illumination

reflectance

A

stochastic gradient descent

diff iabl dering: i while (not converged) Monte-Carlo
ITTferentiable rendering: image N ERSTS rendering
update X with X <€

gradients with respect to arbitrary X | |




Differentiable rendering and deep learning

= (Rohysics) * (IMg) IME = Rohysics(M) | ceds to be

\ l differentiable for
[ ! ) ' training with
‘ backpropagation

@ ® I
o -l
® g

image encoder parameters 1t physics-based

renderer

|

force input and output images to be the same



Differentiable rendering

= QIPRRAR
&, "@EHH SIGGRAPH Asia 2018 Courses

Not related to:

Light Transport Simulation
Gradient-Domain Path Tracing in the Gradient Domain
Markus Kettunen!  Marco Manzi®  Miika Aittala’ Jaakko Lehtinen! Frédo Durand* Matthias Zwicker?

'Aalto University *University of Bern NVIDIA *MIT CSAIL

ACM Transactions on Graphics 34(4) (Proc. SIGGRAPH 2015).
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Primal ™

“Gradient” in their case refers to image edges.
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REMINDER (?) FROM CALCULUS



Reminder from calculus

Differentiation under the integral sign
Also known as the Leibniz integral rule

b () ? b g ——
— - ove derivative
dr f f(x’ T[) dx = fa(n) dm f(x' T[) dx inside integral



A simple example

flx,m) = {(1) ifx < 2m

if x = 2m

d 41T 2TC d 41T d

— | flx,mdx = f — 0dx +f — 1dx viove

dmr J, o dm g AT derivative

iInside integral

Account for changes in 1 d(4m) 0 do

integration limits + dr E

d(2m)

Account for discontinuities of _|_ (O _ 1)
integrand that depend on 7 dm



Leibniz integral rule

Differentiation under the integral sign

Also known as the Leibniz integral rule S
Interior integral

d b(m) b (1) d y N
— ove derivative
EL(H) flx,m)dx = ja(n) dnf(x m)dx inside integral

Account for changes in db () da(”)

integration limits + f(b(n), ) . fla(m); m)

dCl (ﬂ)

Accountfordiscontinuities of -+ Z(f(cl(n) ) — f(Cl(TC)+ T[))

iIntegrand that depend on



Simplified Leibniz integral rule

Differentiation under the integral sign

Also known as the Leibniz integral rule L
Interior integral

b b
if flx,m)dx = f %f(x,n)dx

dm J, a
Account for cMeages in db(m)
Iifesrsiiaitiomiat 7 Smalifies Jcr)gusq n?dvu'?g delivati

when:
* |Integration I|m|ts are Indepgine

Account IIEGAUhHIFES

integrand_the®@epend on

rfet?ﬁccd%“tff PR

Ui
U

Move derivative
Inside integral

da ()

G

- +n))

dc; (1)

dm




Reynolds transport theorem

d ? df (x,m
— | flx,m)dA(x) = f At )dA(x) 4 g(x, m)dl(x)
A Jo ) am 4T 00(m)
Boundary domain
Reynolds transport theorem [1903] Interior integ ral

Generalization of the Leibniz rule Ll
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DIFFERENTIATING DIRECT
ILLUMINATION



Direct illumination integral

Radiance from x:

Reflectance Shading wrt
(BRDF) normal n
[ = o fr(wi, w,) Li(w;) (n - w;) do(w;)

Unit hemisphere

Monte Carlo rendering:

« Sample random directions w; from PDF p(w;)
 Form estimator

O f(f,0,) Liwd) (- wf)
=), p(0))




Differential direct illumination

Differential radiance from x:

dil d

dr — dm H2 fr(w, wy) Li(w;) (n - w;) do(w;)




Differential direct illumination: local parameters

Differential radiance from x:

i d (d | e Wi -
= f e PKCon o)) (G o et

Just move derivative inside integral

Monte Carlo differentiable rendering:

« Sample random directions w; from PDF p(w;)

. Just differentiate numerator
* Formestimator . nqurn et al. 2015, Gkioulekas et al. 2015]

1t. local parameters

. BROF parameters 3 T (@, 00) Li(@f) (- )
S

* shading normal —
e illumination brightness  dm

p(wf)



Alternative estimator

Differential radiance from x:

= [ e L@@ 0))o()

Just move derivative inside integral

Monte Carlo estimation:

« Sample random directions w; from PDF p(w;, )

e Form estimator Differentiate entire contribution
1r. local parameters [Zeltner et al. 2021]

. BRDF parameters Z&%ﬁﬂ(a)“wo,n) Li(w?) (n- ws)l
PR ¥) )




