

http://graphics.cs.cmu.edu/courses/15-468

15-468, 15-668, 15-868 Physics-based Rendering Spring 2024, Lecture 6

Course announcements

- Take-home quiz 2 posted, due next Tuesday. - How many of you have looked at/started/finished it? - Any questions?
- Programming assignment 1 posted, due next Friday. - How many of you have looked at/started/finished it? - Any questions?
- First reading group took place yesterday. - Any feedback?

Overview of today's lecture

- Radiometric quantities.
- A little bit about color.
- Reflectance equation.
- Standard reflectance functions revisited.

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

Quantifying Light

Assumptions

separately at each wavelength

Geometric/ray optics

No polarization

No fluorescence, phosphorescence, ...

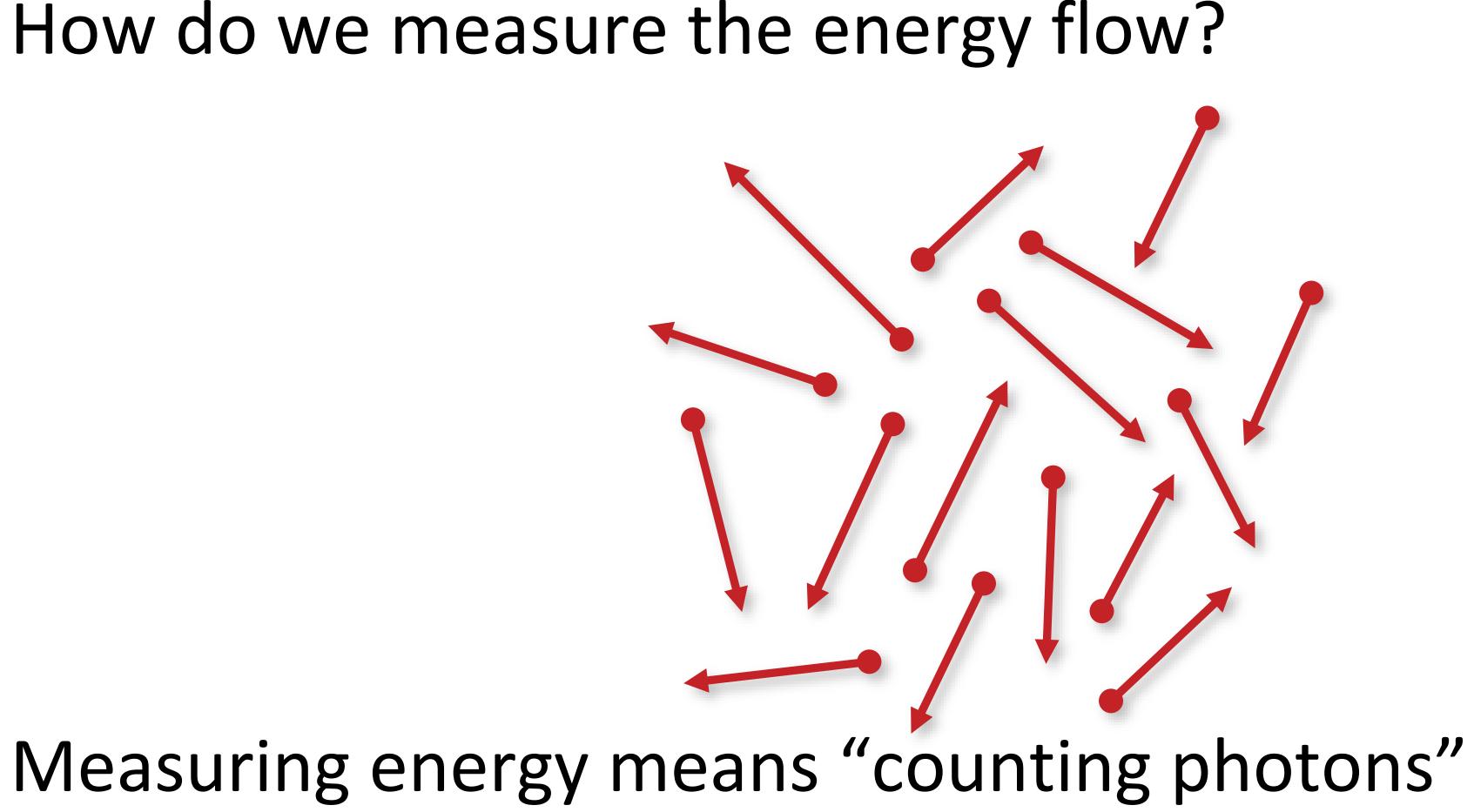
Light sources, reflectance spectra, sensor sensitivity modeled

Radiometry studies the measurement of electromagnetic radiation, including visible light.

Assume light consists of photons with:

- X: Position
- $-\vec{\omega}$: Direction of travel
- $-\lambda$: Wavelength
- Each photon has an energy of: $\frac{h c}{\lambda}$ $h \approx 6.63 \times 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg/s}$: Planck's constant $-c = 299,792,458 \,\mathrm{m/s}$: speed of light in vacuum - Unit of energy, Joule: $\left[J = kg m^2/s^2\right]$

How do we measure the energy flow?



Basic quantities (depend on wavelength)

- flux Φ
- irradiance *E*
- radiosity B
- intensity I
- radiance L

will be the most important quantity for us

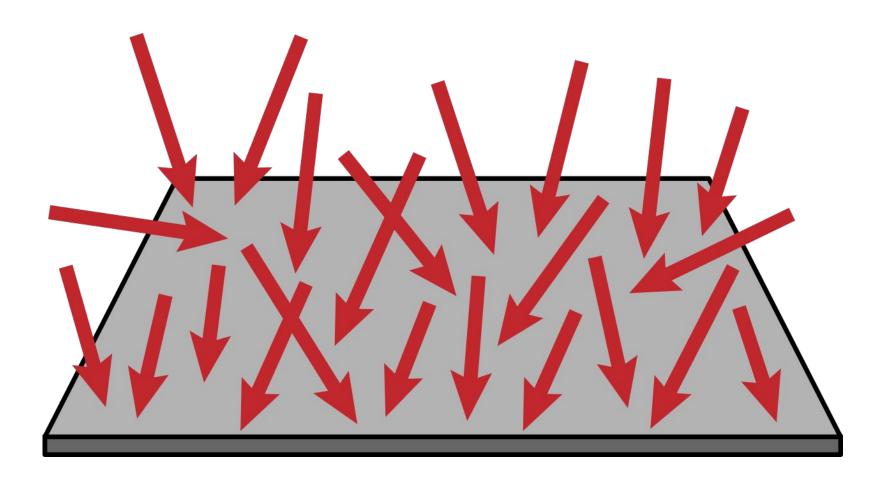
Flux (Radiant Flux, Power)

total amount of radiant energy passing through surface or space per unit time

$\Phi(A) \qquad \left| \frac{\mathsf{J}}{\mathsf{s}} = \mathsf{W} \right|$

examples:

- number of photons hitting a wall per second
- this exactly?)



- number of photons leaving a lightbulb per second (how do we quantify

11

Irradiance

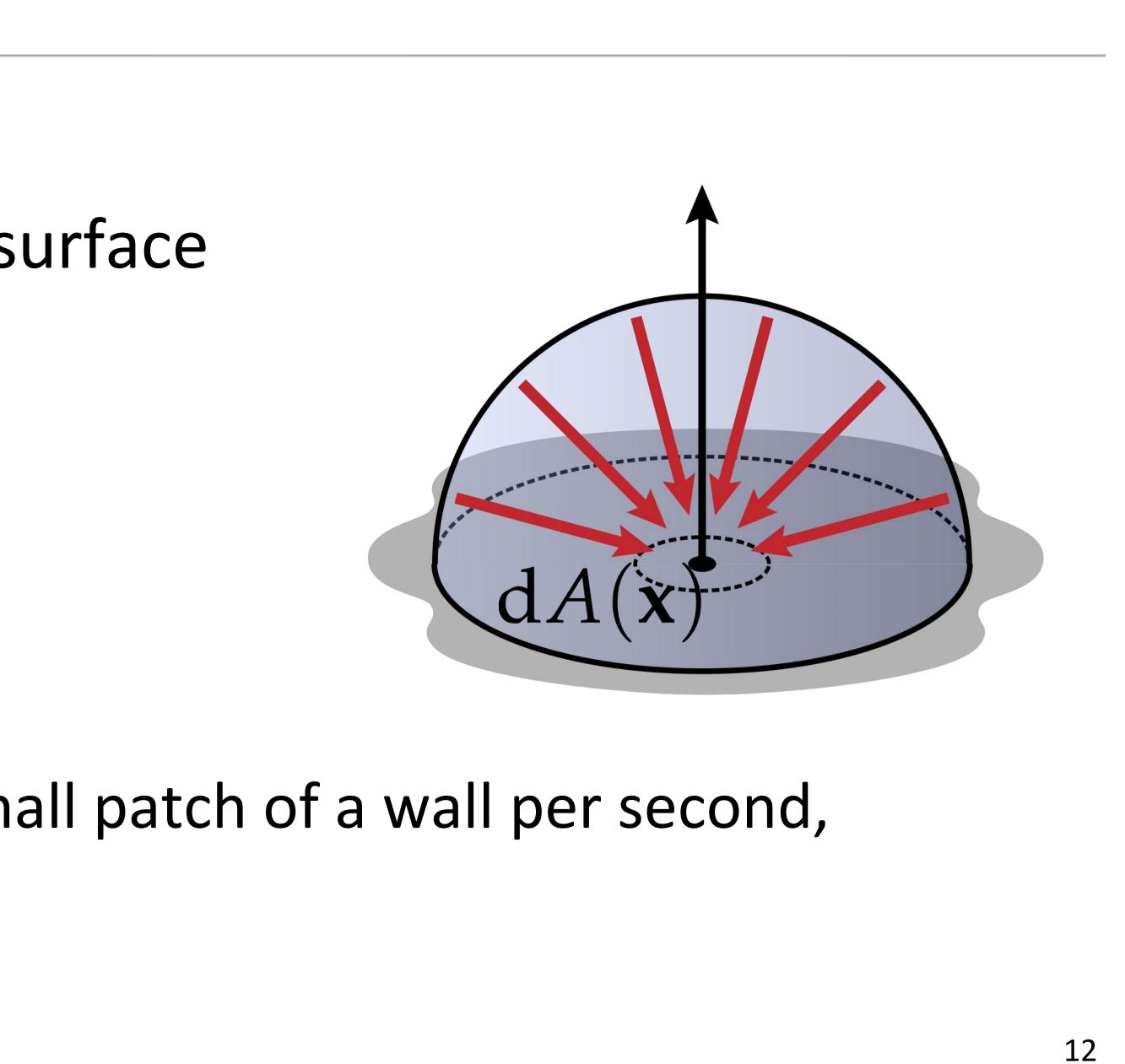
area density of flux

flux per unit area **arriving** at a surface

$$E(\mathbf{x}) = \frac{\mathrm{d}\Phi(A)}{\mathrm{d}A(\mathbf{x})} \quad \begin{bmatrix} W \\ \frac{W}{m^2} \end{bmatrix}$$

example:

- number of photons **hitting** a small patch of a wall per second, divided by size of patch



Radiosity (Radiant Exitance)

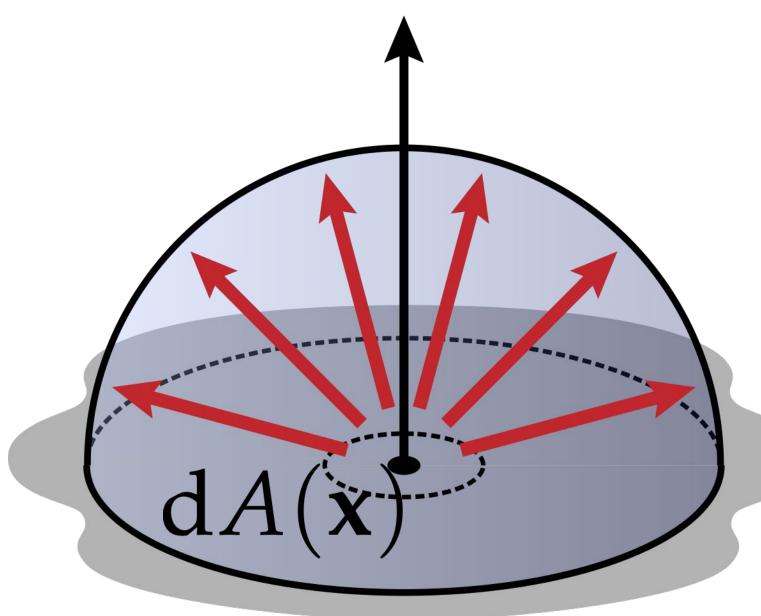
area density of flux

flux per unit area **leaving** a surface

$$B(\mathbf{x}) = \frac{\mathrm{d}\Phi(A)}{\mathrm{d}A(\mathbf{x})} \quad \left[\frac{\mathrm{W}}{\mathrm{m}^2}\right]$$

example:

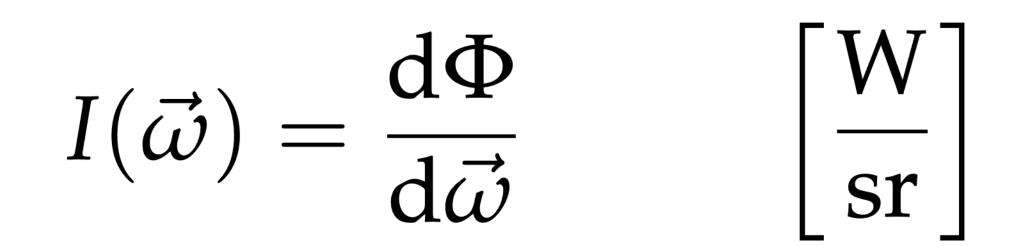
divided by size of patch

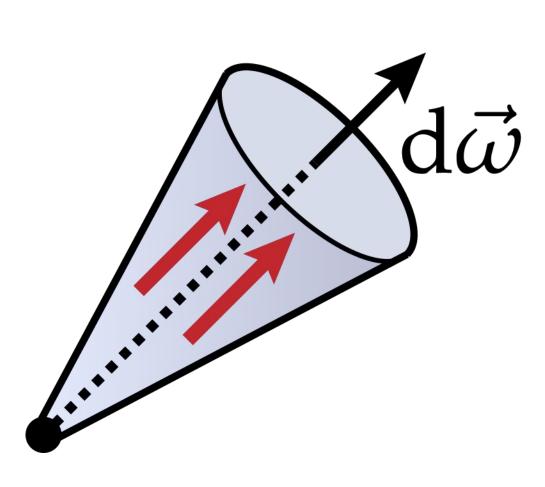


- number of photons reflecting off a small patch of a wall per second,

Radiant Intensity

directional density of flux power (flux) per solid angle

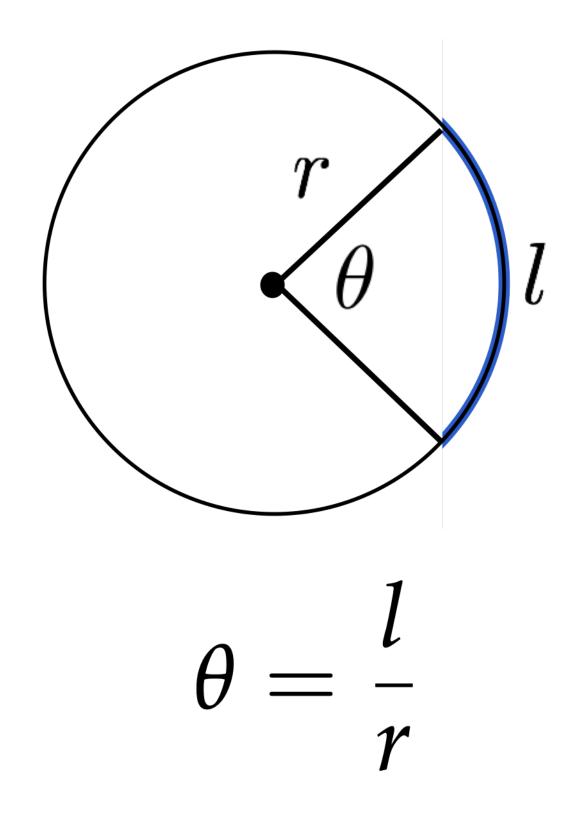




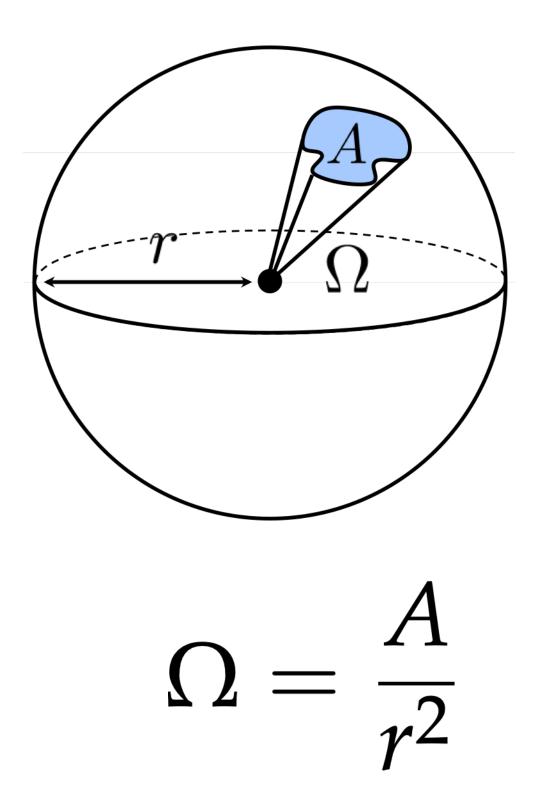
Solid Angle

Angle

- circle: 2π radians

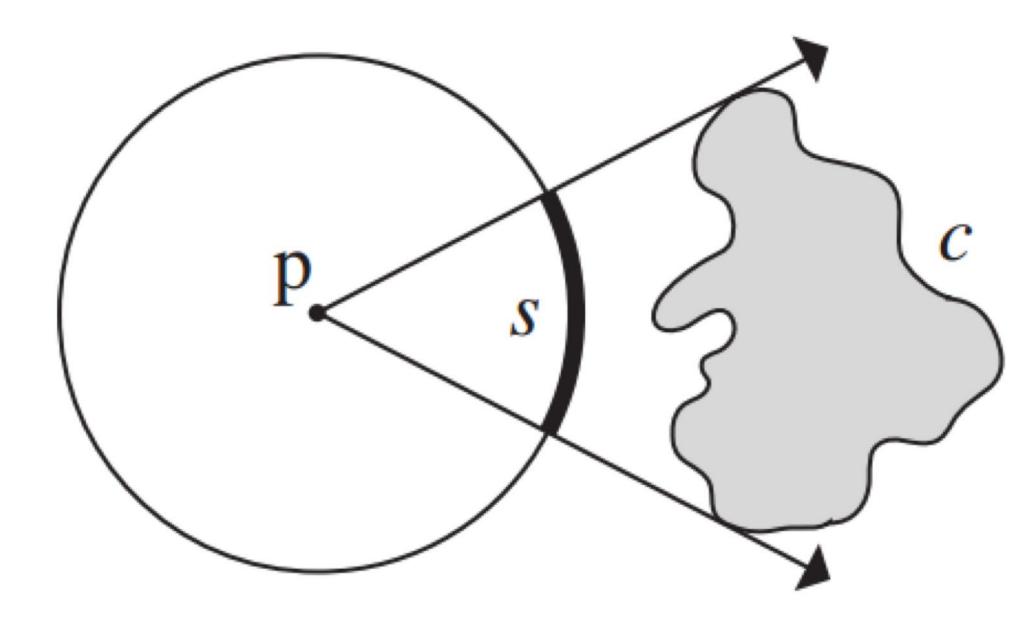


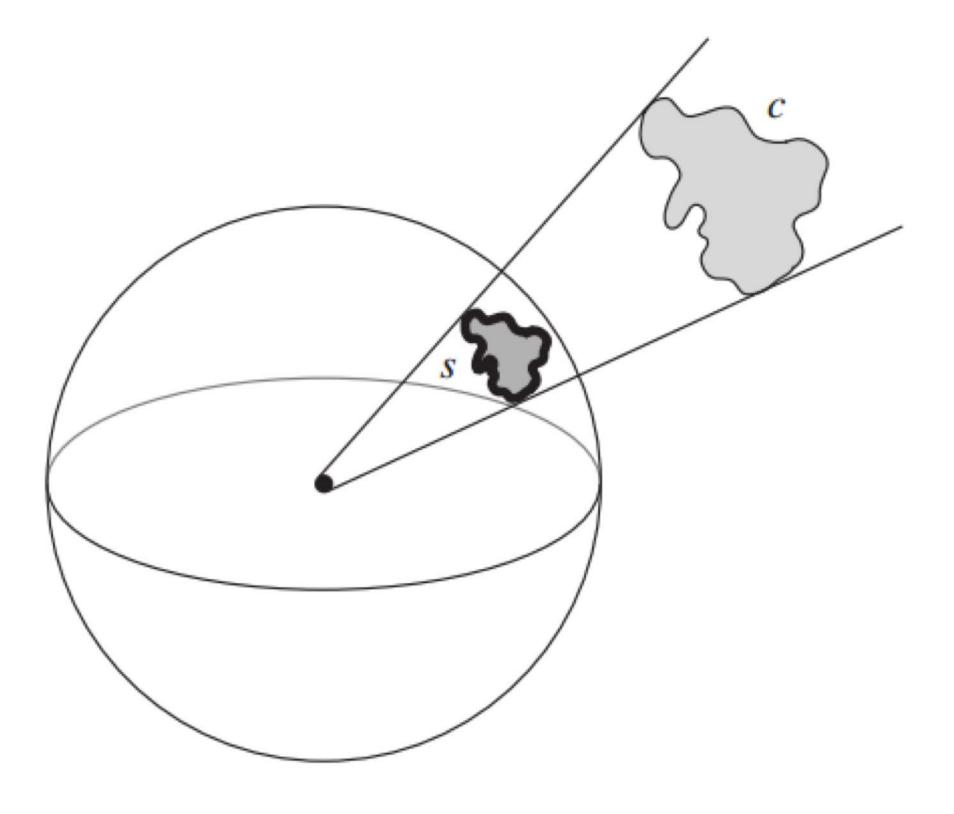
Solid angle - sphere: 4π steradians



Subtended (Solid) Angle

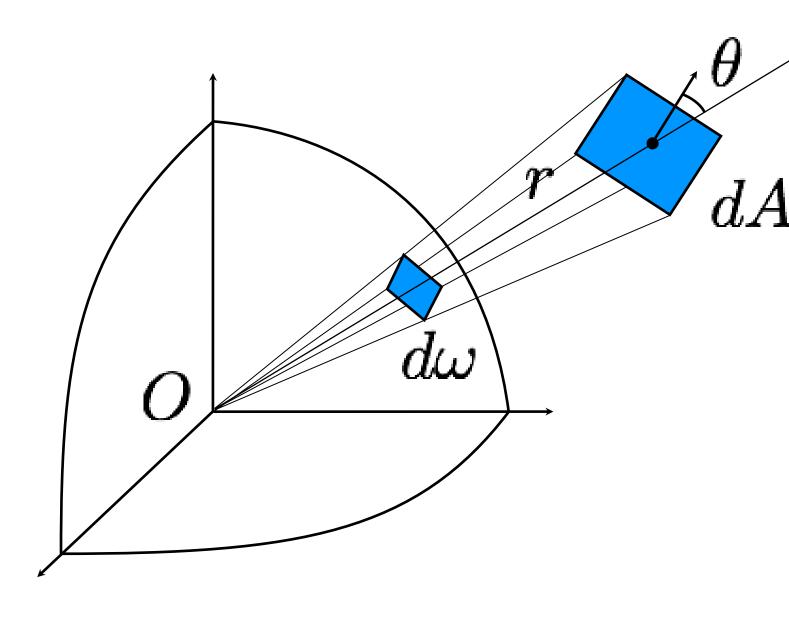
Length/area of object's *projection* onto a unit circle/sphere





Solid angle

is the area of its central projection onto the unit sphere about O



The solid angle subtended by a small surface patch with respect to point O

Depends on:

orientation of patch

distance of patch

One can show:

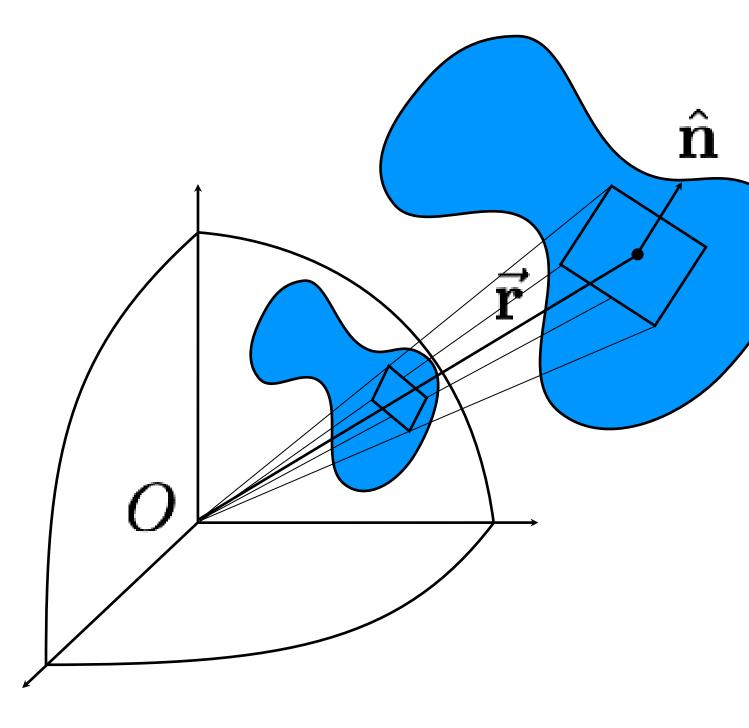
$$d\omega = \frac{dA\cos\theta}{r^2}$$

"surface foreshortening"

Units: steradians [sr]

Solid angle

To calculate solid angle subtended by a surface S relative to O you must add up (integrate) contributions from all tiny patches (nasty integral)



$$\Omega = \iint_{S} \frac{\vec{\mathbf{r}} \cdot \hat{\mathbf{n}} \ dS}{|\vec{\mathbf{r}}|^3}$$

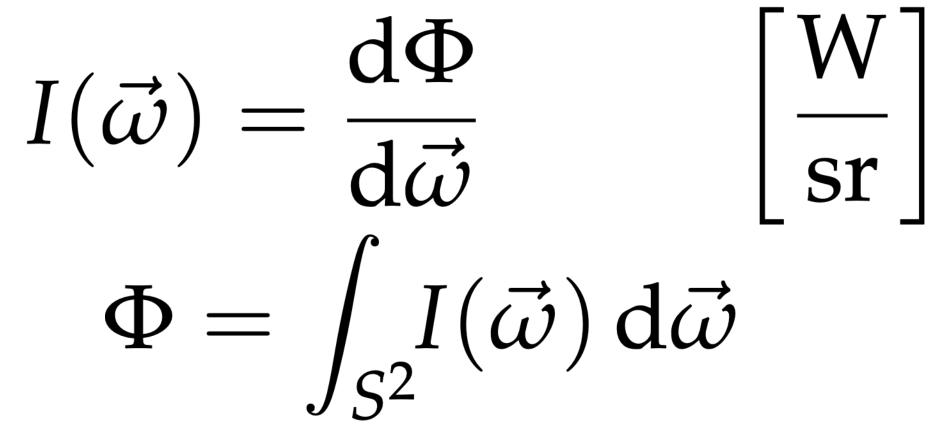
One can show:

$$d\omega = \frac{dA\cos\theta}{r^2}$$

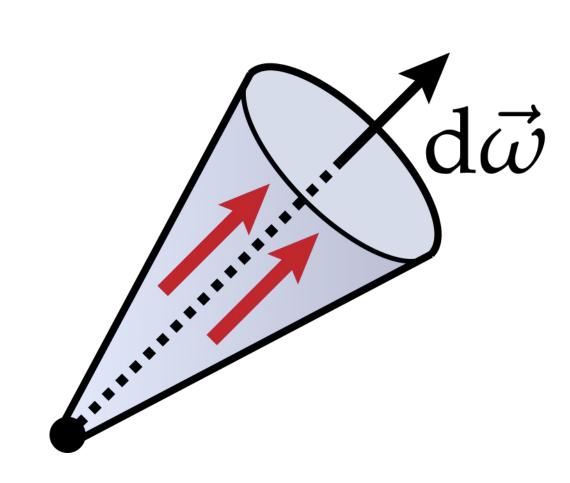
"surface foreshortening"

Units: steradians [sr]

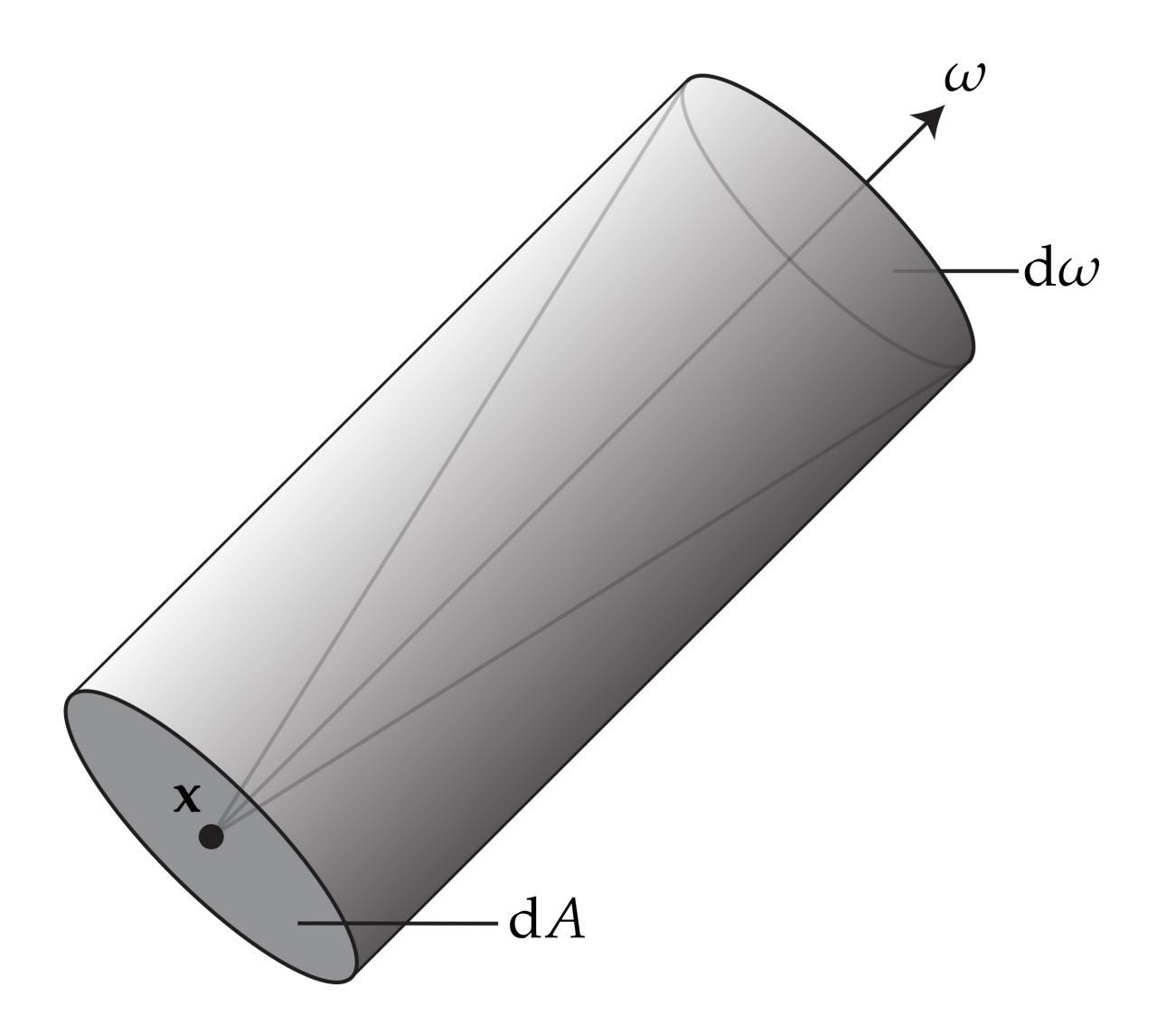
Radiant Intensity directional density of flux power (flux) per solid angle



example: $\Phi = 4\pi I$ (for an isotropic point source) power per unit solid angle emanating from a point source