Differential direct illumination: global parameters

Differential radiance from x:

dil d

dr — dm H2 fr(w, wy) Li(w;) (n - w;) do(w;)

= .w)} do(w;)

Need to use full Reynolds transport theorem

1t. global parameters

« shape and pose of
different scene elements
(camera, sources, objects)



Discontinuities in the integrand

Low I High

1T Size of the emitter

I = fr(w;, wy)Li(w;) (- wildg(wi)

Integrand Discontinuous points
f(w;) (r-dependent)

HI2 ™= ~—
f(w;)



Applying the Reynolds transport theorem

Low I High

I = f(wi'wo)do-(wi)
M2

A4

di f df f o
dﬂ: HZdT[ O- aHzg

(Jgﬁﬁgzrs'?é?%acgl Integrand Discontinuous points

parameters) f(w;) (r-dependent)
[Ramamoorthi et al. 2007, Li et al. 2019]




Reparameterizing the direct illumination integral

Hemispherical integral Surface integral
L(m)
Change of
variables
[ = j f(wp) do(w) I=| fOr-06xy)dAm)
[Hi2 L(m)

Includes visibility, fall-off,
and foreshortening terms



Reparameterizing the direct illumination integral

Hemispherical integral Surface integral

Low T High

Change of
variables

discontinuous continuous
[ = f F(w;) do(wy) I=| fO&-xG6xy) dAG)
H2 L(T)
constant domain evolving domain




Differentiating the hemispherical integral

. size of the emitter Low N High Discontinuities of f

d/ d
I = f f(w;)do(w,) Differentiation> — = j ﬂdG + J g dl
H2 dm H 2 dm o H 2

Reynolds transport _
theorem Interior



Differentiating the area integral

. size of the emitter Low I High Boundary of £L(m)

\ /

O £

d/ d(fG

— = f Ue) dA + j g dl

dr £(m) drr dL(T)
Reynolds transport

theorem |nterIOl’

I = fly » x)G(x,y)dA(y) Differentiation>

L(m)



Sources of discontinuities

Boundary edge Sharp edge | Silhouette edge |

Boundary edge

Silhouette !
detection |

¥ Silhouette
edge

Topology-driven Visibility-driven



Significance of the boundary integral

Negative NN - Positive

Original image Derivative image Derivative image
w.r.t. vertical offset of w/o boundary integral
the area light and the cube



Gradient Accuracy Matters

Inverse-rendering results with identical optimization settings

INIT. MESH SOFTRAS PyTORCH3D MITSUBA 2 NVDIFFRAST Luan et al. 2021 GROUND TRUTH

0.0066 0.0023 0.0010 maneki

Relative err: 0% [ 30%



Sources of discontinuities

* We still need to account for discontinuities when using smooth closed
surfaces (e.g., neural SDFs)

Silhouette edge

-

Silhouette !
detection

" Silhouette
edge

[Gargallo et al., ICCV 2007]

Visibility-driven



DIFFERENTIATING GLOBAL
ILLUMINATION



Images as path integrals

I(m) =fp f(X;m)dx

camera

X —> Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emmision)




Monte Carlo rendering: approximating path integrals

> (i)

() = —
i p(X;; TT)
1=1
camera ‘ |
MC ()
X; —> Randomly sampled light paths

p(X;) -2 Probability of sampling a path

Algorithms such as path
tracing, bidirectional path
tracing, etc. sample paths.




How can we approximate the derivative of the image?




Easy approach 1: finite differences

0l MC(m+¢€) —MC(m — &)
( N
o 2€

|
3
z

camera Any issues with this?

* Incredibly noisy for small €

* Veryinaccurate for large €

* Techniques for noise
reduction exist, but generally
impractical approach




Easy approach 2: automatic differentiation

STIT (m) =~ autodiff(MC (7))

camera

Any issues with this?

 Many path sampling techniques
are not differentiable

* High variance (consider f(x;m) =
constant)

 Rendering produces enormous,
non-local computational graphs.




DIFFERENTIATING GLOBAL ILLUMINATION
WITH RESPECT TO LOCAL PARAMETERS



Images as path integrals

I(m) =fp f(X; m)dx

camera

X —> Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume [P is independent of it




Derivatives of images as path integrals

camera

o0l
- —)
e () ="

X —> Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume [P is independent of it



Derivatives of images as path integrals

camera

— (T[) = — (x m)dX

differentiation under the integral sign

X — Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume [P is independent of it



Monte Carlo differentiable rendering (for local parameters)

camera

This term is generally easy to
compute during path tracing

of _
dl N‘ a£ (Xi; 7T)
Z‘._ p(X;; )
=N

X; —> Randomly sampled light paths

p(X;) -2 Probability of sampling a path

Sample paths using path
tracing etc.



Score estimator

(X T7) = ( o _ )V(xb—1 © Xp)  Foreshortening terms are
J&xm) = Jsp—1 = Xp > Xpy1; T 1 — xp |2 included in the BRDF

B

of _

%(x; ) = ‘ ‘fs(xb_1 X = Xpgs T
b

V(xb_l L xb)

”xb—l — Xp ”2

0
Z fg (xb 1 = Xp = Xpy1; ) | At each path vertex:

fe(xp_1 = xp = xpeppm) | Update product throughput using f;
* Update score sum using gradient of f
Multiply the two at end of path

Score function of f;



Even simpler: use autodiff

N
0l autodiff(f (X;; ))
7y y 20
omn _ p(X;; M)
X; —> Randomly sampled light paths

p(X;) -2 Probability of sampling a path




Compare with...

a1 = (R 70)

— (1) =~ autodiff —
aﬂ( : izlp(xi;ﬂ)

camera

X; —> Randomly sampled light paths

p(X;) -2 Probability of sampling a path




Even simpler: use autodiff

N

N 2 autodiff(f (X;; ))
) p(X;; )

Depending on how badly p
approximates f, can have
much lower variance.
Remember: Compute an
estimate of the derivative, not
a derivative of the estimator.



OpenDR: An Approximate Differentiable Renderer

[Loper and Black 2015]

Approach: autodiff of the entire renderer.
Only direct illumination.

Only shading parameters (normals,
reflectance).

Abstract. Inverse graphics attempts to take sensor data and infer 3D
geometry, illumination, materials, and motions such that a graphics ren-
derer could realistically reproduce the observed scene. Renderers, how-
ever, are designed to solve the forward process of image synthesis. To
go in the other direction, we propose an approximate differentiable ren-
derer (DR) that explicitly models the relationship between changes in
model parameters and image observations. We describe a publicly avail-
able OpenDR framework that makes it easy to express a forward graph-
ics model and then automatically obtain derivatives with respect to the
model parameters and to optimize over them. Built on a new auto-
differentiation package and OpenGL, OpenDR provides a local optimiza-
tion method that can be incorporated into probabilistic programming
frameworks. We demonstrate the power and simplicity of programming
with OpenDR by using it to solve the problem of estimating human body
shape from Kinect depth and RGB data.

Fig. 4. Illustration of optimization in Figure In order: observed image of earth,

initial absolute difference between the rendered and observed image intensities, final

difference, final result.




Compute an estimate of the derivative

derivative wrt volumetric density

derivative wrt BRDF

Inverse Transport Networks

Chenggian Che Fujun Luan Shuang Zhao
Carnegie Mellon University Cornell University University of California, Irvine

Kavita Bala Ioannis Gkioulekas
Cornell University Carnegie Mellon University

derivative wrt normal



Comparison with finite differences

rendered
0, a g
finite
differences
o, a 4

Note: Finite differences are great for testing the correctness of your gradient code.



Compute a derivative of the estimate

Mitsuba 2: A Retargetable Forward and Inverse Renderer

MERLIN NIMIER-DAVID", Ecole Polytechnique Fédérale de Lausanne
DELIO VICINI*, Ecole Polytechnique Fédérale de Lausanne

TIZIAN ZELTNER, Ecole Polytechnique Fédérale de Lausanne
WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne

* A lot more general.
* GPU implementation.

derivative wrt volumetric density



Derivatives of images as path integrals

camera

— (T[) = — (x m)dX

differentiation under the integral sign

X — Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume [P is independent of it



Derivatives of images as path integrals

—(n) —f —(x m)dX

differentiation under the integral sign
camera

What about parameters it that
change P?

* Location, pose, and shape of
r light, camera, and scene
- objects.




DIFFERENTIATING GLOBAL ILLUMINATION
WITH RESPECT TO GLOBAL PARAMETERS



We'll work with the rendering equation for a few

L(x,w;m) = f

G ()

camera

p’

Lix' - x;m)f(x" - x,0;m)V(x" & x;m)dA(x")

L - Radiance at a point and direction
G = All surfaces in the scene

f =2 Reflection, foreshortening, and fall-off
V - Visibility



Let’s slightly rewrite the rendering equation

L(x,w;m) = f Lix'" - x;m)f(x" - x,w; m)dA(x")
V(x,m)

L - Radiance at a point and direction
IV = All visible surfaces in the scene

f =2 Reflection, foreshortening, and fall-off

camera

p’




Let’s differentiate it

0 0
—L(x,w;m) = —f Lix' - x;m)f(x" - x,w;m)dA(x")
on V(x,7)

o1t

L - Radiance at a point and direction

IV = All visible surfaces in the scene

f =2 Reflection, foreshortening, and fall-off

Can we just move the integral inside?

camera

p’




Let’s differentiate it

d
—L(x,w;m) = —f Lix' - x;m)f(x" - x,w;m)dA(x")
om o V()

camera

p’

L - Radiance at a point and direction

IV = All visible surfaces in the scene

f =2 Reflection, foreshortening, and fall-off

Can we just move the integral inside?
* No. What can we do?