A hypothetical measurement device

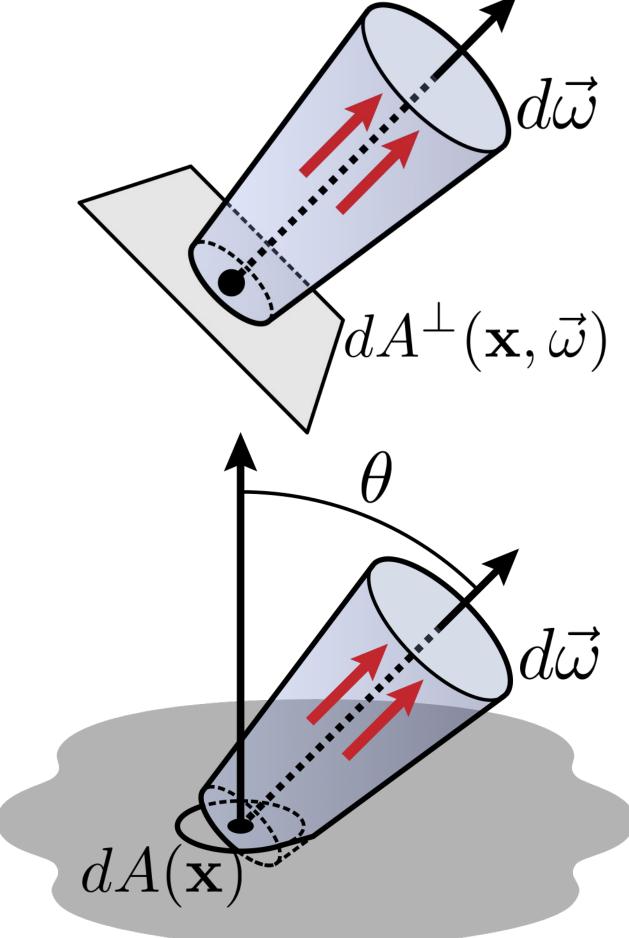


flux density per unit solid angle, per perpendicular unit area

$$L(\mathbf{x},\vec{\omega}) = \frac{d^2 \Phi(A)}{d\vec{\omega} dA^{\perp}(\mathbf{x},\vec{\omega})}$$

$$= \frac{d^2 \Phi(A)}{d\vec{\omega} dA(\mathbf{x}) \cos \theta}$$

$$\frac{W}{m^2 sr}$$

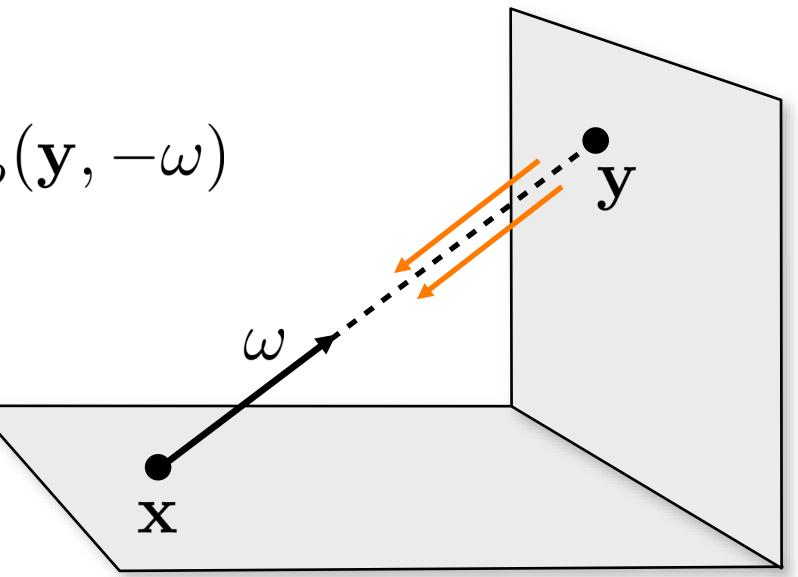


remains constant along a ray (in vacuum only!)

incident radiance L_i at one point can be expressed as outgoing radiance L_o at another point

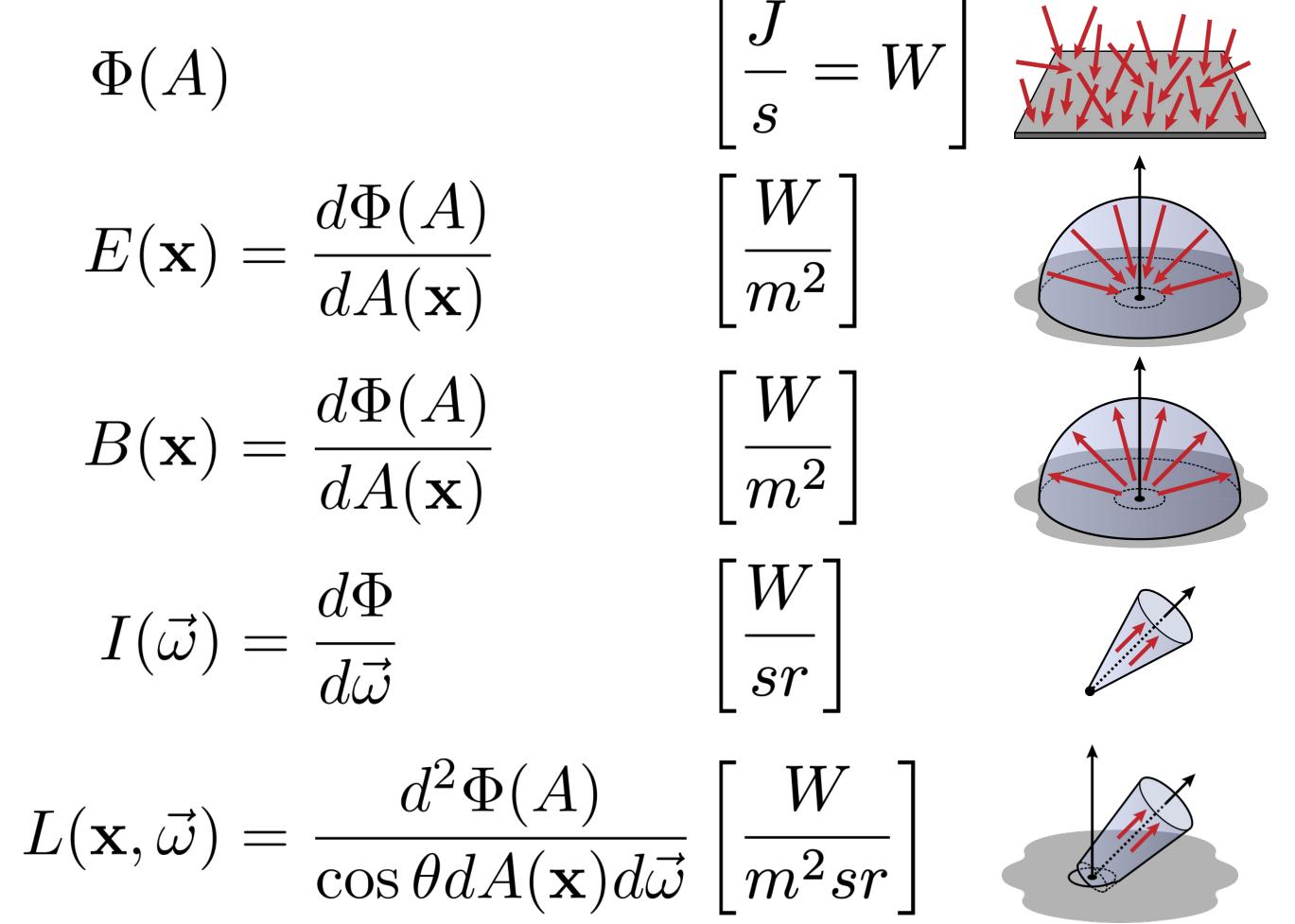
 $L_i(\mathbf{x},\omega) = L_o(\mathbf{y},-\omega)$

fundamental quantity for ray tracing and physics-based rendering



Overview of Quantities

- $\Phi(A)$ • flux:
- irradiance:
- radiosity:
- $I(\vec{\omega}) = \frac{d\Phi}{d\vec{\omega}}$ • intensity:
- radiance:



expressing *irradiance* in terms of radiance:

- $L(\mathbf{x}, \vec{\omega}) = -$
- $L(\mathbf{x}, \vec{\omega}) = -$
- $L(\mathbf{x},\vec{\omega})\cos\theta\,d\vec{\omega}=a$

$$\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = E(\mathbf{x})$$

Integrate cosine-weighted radiance over hemisphere

$$\frac{d^2 \Phi(A)}{\cos \theta dA(\mathbf{x}) d\vec{\omega}} \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$
$$\frac{dE(\mathbf{x})}{\cos \theta d\vec{\omega}}$$
$$\frac{dE(\mathbf{x})}{dE(\mathbf{x})}$$

expressing *irradiance* in terms of radiance: $\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = E(\mathbf{x})$ expressing *flux* in terms of radiance:

 $\int_{A} \int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} dA(\mathbf{x}) = \Phi(A)$

Integrate cosine-weighted radiance over hemisphere and area

- $\int_{A} E(\mathbf{x}) \, dA(\mathbf{x}) = \Phi(A) \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$

Allows computing the radiant flux measured by any sensor

$$\Phi(W, X) = \int_X \int_W L(\hat{\boldsymbol{\omega}}, x) \cos \theta d\boldsymbol{\omega} dA$$

- Cameras measure integrals of radiance (after a one-time (integrals of) radiance.
 - "Processed" images (like PNG and JPEG) are not linear radiance measurements!!

radiometric calibration). So RAW pixel values are proportional to

Computing spherical integrals

Express function using spherical coordinates:

$$\int_0^{2\pi} \int_0^{\pi} f($$

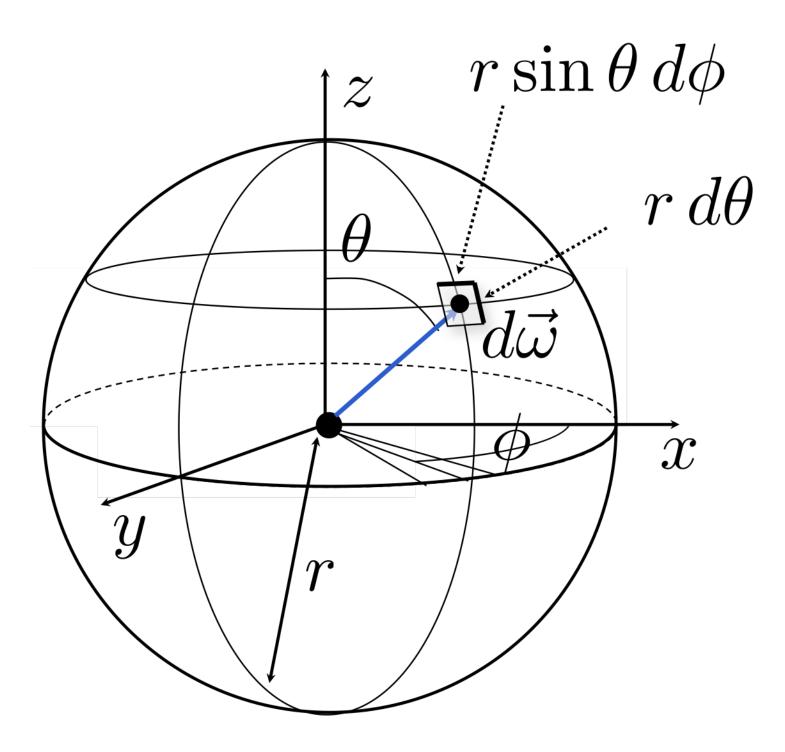
Warning: this is not correct!

$(\theta, \phi) d\theta d\phi$?

Differential Solid Angle

Differential area on the unit sphere around direction

$$dA = (rd\theta)(r\sin\theta d\phi)$$
$$d\vec{\omega} = \frac{dA}{r^2} = \sin\theta d\theta d\phi$$
$$\Omega = \int_{S^2} d\vec{\omega} = \int_0^{2\pi} \int_0^{\pi} s^{\pi} s^{\pi} d\vec{\omega}$$

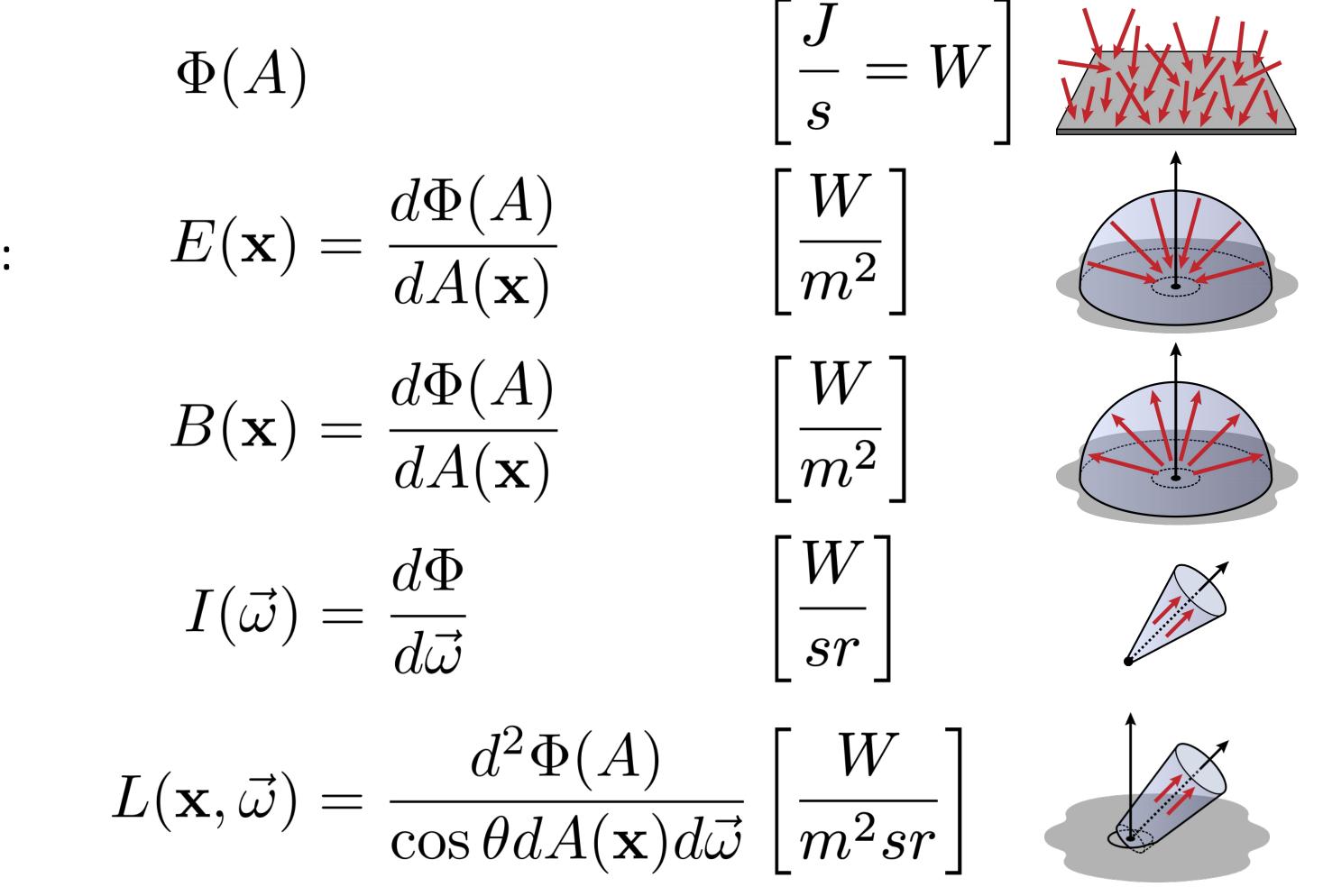


 $\sin\theta d\theta d\phi = 4\pi$

Overview of Quantities

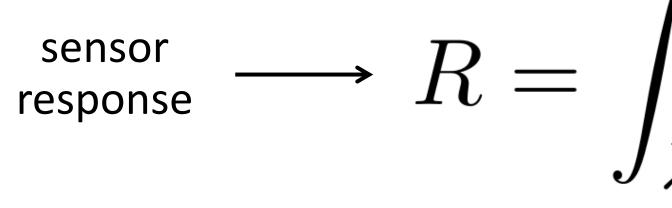
 $\Phi(A)$ • flux: $E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$ • irradiance: $B(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$ • radiosity: $I(\vec{\omega}) = \frac{d\Phi}{d\vec{\omega}}$ • intensity: radiance:

All of these quantities can be a function of wavelength!



Handling color

- Any light sensor (digital or not) has different sensitivity to different wavelengths.
- This is described by the sensor's spectral sensitivity function (SSF).