Let’s differentiate it

d
—L(x,w;m) = —f Lix' - x;m)f(x" - x,w;m)dA(x")
om o V()

camera

p’

L - Radiance at a point and direction

IV = All visible surfaces in the scene

f =2 Reflection, foreshortening, and fall-off

What are the “boundary” and
discontinuities of I'?



Boundaries

(a) Boundary edges (b) Silhouette edges (c) Sharp edges

Fig. 5. Three types of edges (drawn in yellow) that can cause geometric

discontinuities: (a) boundary, (b) silhouette, and (c) sharp.




Let’s differentiate it

—L(x,w;m) =
on
0
— LdA(x) + H(L)do(x)
V(x,7) om oV (x,m)
| | | ]
| |
recursively estimate recursively estimate
derivative of L at radiance L at some
some visible point boundary point
camera
Not terribly good, as we ray trace, we need to:

‘ ’  recompute silhouette at each vertex
* branch twice



Boundary edge detection and sampling

Not terribly good, as we ray trace, we

need to:
 recompute silhouette at each vertex

e branch twice




Global geometry differentiation

Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAOQ LI, MIT CSAIL

MITKA AITTALA, MIT CSAIL

FREDO DURAND, MIT CSAIL

JAAKKO LEHTINEN, Aalto University & NVIDIA

Beyond Volumetric Albedo
— A Surface Optimization Framework for Non-Line-of-Sight Imaging

Chia-Yin Tsai, Aswin C. Sankaranarayanan, and Ioannis Gkioulekas
Carnegie Mellon University




Global geometry differentiation

LC1¢{=] — init R—

4 optimize
bunny

pose

optimize
reflectance
and camera
pose










Let’s differentiate it

—L(x,w; T
7 L( )
0
_ f F( )dA(x) " f H(L)do (x)
V (x,7) om oV (x,m)
— Y
render derivative render L at some
of L at some boundary
visible point (silhouette) point

camera | Not terribly good:

H * As we ray trace, we need to recompute
| silhouette
* Branching of two at each recursion




CHALLENGES

Complex light transport effects Complex geometry



REPARAMETERIZATION
APPROACHES



THE REYNOLDS TRANSPORT THEOREM

g
I

—J

D) : Set of continuous points

oL

/D Oy f

Interior term

_|_

O] : Set of discontinuous points

oD

V-1

Edge term

74



CONVERTING EDGE-SAMPLES TO AREA-SAMPLES

[ s
oD

is estimated through edge-samples O

into area integral

[+ o)

can be estimated through area-samples O

I S S S S e e e S -

75



THE DIVERGENCE THEOREM

‘-——_’

— - -
—_——
-
-

(—

[Gauss 1813]

— -y,
——-—
f—
-

‘———_’

76



QUICK RECAP

* Used Reynolds transport theorem to find the boundary integral /0D fv-n

* Rewrote fv-n
oD

* Have to define the vector field V@ over domain D

to

r/DV-(ﬁef)\

using the divergence theorem.

7



A 2D EXAMPLE SCENE

j[ w € (), the domain of integration

[ ) (b

wl ,w2 -~ 0f) , the discontinuous set ]

78



—

VELOCITY V : THE BOUNDARY DERIVATIVE

| 8@%@

: Derivative of boundary position w.r.t ©

0 =0







WARP FIELD ), : EXTENSION OF V' TO ALL POINTS

-

‘ '[ V(g : defined over D ]

. \\Qp =
- | 'V :defined over aD

\

80



.
| VALIDITY OF V@

Rule 1: Continuous

»V@(v

W ! W




5
| VALIDITY OF V@

Rule 2: Boundary Consistent

»Vg(v




.
CONSTRUCTING V@

Attempt 1 === Find Opw through implicit derivative

y = INTERSECT(w, ) > Jpw = ———

At all points (not just boundaries)

+ Boundary consistent
- Not continuous

(Incorrect)

(direct)

83



.
| CONSTRUCTING V@

Attempt 2 =—mp Filter Attempt 1 with a Gaussian filter

(Incorrect)

0 -
/ k (w : w/) wy Végaussmn)
0 Opy

k(.,.) = Gaussian filter

+ Continuous
- Not boundary consistent

(w)

84



BOUNDARY-AWARE WEIGHTING

Goal: Find weights

klw, w’)] st [ Vy =

gy

at boundaries.