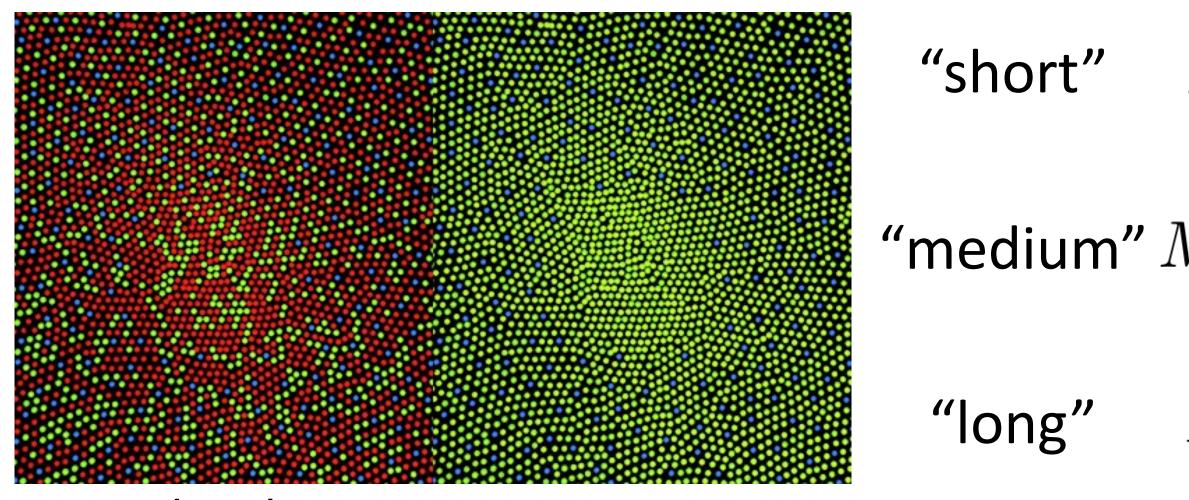


• When measuring some incident *spectral* flux, the sensor produces a *scalar color* response:

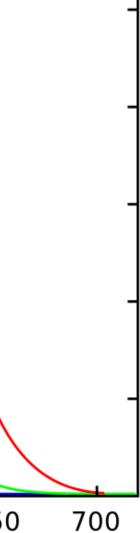
spectral flux sensor SSF $\stackrel{\text{sensor}}{\stackrel{\text{response}}{\longrightarrow}} \longrightarrow R = \int_{\lambda} \Phi(\lambda) f(\lambda) d\lambda$

Handling color – the human eye

- The human eye is a collection of light sensors called cone cells.
- There are three types of cells with different spectral sensitivity functions.
- Human color perception is three-dimensional (*tristimulus color*).



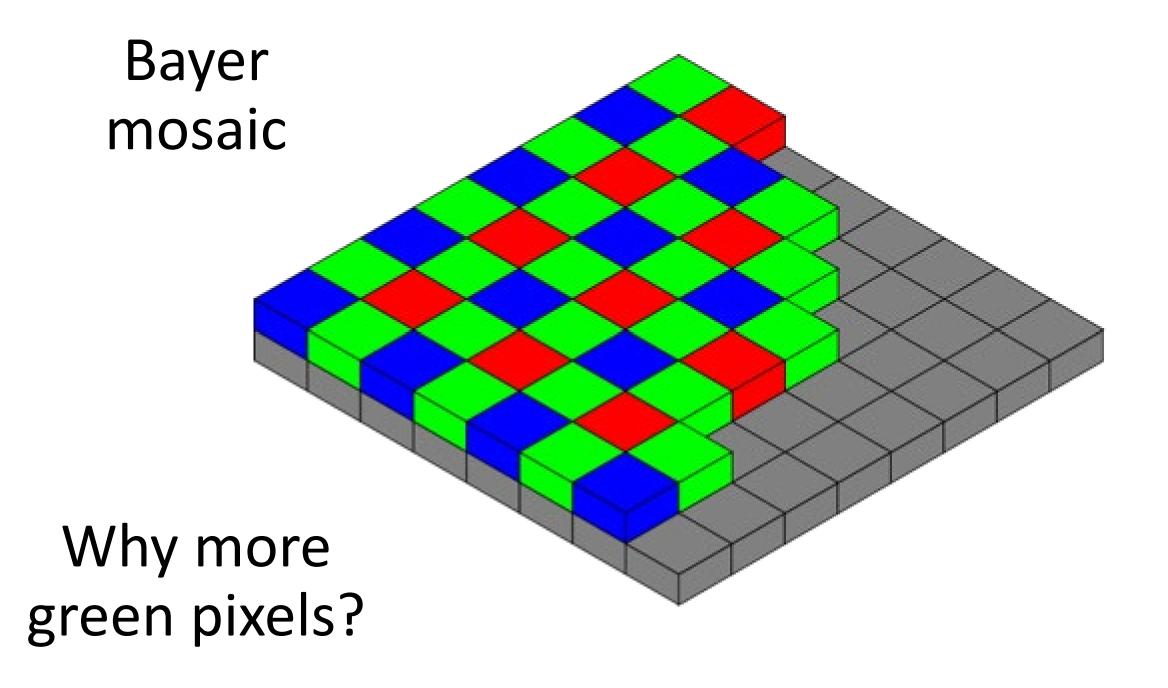
cone distribution for normal vision (64% L, 32% M)

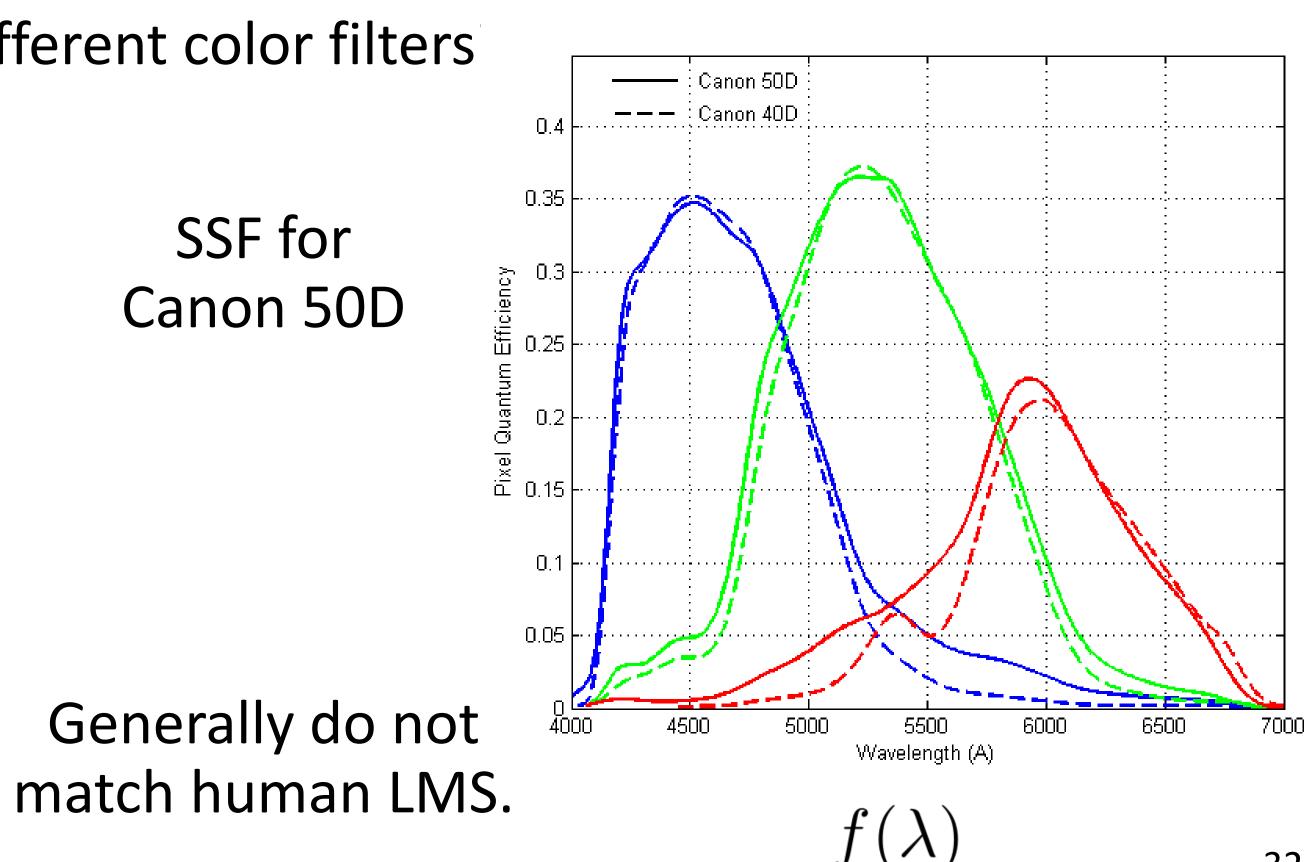


Handling color – photography

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter? \bullet
- How to spatially arrange ("mosaic") different color filters \bullet





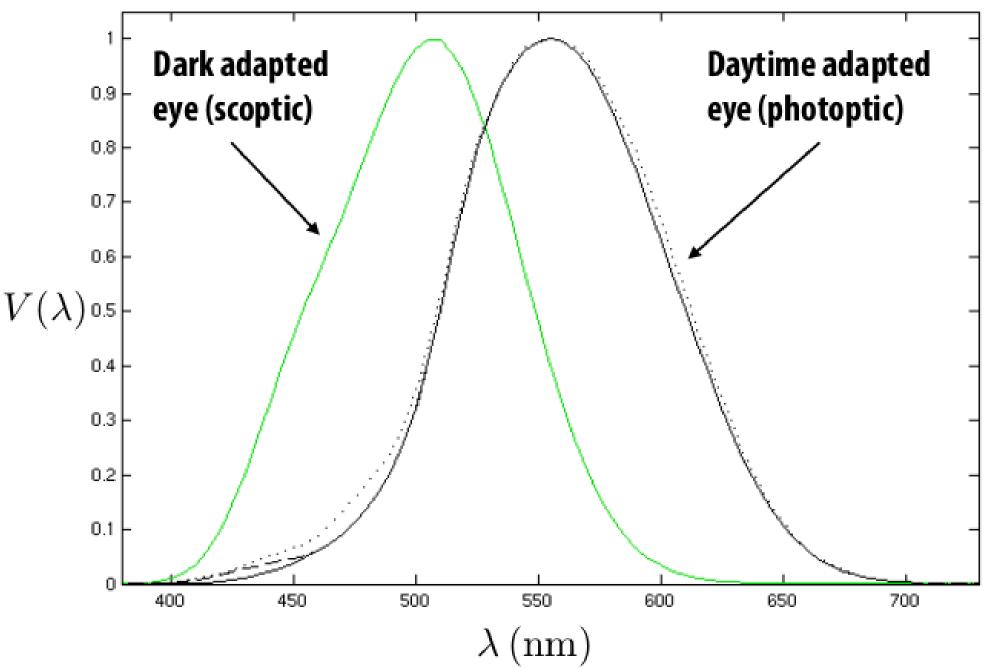
Radiometry versus photometry

- All radiometric quantities have equivalents in photometry
- Photometry: accounts for

 or

 response of human visual system $V(\lambda)^{0.5}$ to electromagnetic radiation
- Luminance (Y) is photometric quantity that corresponds to radiance: integrate radiance over all wavelengths, weight by eye's luminous efficacy curve, e.g.:

$$Y(\mathbf{p},\omega) = \int_0^\infty$$



 $L(\mathbf{p}, \omega, \lambda) V(\lambda) d\lambda$

Radiometry versus photometry

Physics	Radiometry	Photometry	
Energy	Radiant Energy Luminous Energy		
Flux (Power)	Radiant Power Luminous Power		
Flux Density	Irradiance (incoming) Radiosity (outgoing)	llluminance (incoming) Luminosity (outgoing)	
Angular Flux Density	Radiance	Luminance	
Intensity	Radiant Intensity	Luminous Intensity	

Radiometry versus photometry

Photometry	MKS	CGS	British
Luminous Energy	Talbot	Talbot	Talbot
Luminous Power	Lumen	Lumen	Lumen
Illuminance Luminosity	Lux	Phot	Footcandle
Luminance	Nit, Apostlib, Blondel	Stilb Lambert	Footlambert
Luminous Intensity	Candela	Candela	Candela

Modern LED light

Input power: 11 W Output: 815 lumens (~ 80 lumens / Watt)

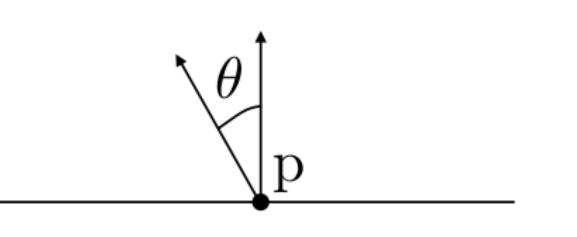
Incandescent bulbs: ~15 lumens / Watt)

A simple derivation

Lens aperture

Sensor plane

What integral should we write for the power measured by infinitesimal pixel p?



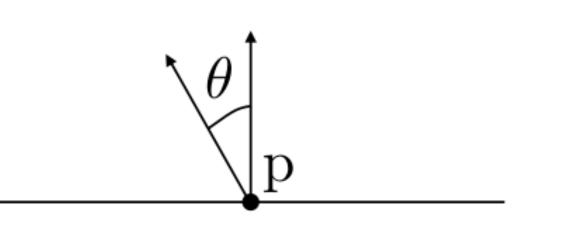
Lens aperture

Sensor plane

What integral should we write for the power measured by infinitesimal pixel p?

$$E(\mathbf{p},t) = \int_{H^2} L$$

Can I transform this integral over the hemisphere to an integral over the aperture area?



 $L_i(\mathbf{p},\omega',t)\,\cos\theta\,\mathrm{d}\omega'$

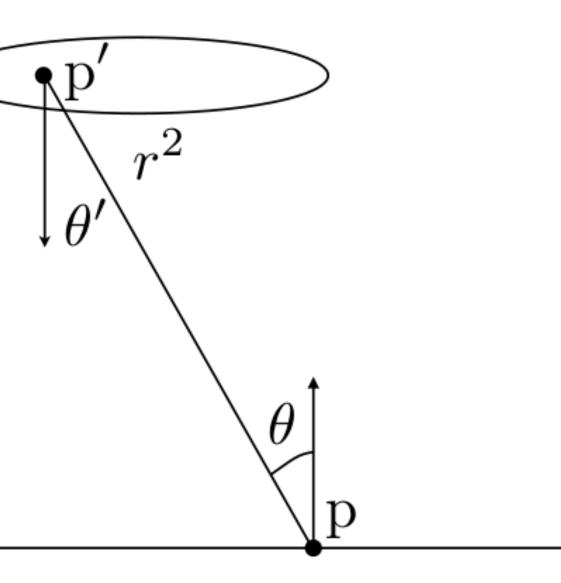
Lens aperture

What integral should we write for the power measured by infinitesimal pixel p?

$$E(\mathbf{p},t) = \int_{H^2} L$$

Can I transform this integral over the hemisphere to an integral over the aperture area?

$$E(\mathbf{p}, t) = \int_{A} L(\mathbf{p}' \to \mathbf{p}, t)^{\frac{1}{2}}$$



 $L_i(\mathbf{p},\omega',t)\,\cos\theta\,\mathrm{d}\omega'$

 $\frac{\cos\theta\cos\theta'}{||\mathbf{p}'-\mathbf{p}||^2}\,\mathrm{d}A'$

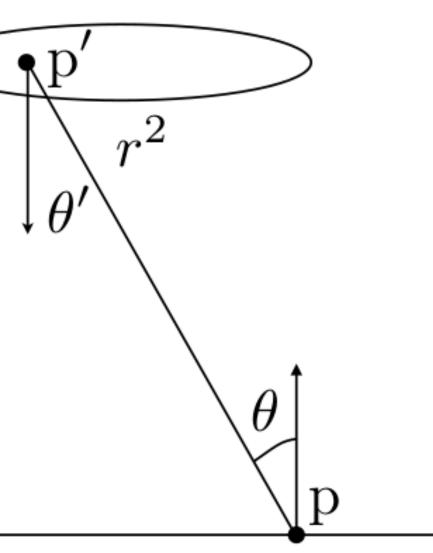
Transform integral over solid angle to integral over lens aperture

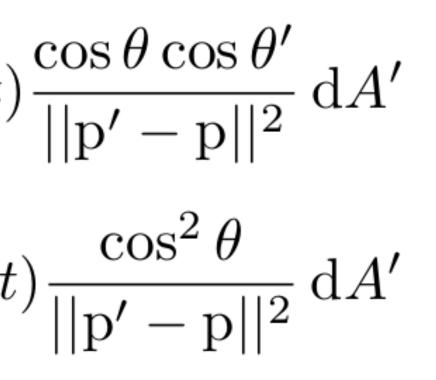
Lens aperture

Sensor plane

$$E(\mathbf{p}, t) = \int_{A} L(\mathbf{p}' \to \mathbf{p}, t) \frac{\mathbf{co}}{||\mathbf{p}|}$$
$$= \int_{A} L(\mathbf{p}' \to \mathbf{p}, t) \frac{\mathbf{co}}{||\mathbf{p}|}$$

Can I write the denominator in a more convenient form?