-

o

Ideal weighting function

s

~

)

|

Approach Dirac delta near boundaries

85









PATH-INTEGRAL FOR
DIFFERENTIABLE RENDERING



FORWARD PATH INTEGRAL

Measurement
contribution function

f (x) du(x)

Area-product

Path space measure

Light path x = (x(, x4, x5, x3)



DIFFERENTIAL PATH INTEGRAL

Path Integral

I = jﬂf ®)du®

A generalization of
Reynolds theorem

d/ B
dmr

We now derive @In/ax in Eq. (25) using the recursive relations pro-
vided by Eqs. (21) and (24). Let

(0) ]
e = [TIN ey 9w Xwr—2, Xwr-1)] Welxny = xn-y), (52)

(1) ]
hy = Topepar K(w) V(x), (53)
ﬁh:lur]p = h:xm Agloxys Xt 2. X 1) g (X Xy 2. X 1), (59)

for 0 < n < n’ < N. We omit the dependencies ofh;,m. hﬁ,“, and

Ahf::. on Xp41, ..., xN for notational convenience.
We now show that, for all 0 < n < N, it holds that

hn(xn; %n-1) = [yov-n b Tyeper dAGRw),  (55)

and

(hf,”')' —h,‘,mh,(,”] N

n'=n+l

ﬁn'-[-\'ni Xp-1) = f“_\_[_‘\'fn dA(x,)

+ 3N AR Ve () A ()

nn' "M,

[T dA(x;), (56)
n<:‘g__\|’

i#n
where the integral domain of the second term on the right-hand
side, which is omitted for notational clarity, is M(x) for each x;
with i # n’ and oM, (), which depends on x,_1, for x,..

It is easy to verify that Eqgs. (55) and (56) hold forn = N — 1. We
now show that, if they hold for some 0 < n < N, then it is also
the case for n — 1. Let g,,—; = g(xp; x¥p—2,x,—1) forall0 < n < N.
Then,

hp—y(xp—1: Xp-2) = f;\l’. Gn-1 _/:“_.\',,, hi;m nj:::m'l dA(x,) dA(x,)
= -/:'\{N el hLU—'l n;':d":" dA(xp), (57)

and
Bn-1(Xn-1; Xn-2)

= [ug [dn=1 b+ gn-1 (hn = hn k(x0) V(x0))| dA(xn)
+ fﬁ Agn-1 by Vo de(x)

= fMN

s (0) ()" (0), (1) N
gnet B 4 g |[h,,' —h h"_1|}ﬂﬂ,=kdfi{xn')

0
+fﬂgu—l h:: : va,“
0y (0) ,(1) N
[hn—l] - hn—lhn—ll nn‘:n dA(xn)

M dA(x).  (58)
n<isN
i#n

| de(xn) 1N, dAGe)

= jr_“.\'—ml

N (0)
* Epen [ A"y Vagn () dE )

Thus, using mathematical induction, we know that Egs. (55) and
(56) hold for all 0 < n < N.

Notice that b’ = f and Ah{"), = Afr, where Afy follows the

definition in Eq. (28). Letting n = 0 in Eq. (56) yields
ho(x0) = [yn [F(2) = £(2) ZN_, k() V()] [T, dA(x)

+EN_ [ A (@) VAL, df[xn')k]l\rd.ﬂ(x;). (59)
itn’

Lastly, based on the assumption that hg is continuous in xg, Eq. (25)
can be obtained by differentiating Eq. (23):

% = %fM ho(x0) dA(x0)
= [ [Rol(x0) = ho(x0) x(x0) V(x0) | dA(x0)
+ 51, ho(x0) Vaz (x0) dé(x0) (60)
= Jo, @ - f@ TN k(xi) Vixg)] dp(x)
PN S Mic®) Vg diy (5.