Transform integral over solid angle to integral over lens aperture

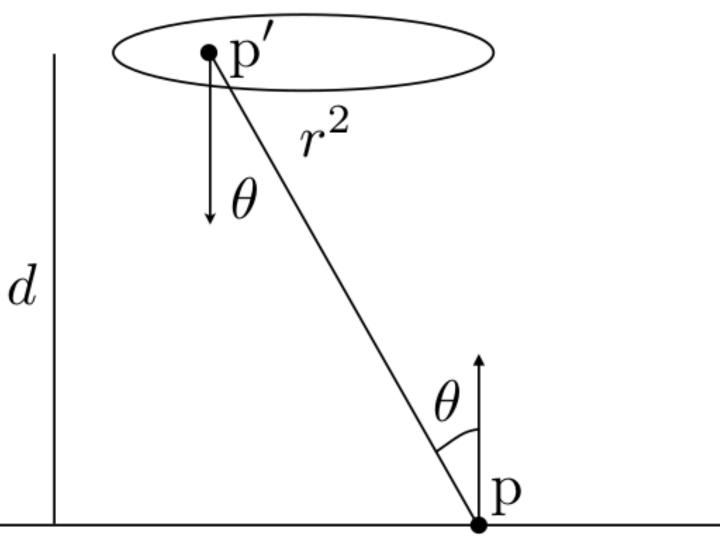
Assume aperture and film plane are parallel: $\theta=\theta'$

Lens aperture

$$||\mathbf{p}' - \mathbf{p}|| = \frac{d}{\cos \theta}$$

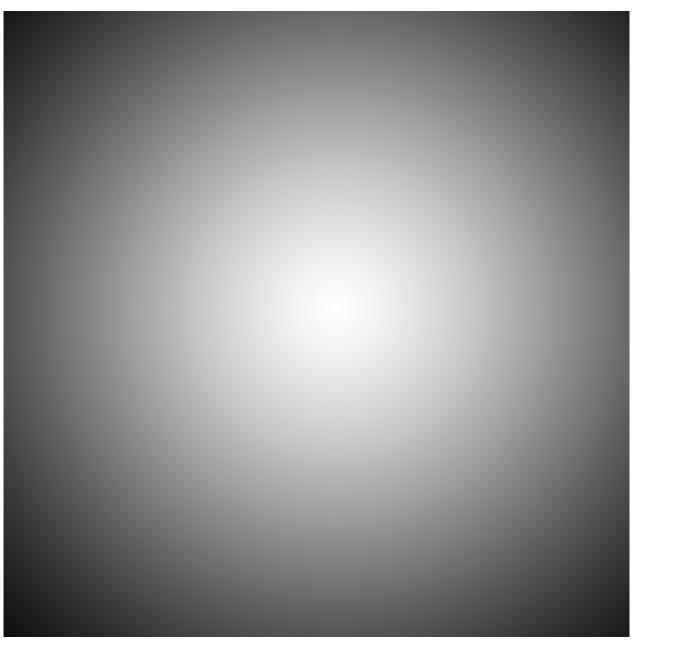
Sensor plane $E(\mathbf{p},t) = \int_{A} L(\mathbf{p}' \to \mathbf{p},t)_{\overline{|}}$ $= \frac{1}{d^2} \int_A L(\mathbf{p}' \to \mathbf{p}, t) \, \cos^4 \theta \, \mathrm{d}A'$

What does this say about the image I am capturing?



$$\frac{\cos^2\theta}{||\mathbf{p}' - \mathbf{p}||^2} \,\mathrm{d}A'$$

Fancy word for: pixels far off the center receive less light



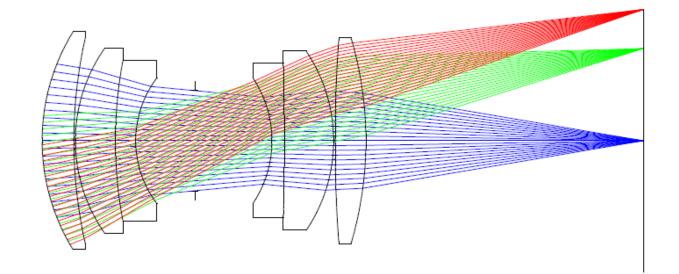
white wall under uniform light

Four types of vignetting:

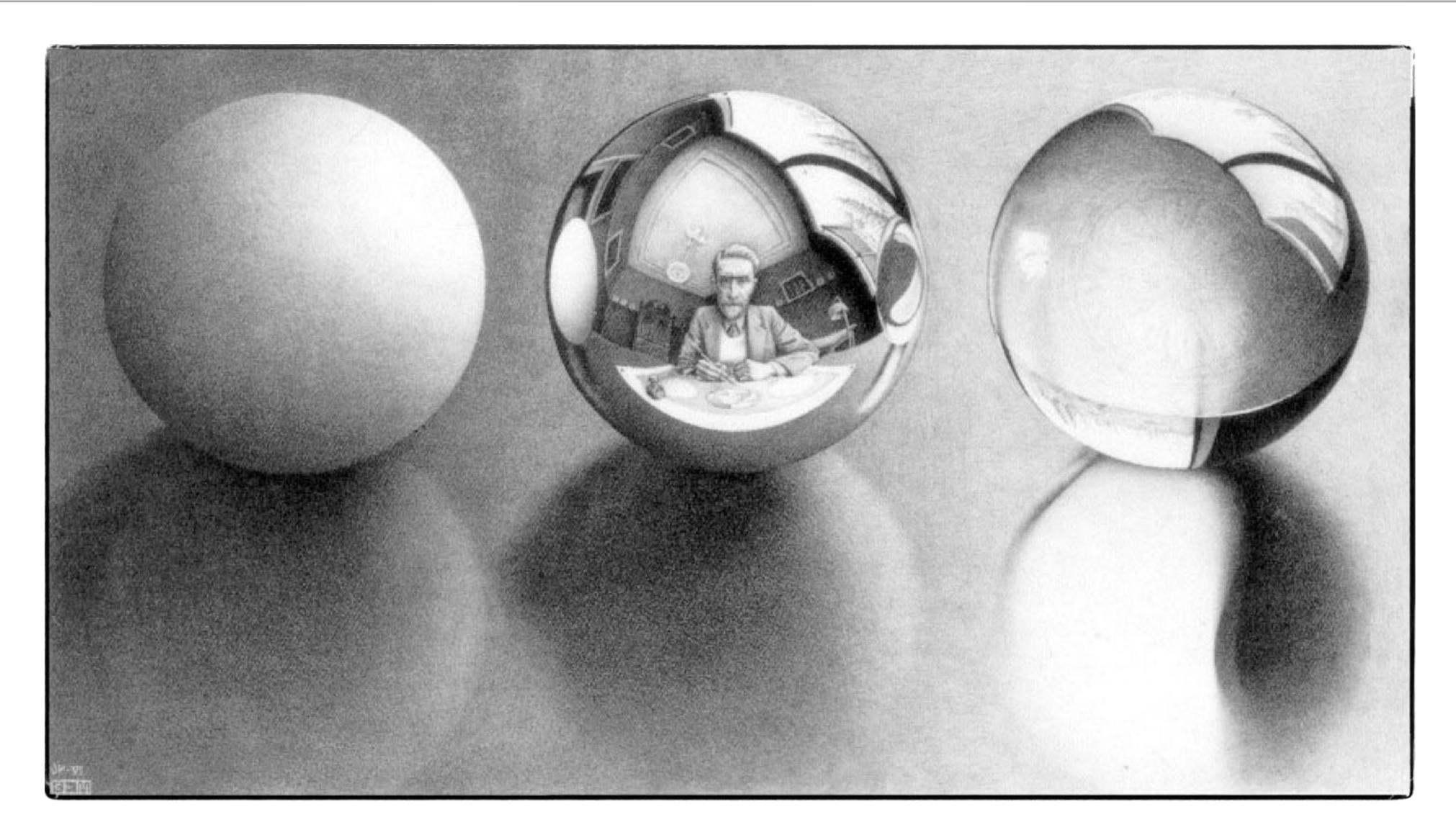
- Mechanical: light rays blocked by hoods, filters, and other objects. \bullet
- Lens: similar, but light rays blocked by lens elements. lacksquare
- Natural: due to radiometric laws ("cosine fourth falloff"). \bullet
- Pixel: angle-dependent sensitivity of photodiodes.

Vignetting

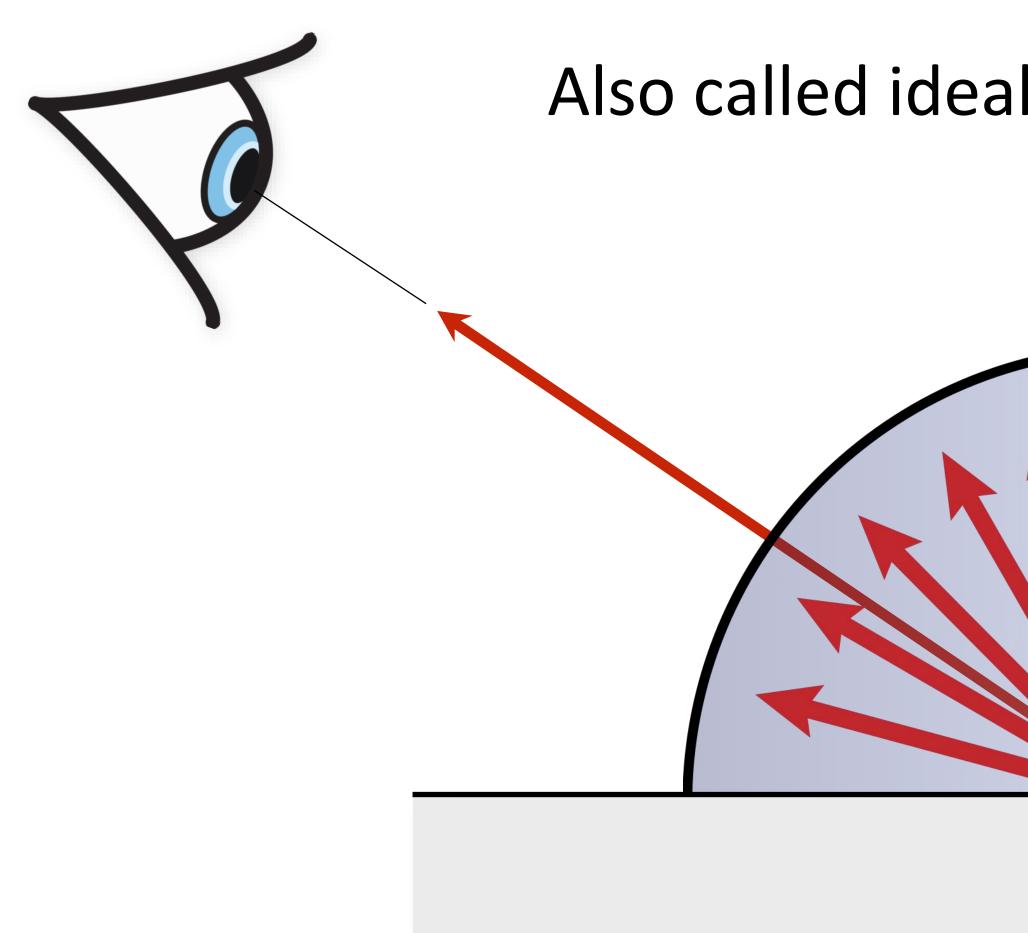
more interesting example of vignetting



Reflection equation



Lambertian reflection



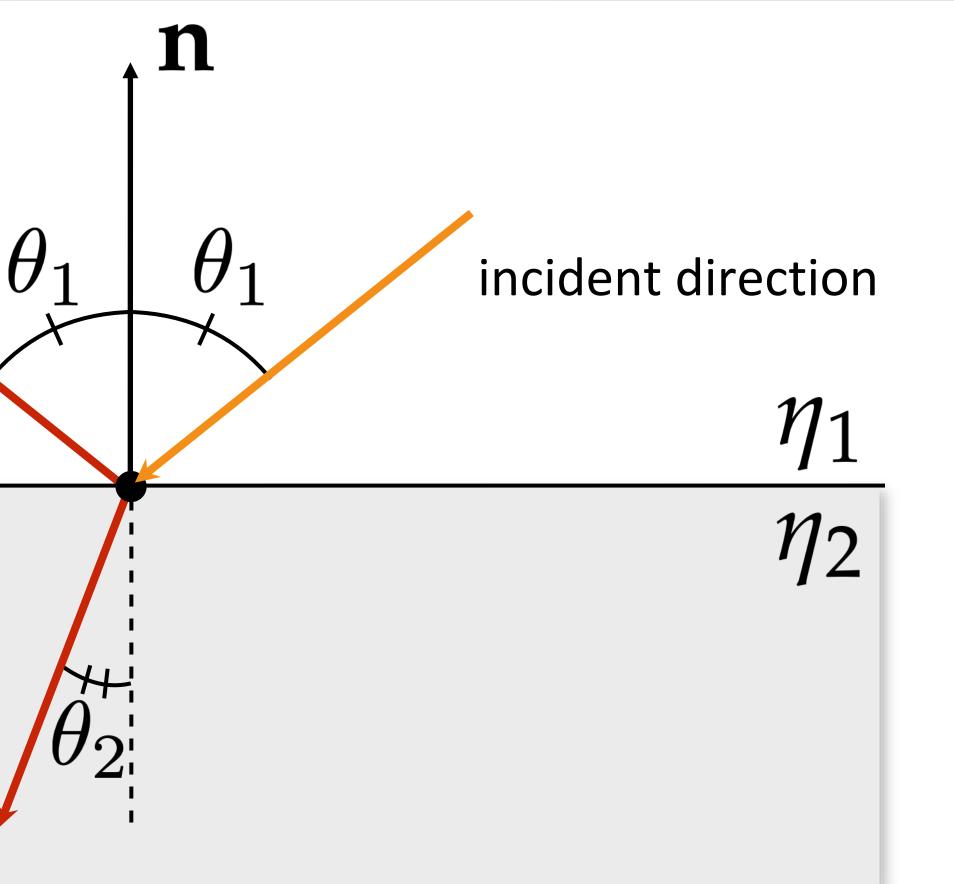
Also called ideal diffuse reflection

Lambertian surface

Ideal specular reflection/refraction

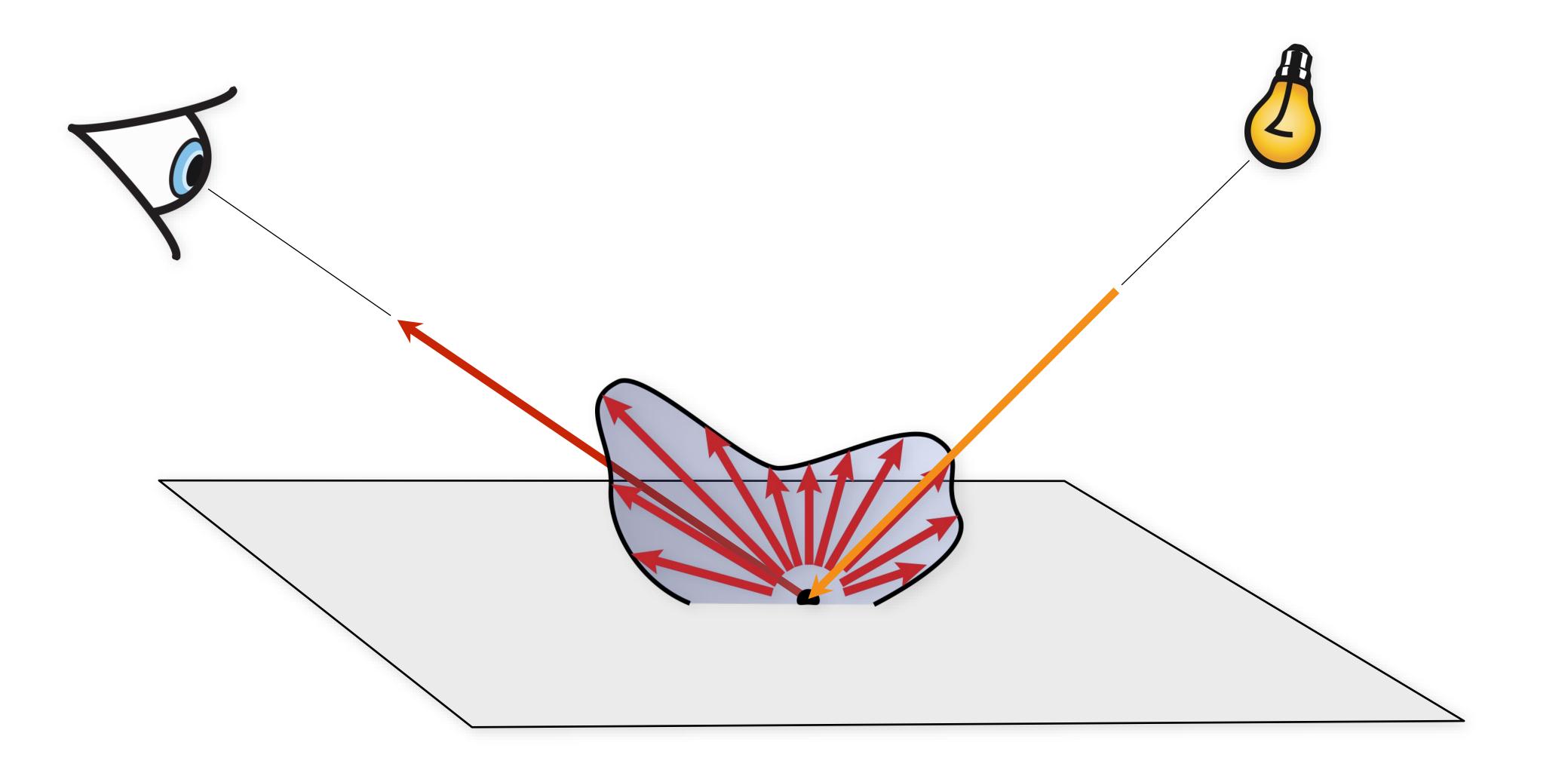
reflected direction

refracted direction



$\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$

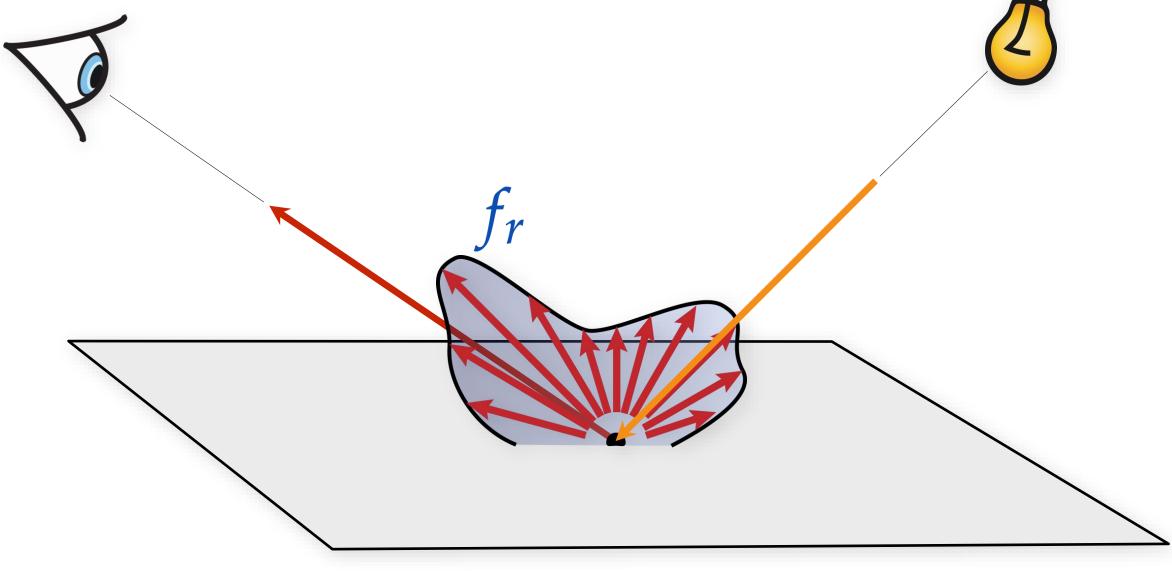
Light-Material Interactions



The BRDF

Bidirectional Reflectance Distribution Function

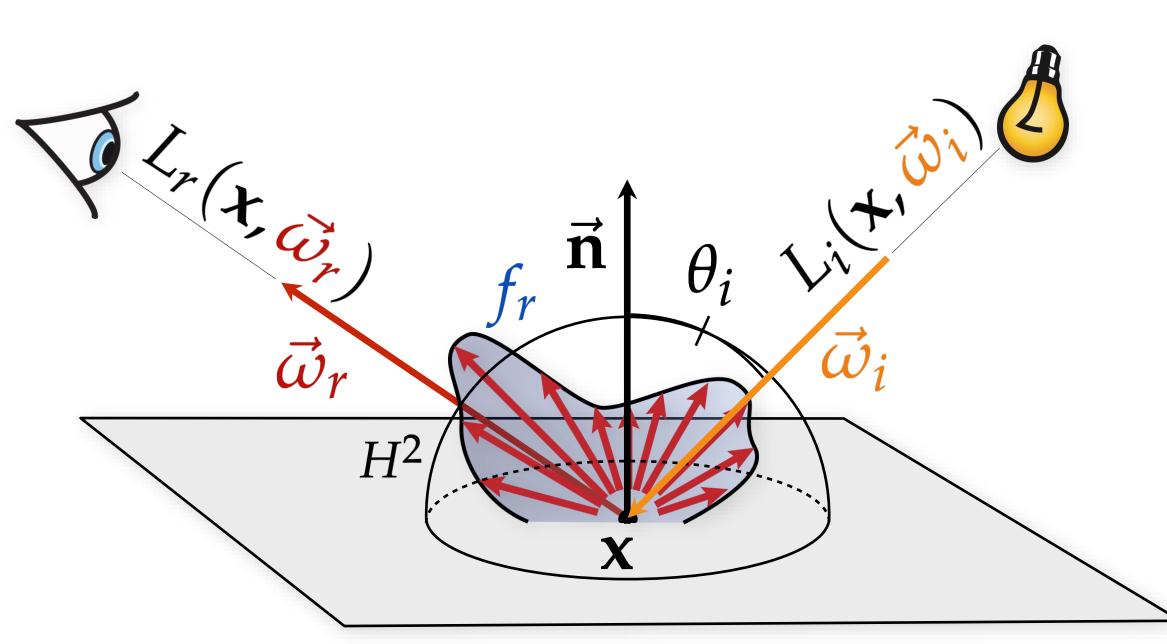
- how much light gets scattered from one direction into each other direction
- formally: ratio of outgoing radiance to incident irradiance



The reflection equation

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{$$



This describes a local illumination model

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Where does the cosine come from?

Motivation

Motivation

Derivation of the Reflectance Equation

From the definition of BRDF:

$$L^{surface}(\theta_r,\phi_r) = E^{st}$$

Write Surface Irradiance in terms of Source Radiance:

$$L^{surface}(\theta_r,\phi_r) = L^{src}(\theta_i)$$

Integrate over entire hemisphere of possible source directions:

$$L^{surface}(\theta_r,\phi_r) = \int_{2\pi} L^{src}(\theta_r) = \frac{1}{2\pi} L^{src}(\theta_r) = \frac{1}{2\pi} L^{src}(\theta_r) = \frac{1}{2\pi} L^{src}(\theta_r) + \frac{1}{2\pi$$

Convert from solid angle to theta-phi representation:

$$L^{surface}(\theta_r, \phi_r) = \int_{-\pi}^{\pi \pi/2} \int_{0}^{xrc} L^{src}(\theta_i)$$

surface $(\theta_i, \phi_i) f(\theta_i, \phi_i; \theta_r, \phi_r)$

 $(\phi_i, \phi_i) f(\theta_i, \phi_i; \theta_r, \phi_r) \cos \theta_i d\omega_i$

 $(\theta_i, \phi_i) f(\theta_i, \phi_i; \theta_r, \phi_r) \cos \theta_i \, d\omega_i$

 $(\phi_i) f(\theta_i, \phi_i; \theta_r, \phi_r) \cos \theta_i \sin \theta_i d\theta_i d\phi_i$

BRDF Properties

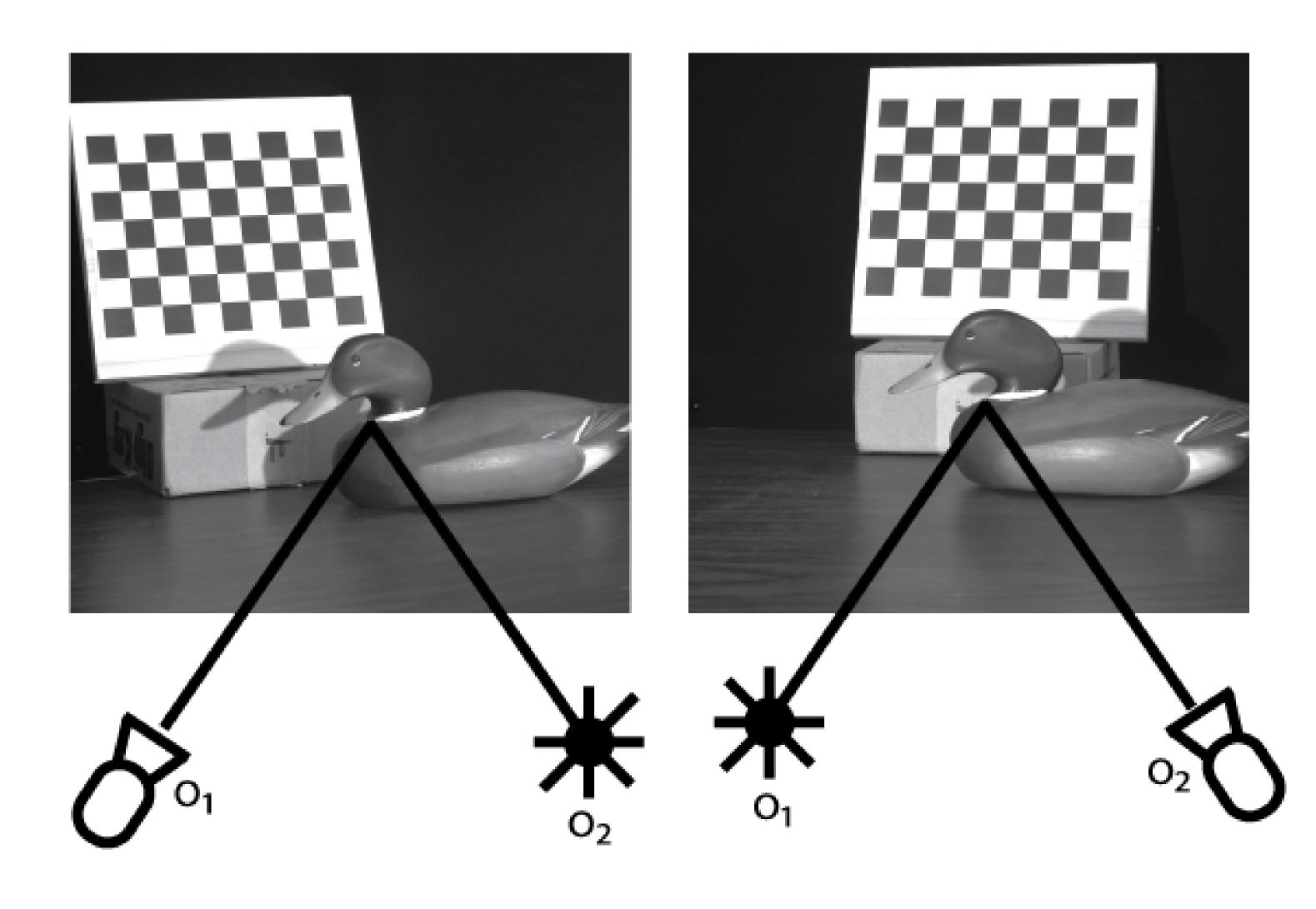
Real/physically-plausible BRDFs obey:

- Energy conservation

 $\int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_r \mathrm{d}\vec{\omega}_r \leq 1, \quad \forall \vec{\omega}_i$

Where does the cosine come from?

Helmholtz Reciprocity



BRDFs Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

 $\int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_r \mathrm{d}\vec{\omega}_r \leq 1, \quad \forall \vec{\omega}_i$

- Helmholtz reciprocity

 $f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{x}, \vec{\omega}_r, \vec{\omega}_i)$ $f_r(\mathbf{x}, \vec{\omega}_i \leftrightarrow \vec{\omega}_r)$

BRDFs Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

 $\int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_r \mathrm{d}\vec{\omega}_r \leq 1, \quad \forall \vec{\omega}_i$

- Helmholtz reciprocity

Together:

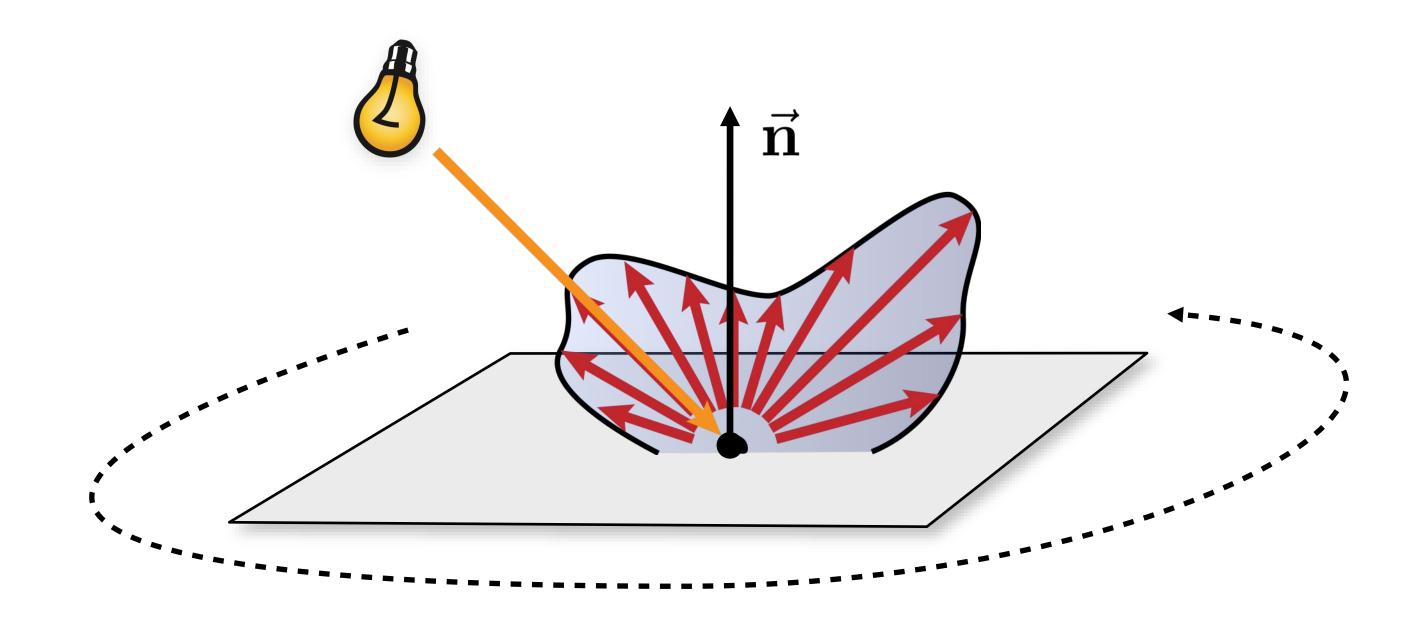
 $\int_{\mathbf{H}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i \, \mathrm{d}\vec{\omega}_i \leq 1, \quad \forall \vec{\omega}_r$

 $f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{x}, \vec{\omega}_r, \vec{\omega}_i)$

BRDFs Properties

normal, then it is *isotropic*, otherwise it is *anisotropic*.