Full derivation in the paper




DIFFERENTIAL PATH INTEGRAL

A generalization of

Path Integral Reynolds theorem Differential Path Integral
= | f@a® == - [ @+ [ @i
Q Q)

path space] Interbauimtaxyrgdth space -7

Original [ ) [ )

ight PRjpes of discaktinuity edge: X x.
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SOURCE OF DISCONTINUITIES

Boundary edge Sharp edge | Silhouette edge |

Boundary edge

Silhouette !
detection =

¥ Silhouette
edge

Topology-driven Visibility-driven



TEXTURE PARAMETERIZATION FOR
SIMPLIFYING THE BOUNDARY TERM



REPARAMETERIZATION

E = j L.(y » x) G(x,y) dA(y)
L(1)

.,
.
.
.0
g

............ ®
T ‘o / X(p,m,) Parameterize L(m) using some fixed L:
/ ve /KT y =X(p,m)
/ | |
v/”z:gm,) where X(-,m) IS one-to-one and continuous
1:(”1)
L(m;)
Reparameterization _ (y)
with y = X(p, n): E= L Le(y - x)G(x,y) ‘dA(p) dA(p)

0



REPARAMETERIZATION

f

A

E = j Ze(y > X) G(x,yS dA(y)
L(1T)

dE df
ak _ f a4 + f g di
dr L(m) drr dL()

=0
fo
o dA(y)
E = JLO L.(y »>x)G(x,y) |m dA(p)
dE _ [ dfy
E_ JL Edfl + L£090 dl




REPARAMETERIZATION

Reparameterization for irradiance

y = X(p,m) )
Ezf L.(y » x)G(x,y)dA Ezj L > x)G |— dA
e y)dA(y) b | Ll =) 6Gy) 7] dA)
0
Fixed surface
Reparameterization for path integral
e dp(x)
= @ du® | = f ‘ A
oo > @ (p) u(p)

Fixed path space 1

1—[ ‘dA(xl)
dA(p;)




DIFFERENTIAL PATH INTEGRAL

Original
I = f () du(x)

Q(m)

X = X(p,m)

N

Reparameterized

= fgof( %) |du(p)

du(p)

Original

du(®) + j 9@’ (®)

dQ.(1)

dI _J df (x)
dr a@m dm

Pro: No global parametrization required
Con: More types of discontinuities

Reparameterized

Al [ d (. _ |du@
T jﬂOE(f(x)

du(p)

Con: Requires global parametrization X
Pro: Fewer types of discontinuities

)du(ﬁ) ¥ ]a ) D)



DIFFERENTIAL PATH INTEGRAL

Differential path integral

Visibility-driven

L8

Silhouette
edge




MONTE CARLO ESTIMATORS



ESTIMATING INTERIOR INTEGRAL

(Reparameterized) ﬂ _ u(x) _ N1 g —
Differential path Integral g — JQ < (%) ‘d D) )d/"(p) t Jaﬂog(p)dﬂ »)

Interior integral

Original [ ) Can ;ml‘ed using identical path

light path 7 samplirtT§renblesesimEiaSrd rendering

Unidirectional path tracing

X1 Bidirectional path tracing

ng

A




ESTIMATING BOUNDARY INTEGRAL

(Reparameterized) | f < (% )‘ du(x) )d — f — I (—
- - — = u@mp) + | g@du' ()
Differential path Integral o1 Q 0T fx du(p) 20,
Silhouette detection
[Li et al. 2018, Zhang et al. 2019]
| / I\ ]
[ )
---------- X0 \
\ AI
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ESTIMATING BOUNDARY INTEGRAL

i 0l 0
(Reparameterized) _ f o < £(®)
Q

Differential path Integral a7 o om

du(x) )

o @ + | @) @)

90,

where x = X(p, )

Construct ' '

Construct source and sensor subpaths
e Ll o K o LY o 3

To improve efficiency
Next-event estimation
Importance sampling of boundary segments




OUR ESTIMATORS

Unidirectional estimator

Interior: unidirectional path tracing
. unidirectional sampling of subpaths
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Unidirectional path tracing + NEE

Bidirectional estimator

Interior: bidirectional path tracing
. bidirectional sampling of subpaths

Bidirectional path tracing



SOME RESULTS



HANDLING COMPLEX GEOMETRY

Reference
Negative [N

. Positive

Complex geometry

Equal-sample
comparison

[Zhang et al. 2019] [Loubet et al. 2019]
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HANDLING COMPLEX GEOMETRY

Target image

- Optimizing rotation angle

- Equal-sample per iteration

- ldentical optimization setting
— Learning rate (Adam)
— Initializations

[Loubet 2019] Ours

[Zhang 2019]

|lteration #0

Deriv. Image

Param. RMSE

e B Img. RMSE
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HANDLING CAUSTICS

Reference
Negative [ N

WEeE e

Complex light transport effects

i T
[ :

Equal-sample
comparison

e R e

[Zhang et al. 2019] [Loubet et al. 2019]
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HANDLING CAUSTICS

Reference

Equal-sample comparison _ _
Negative [

- Positive

[Zhang et al. 2019] [Loubet et al. 2019] Ouwurs (unidirectional) Ours (bidirectional)
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HANDLING CAUSTICS

Target image

+ Optimizing
— Glass IOR
— Spotlight position
- Equal-time per iteration
- ldentical optimization setting

Ours (bidir.)