Isotropic BRDFs are functions of just 3 variables

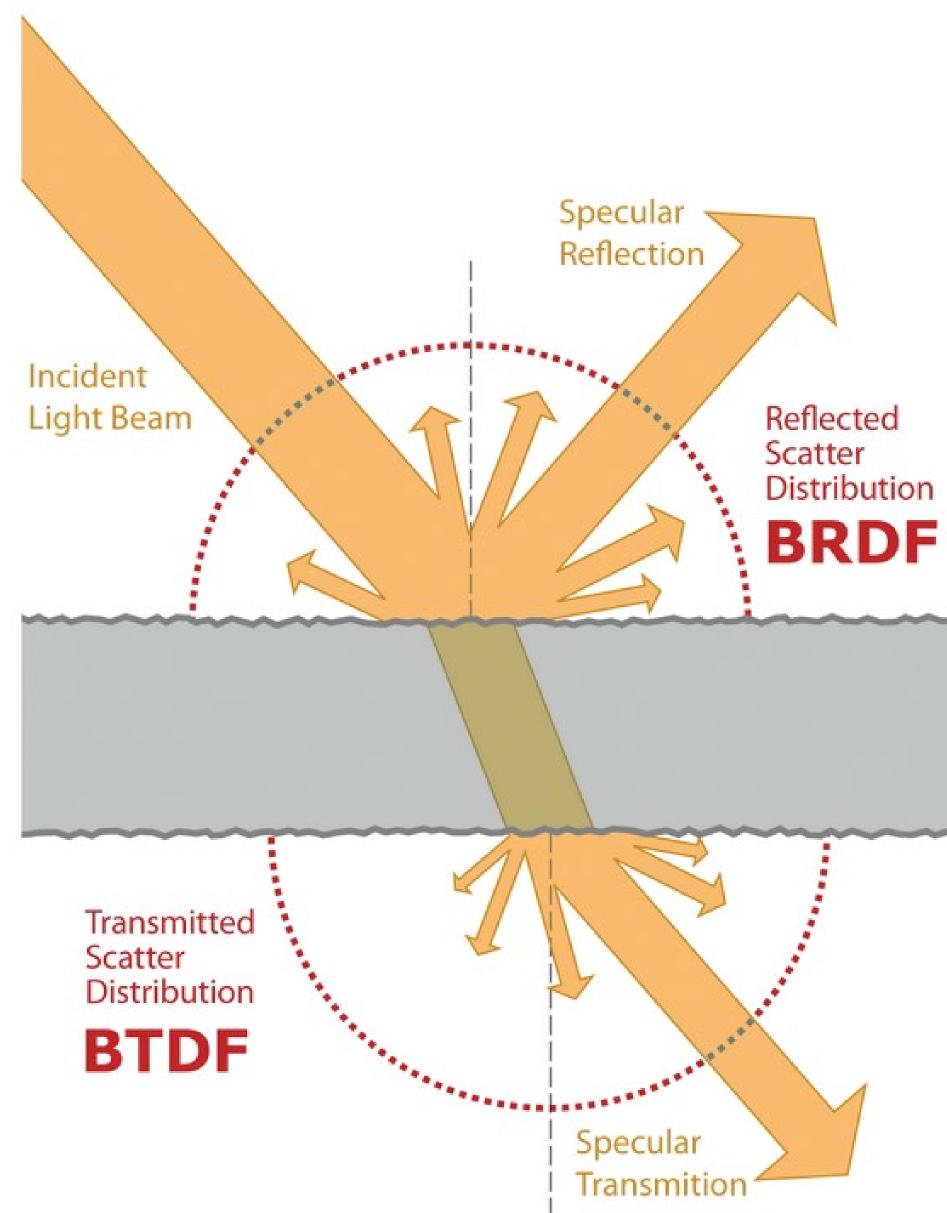


If the BRDF is unchanged as the material is rotated around the

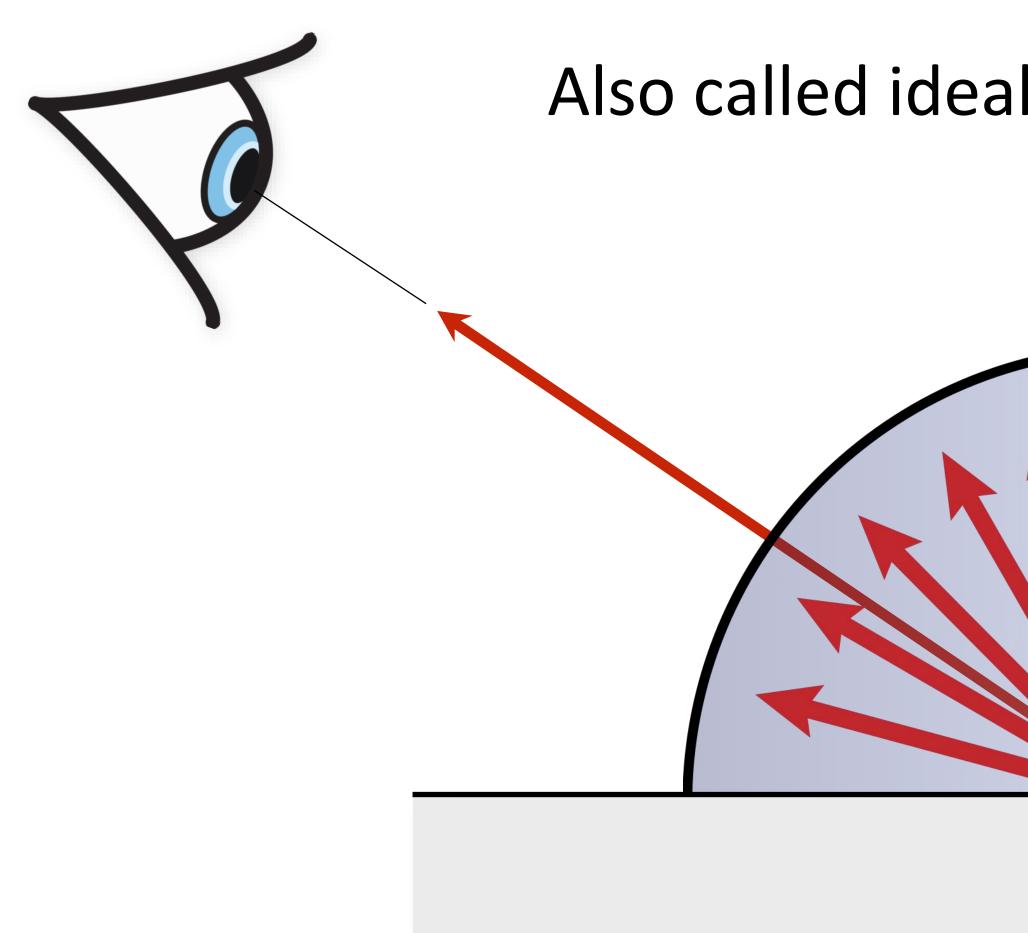
 $(\theta_i, \theta_r, \Delta \phi)$

Isotropic vs Anisotropic Reflection

Reflection vs. Refraction



Lambertian reflection



Also called ideal diffuse reflection

Lambertian surface

BRDF for Lambertian reflection?

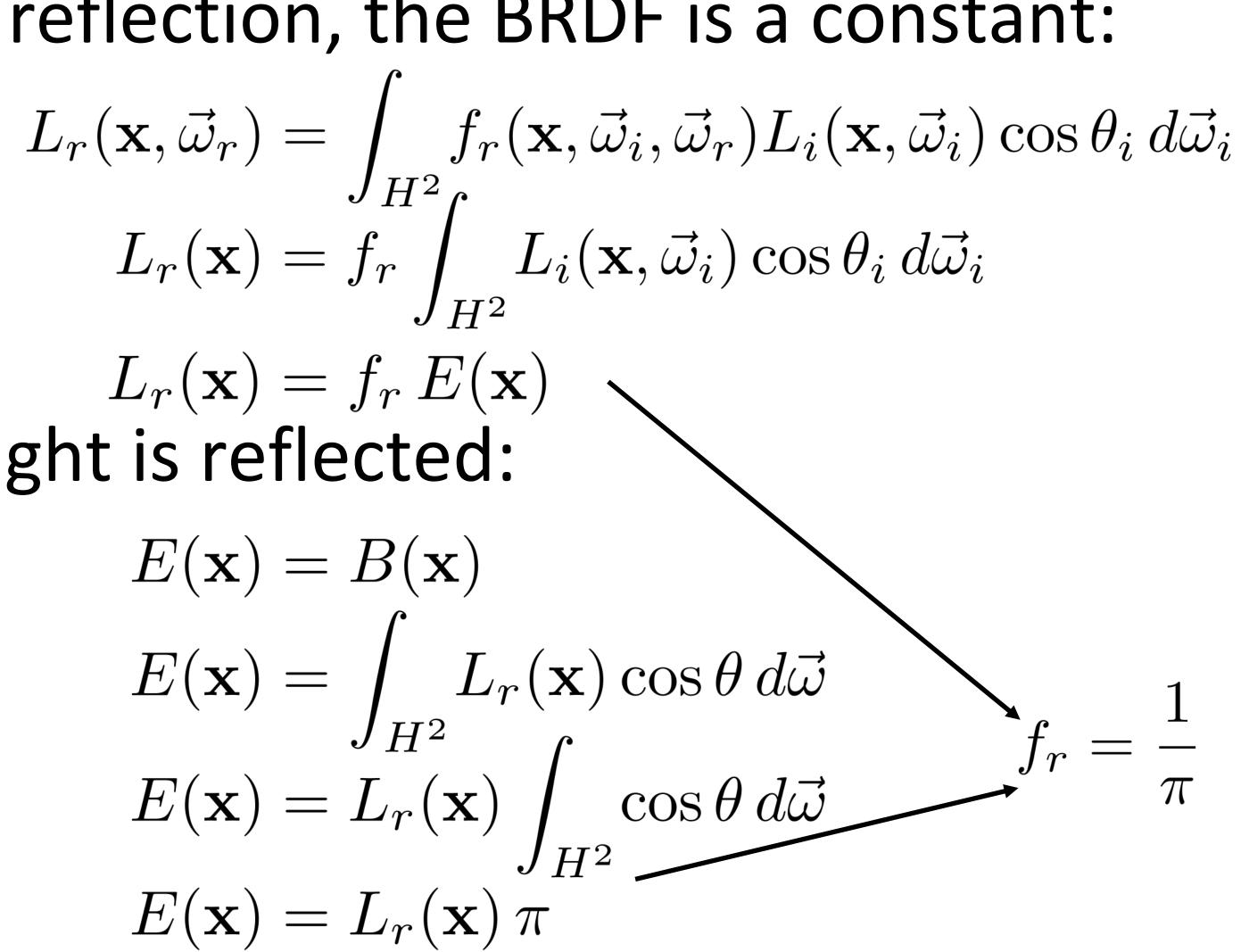
Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) d\mathbf{x}$$

Scatters light equally in all directions BRDF is a constant

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Lambertian BRDF For Lambertian reflection, the BRDF is a constant: Note: we can drop ω_r $L_r(\mathbf{x}) = f_r E(\mathbf{x})$ If *all* incoming light is reflected: $E(\mathbf{x}) = B(\mathbf{x})$ Note: can also be derived from energy conservation $E(\mathbf{x}) = L_r(\mathbf{x}) \, \pi$



Lambertian BRDF

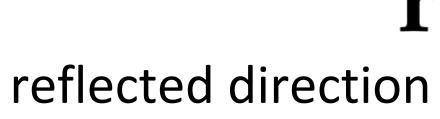
For Lambertian reflection, the BRDF is a constant:

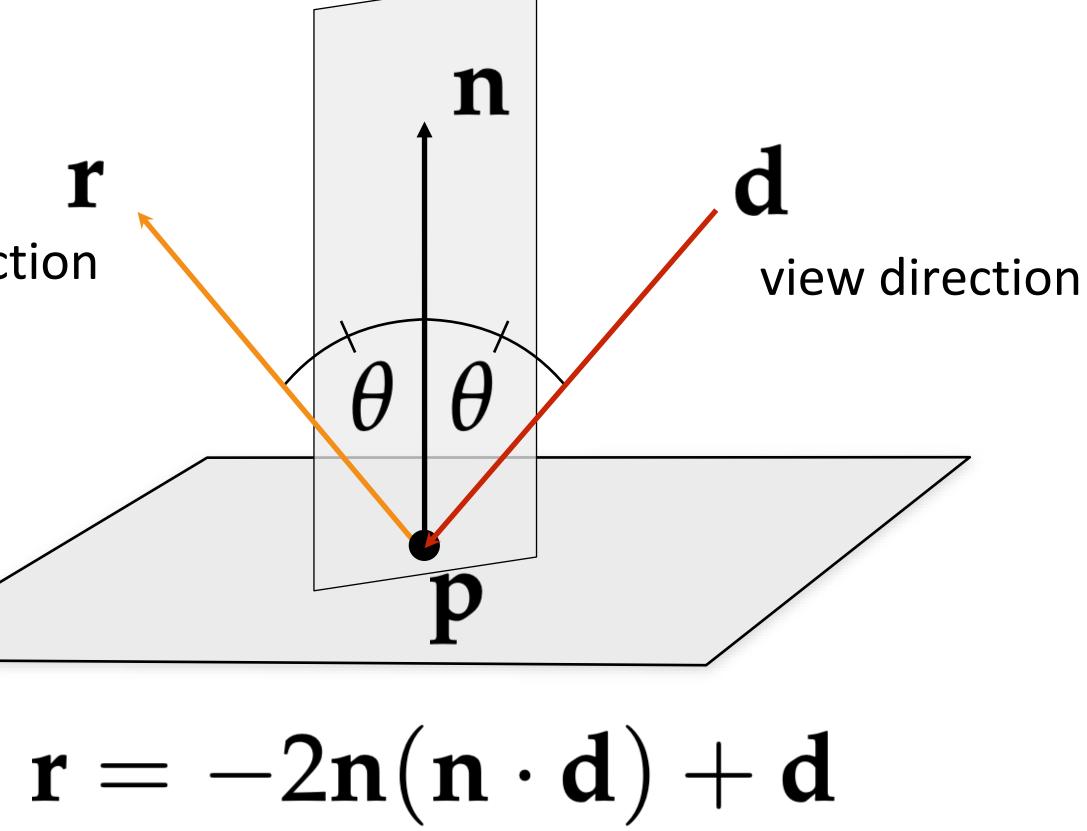
P: Diffuse reflectance (albedo) [0...1]

 $L_r(\mathbf{x}, \vec{\omega}_r) = \int_{\mathbf{H}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

 $L_r(\mathbf{x}) = \frac{\rho}{\pi} \int_{\mathbf{H}^2} L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

Specular BRDF





Specular BRDF?

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

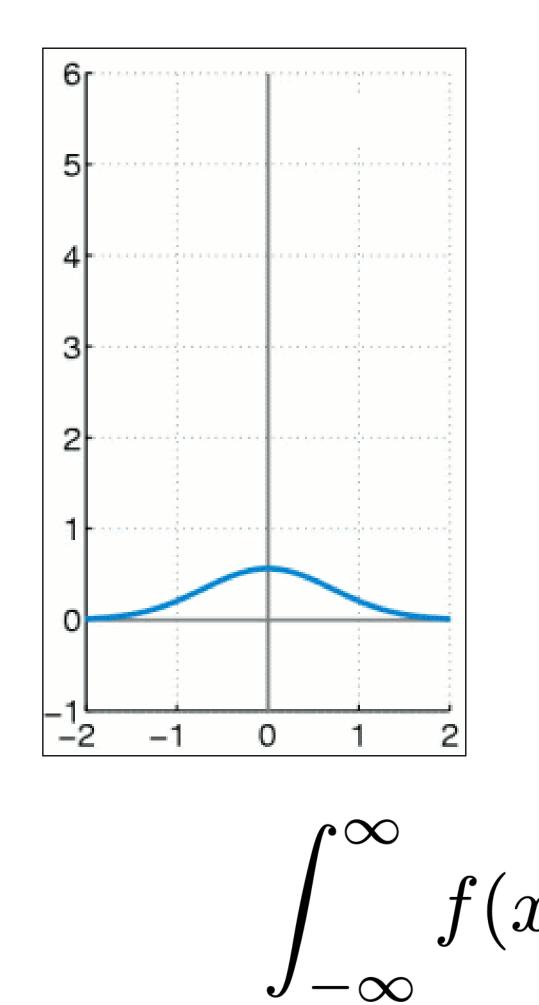
$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) d\mathbf{x}$$

Scatters all light into one (or two) directions Contains a Dirac delta Integral drops out

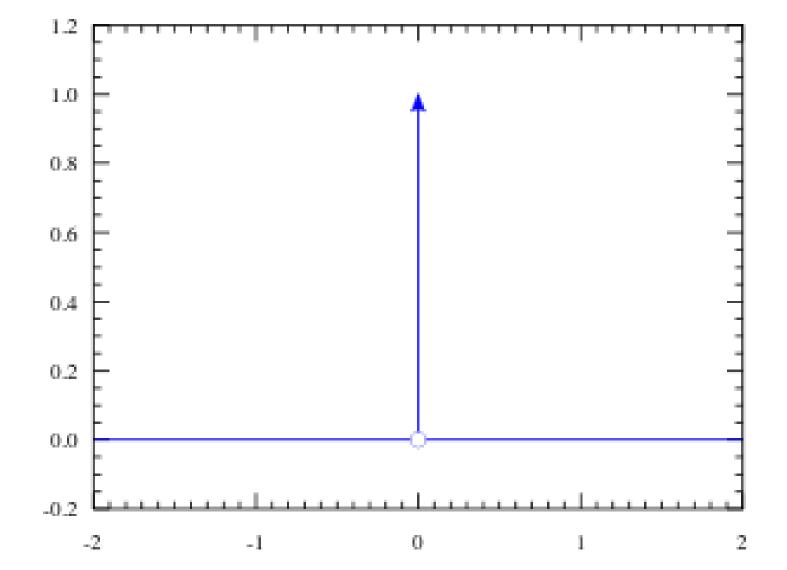
What is the BRDF for specular reflection/refraction?

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Dirac delta functions



Note: careful when performing changes of variables in Dirac delta functions!