Ours (unidir.)

[Zhang 2019]

Iteration #0

Deriv. Image

Param. RMSE

Img. RMSE
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SHAPE OPTIMIZATION

Initial

Optimizing cross-sectional shape (100 variables)

Cross-sectional shape
Iter #0 (displacement x 20)

1le—2 Img RMSE
1.40 A
1.10 -
0.91 = target shape
= current shape
0.73 1

T T T T T T
0 25 50 I 100 125 150
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RESULTS

Qriginal Image | Derivative image Original image Derivative image

Optimize (final)




Applications




Inverse scattering [Gkioulekas et al. 2013]

hand cream olive oil i,__% curacao

shampoo | robitussin :
| mixed soap

whole milk

milk soap

liquid clay
mustard
reduced milk




Acquisition setup

Invert using
differentiable
rendering




Synthetic renderings

mixed soap

—
g}

glycerine soap olive oll curacao whole milk




Inverse transport networks [Che et al. 2020]

* Integrate physics-based rendering into machine learning pipeline

* Predict scattering parameters from images

-

image

* Ultilize image loss provided by a volume path tracer to regularize training

differentiable renderer

encoder parameters

~

image

* Use the trained encoder to perform inverse scattering during testing



50 %

Groundtruth

0%

Inverse transport network

parameter loss: 0.60x
appearance loss: 0.40x

Baseline

parameter loss: 1x
appearance loss: 1x




Optical tomography [Gkioulekas et al. 2015]

o

camera thick smoke cloud simulated camera reconstructed  slice through
measurements cloud volume the cloud






Active area of research

industrial dispersions efficient algorithms computéd torhography
[Gkioulekas et al. 2013] [Nimier-David et al. 2019, 2020] [Geva et al. 2018]

woven fabrics 3D printing cloud tomography
[Khungurn et al. 2015, [Elek et al. 2019, [Levis et al. 2015,
Zhao et al. 2016] Nindel et al. 2021] 2017, 2020]



Non-line-of-sight (NLOS) imaging

LOS NLOS
signal signal

>
—
7))
-
O]
—
S

source & sensor Time-of-flight measurements

occluder



SPAD-based lidar

galvo \
7—NH mirror

[
3
)

#171 picosecon |:
& 3 dlaser

single-photon
avalanche photodiode
(SPAD) o




NLOS shape optimization [Tsai et al. 2019]

visible surface

source c}”\b '
and ®)

sSensor

100,000 vertices

Simulated time-of-flight data



NLOS shape optimization [Tsai et al. 2019]

Tmx1m
64 _x 64 scan poipts

4

scene initial mesh optimized
[O'Toole et al. 2018] mesh

Measured time-of-flight
data



Reflectometry from interreflections [Shem-Tov et al. 2020]

Direct illumination measurements Global illumination measurements
g Higher-order
% @ A bounces
(O wj
> >
. Wo . Wo

material sample f(w;, w,) material sample fw;, w,)
+ Intensities map directly to BRDF entries + Fewer measurements (single image)
- Many measurements (2D scan of light & camera) | - Non-linear analysis-by-synthesis optimization

Solvable using differentiable rendering



Single-image dense BRDF sampling

¥
% i

Q
¥

Single-bounce Two-bounce paths All-bounce paths
paths



Results on MERL dataset

fl
Groundtruth

~ 6.3x better parameter recovery

Optimize %{\M ~ 11.2x better param_&eter recovery

d shape : ;




Global illumination can help...

* Reduce number of measurements required for inverse rendering

* We should rethink “optimal” acquisition systems D < <<

* Resolve ambiguities between different types of parameters
* We should revisit theory problems on uniqueness results

Shape from interreflections Interreflections resolve the GBR ambiguity
[Nayar et al. 1990, Marr [Chandraker et al. 20095]
Prize]






Inverse rendering (a.k.a. analysis by synthesis)

TT:
illumination

1
¢

S
. BRDF

. 3D shape and pose

TT:
camera
pose

Analysis-by-synthesis optimization:

-

unknowns i

N

min loss [ -
scene

1,render(

scene

unknowns

\

)

)

Stochastic gradient descent (e.g., Adam):

frmrmrprs
INnifialize m < 1ma

while (not converged)

~

update m <+

\_

dloss(m)

dmr



Why we need good initializations

* Analysis-by-synthesis objectives are highly non-convex, non-linear
* Multiple local minima

* Ambiguities exist between different parameters

* Multiple global minima

B @

INPUT IMAGE MIRROR BRDF ILLUMINATION

i eew

INPUT IMAGE ACTUAL BRDF MANY PROBABLE ILLUMINATIONS

Ambiguities between BRDF and lighting Ambiguities between scattering
[Romeiro and Zickler 2010] parameters [Zhao et al. 2014]

Ambiguities between shape and lighting
[Xiong et al. 2015]




Inverse rendering (a.k.a. analysis by synthesis)

Learned initializations help:
 avoid local minima
* accelerate convergence

-

N

\
, i scene
min ,render
e —— unknowns 7
unknowns it y

Stochastic gradient descent (e.g., Adam):

A N
INnifialize m < 1ma
while (not converged)
update m <+
\_ dloss(m) /

dmr



Why we need discriminative loss functions

* Well-designed loss functions can help reduce ambiguities

* Perceptual losses can help emphasize design aspects that matter

* Differentiable rendering can be combined with any loss function that can be
backpropagated through

Style Target Eq.’),relul_Z Zd),relu2_2 €¢,relu3_3 €¢,re1u4_3

tyl tyl tyl tyl

T S U770 N VR VS (O
| fW | S N 177~ 77
! : ! I
: | A : |
‘ X 1 =Y !
| . |
Input | I ! |
Image Image Transform Net | I Loss Network (VGG-16) gb :
yc ~ e - I T )

€¢}!1113—3
Content Target feat

VGG-based perceptual loss [Johnson et al. 2016]



Inverse rendering (a.k.a. analysis by synthesis)

TT:
illumination

1
¢

S
. BRDF

. 3D shape and pose

TT:
camera
pose

Analysis-by-synthesis optimization:

-

.

min loss [l ] ,render(

unknowns i

N

scene

unknowns

\

)

)

Stochastic gradient descent (e.g., Adam):

frmrmrprs
INnifialize m < 1ma

while (not converged)

~

update m <+

\_

dloss(m)

dmr



High signal-to-noise ratio is critical

* The extent to which we can improve upon an initialization strongly depends on the
signal-to-noise ratio of our measurements

* We need reliable camera models (noise, aberrations, other non-idealities)

simulated img(c,S)
d ata ambient light
T ( S) direct & indirect light transport
projector optical transfer function
camera optical transfer functio
proj () spatio-temporal spatio-temporal cam ()
light generation pixel responses
SR t -
= BT
m e a S U red E resprz)?lr;elpllerilgtion |
¢ N
d ata low-level pattern image processing
processin g pipeline
. ags . . control vector image
scene initial mesh  optimized mesh c i

Optical gradient descent [Chen et al. 2020]
Non-line-of-sight imaging [Tsai et al. 2019]



Stuff we are missing

We need path sampling algorithms tailored to differentiable rendering:

 Some simple versions exist for local differentiation (Gkioulekas et al. 2013, 2016).
* We need to take into account diff. geometric quantities in global case.

* We need to take into account loss function.

We need theory that can handle very low-dimensional path manifolds:
 We can’t easily incorporate specular and refractive effects into arbitrary pipelines.
* Doable inisolation (Chen and Arvo 2000, Jakob and Marschner 2013, Xin et al. 2019).
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Some more general thoughts

Initialization is super important:
* Approximate reconstruction assuming direct lighting is usually good enough.
* Coarse-to-fine schemes work well.

Parameterizations are super important:
* Loss functions very non-linear and change shape easily.
* Working with meshes is a pain (topology is awful and not (easily?) differentiable).

You don’t always need Monte Carlo differentiable rendering:

e If you don’t have strong global illumination, just use direct lighting.
* Alot of research in computer vision on differentiable rasterizers.

Remember that you are doing optimization:

 Unbiased and consistent gradients are very expensive to compute.

* Biased and/or inconsistent gradients can be very cheap to compute.

« Often, biased and/or inconsistent gradients are enough for convergence.

e Stochastic gradient descent matters a lot. 134




Reference material

Physics-Based Differentiable Rendering
A Comprehensive Introduction

Shuang Zhaol, Wenzel Jakob?2, and Tzu-Mao Li3
lUniversity of California, Irvine  2EPFL  3MIT CSAIL

SIGGRAPH 2020 Course

Differentiable Differentiable
physical simulation objective function

z=2g(y)

T’

dz 0 ()
= n=y
dy dy
Input parameters
shape & position of objects, materials, Update scene rendered image
light sources, camera pose, etc.

CVPR 2021 Tutorial Proposal

Title: Tutorial on Physics-Based Differentiable Rendering
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Shuang Zhao loannis Gkioulekas
Assistant Professor, CS Assistant Professor, RI
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