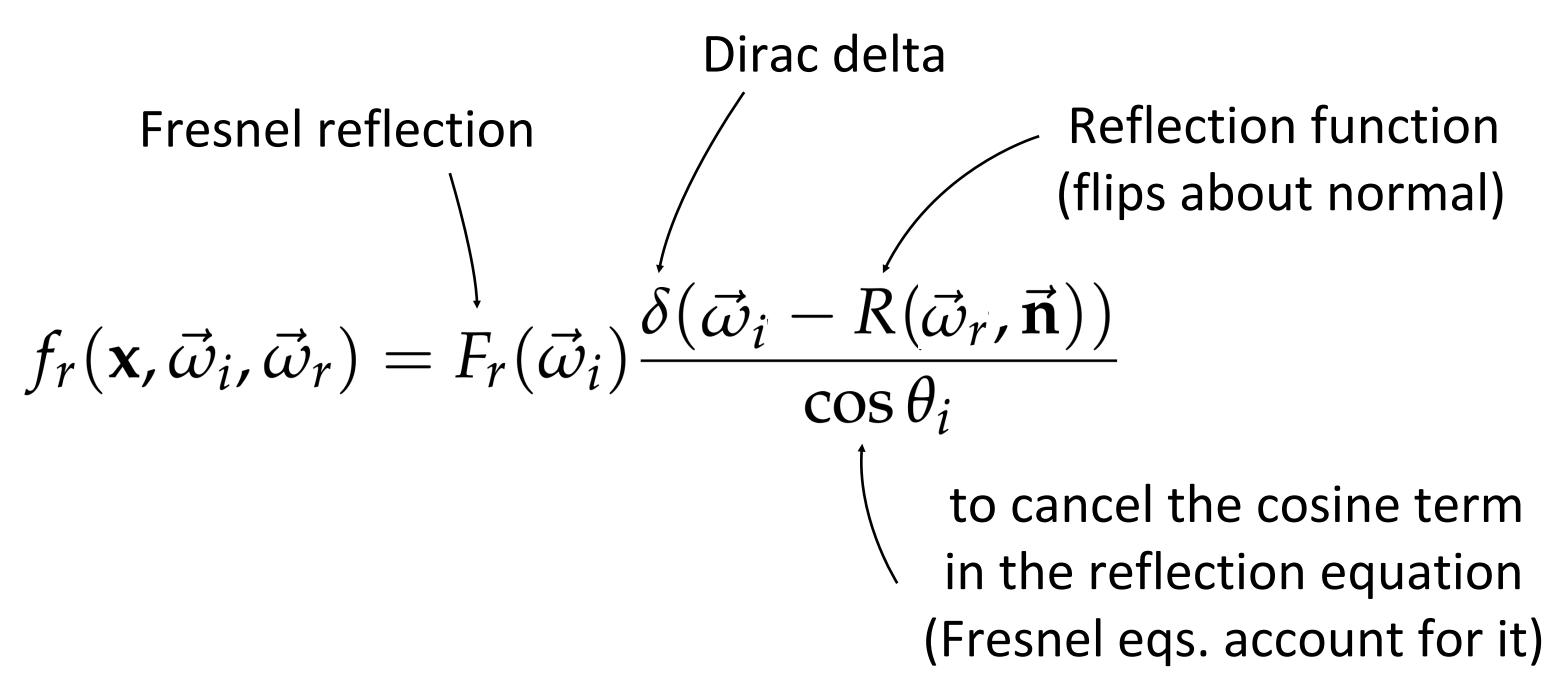
 $\int_{-\infty} f(x)\delta(x-a) \, \mathrm{d}x = f(a)$

BRDF of Ideal Specular Reflection

$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x})$$

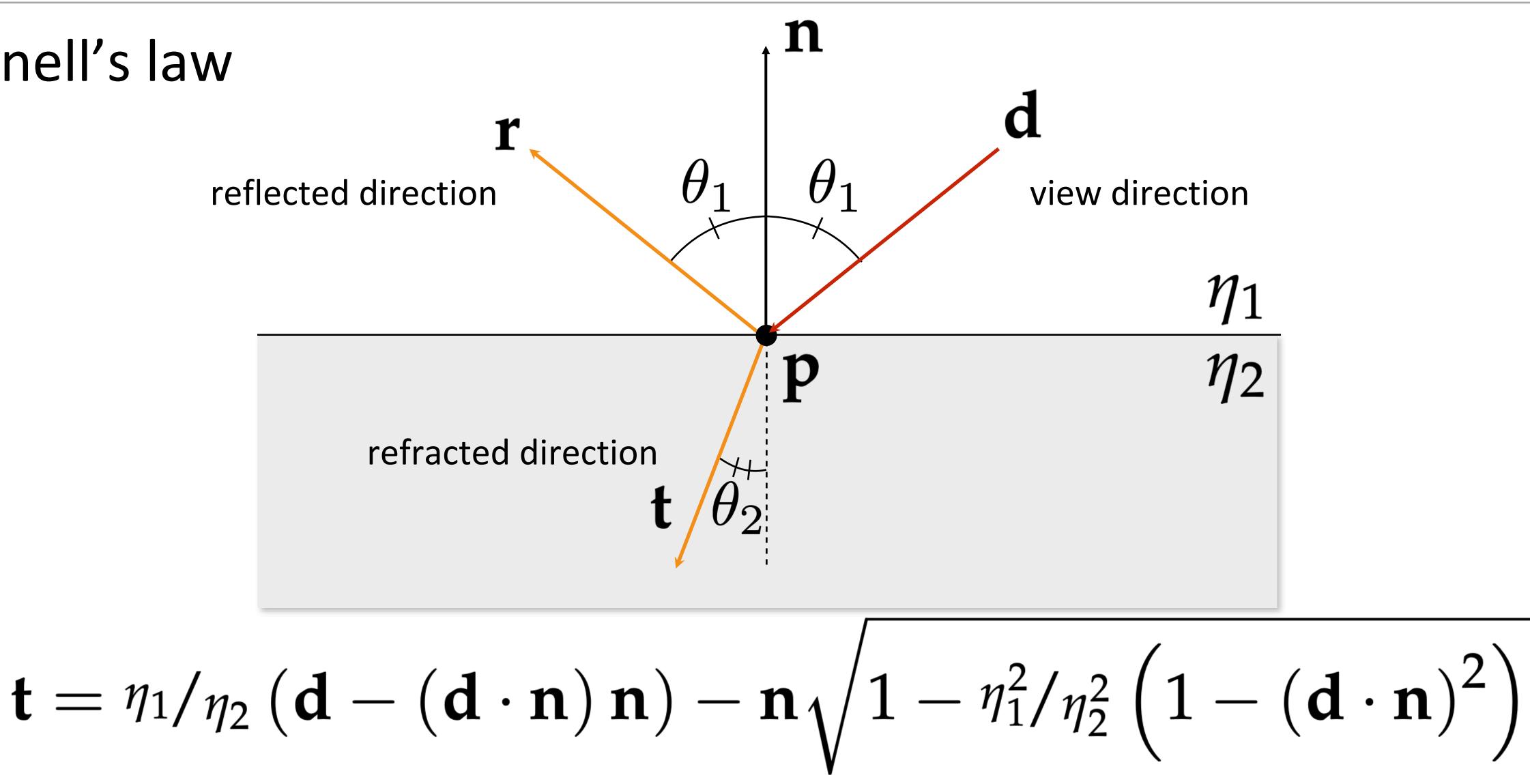
What is the BRDF for specular reflection?

 $\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$



Specular transmission/refraction

Snell's law



BTDF of Ideal Specular Refraction

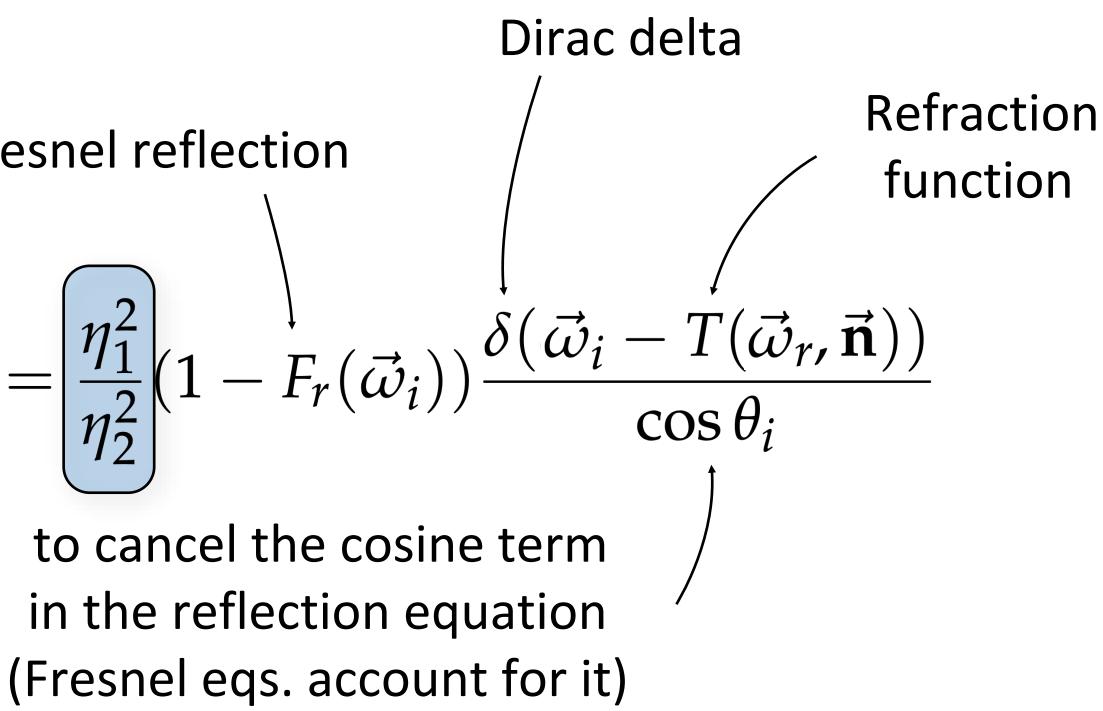
$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x})$$

What is the BTDF for specular refraction?

Fresnel reflection

$$f_t(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = \overbrace{\frac{\eta_1^2}{\eta_2^2}}^{\eta_1} (1$$

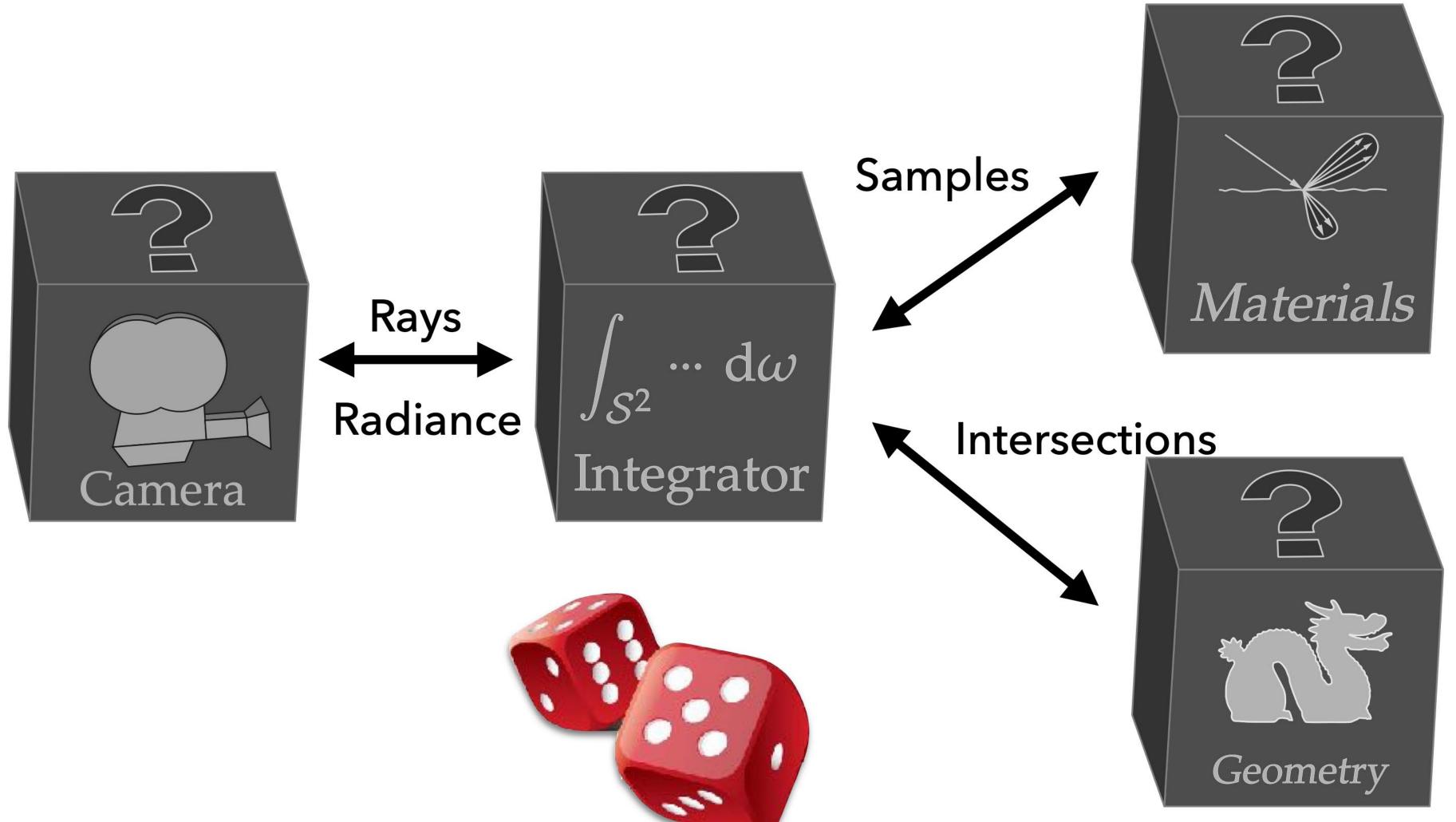
 $\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

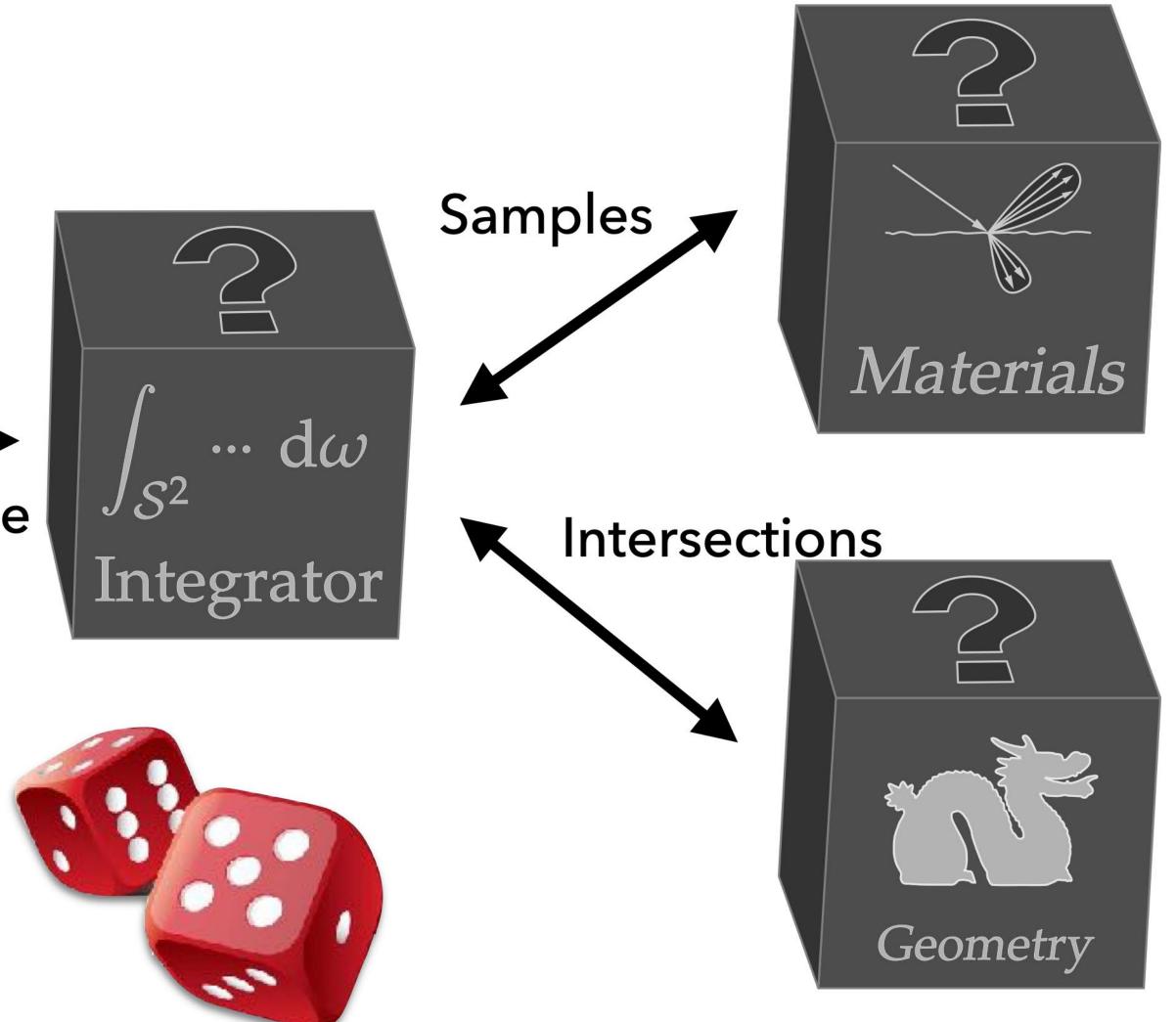


Approximating integrals with Monte Carlo No need to be scared of math like this:

- $\int_{H^2} L(\mathbf{x},\vec{\omega})\cos\theta\,d\vec{\omega} = E(\mathbf{x})$ integrals will just turn into for loops in your code
- evaluating $L(\mathbf{x}, \omega)$ will correspond to tracing a ray

Architecture of a rendering system





Architecture of a rendering system Chapter 8 Chapter 6 Materials $\cdots d\omega$ Integrator Camera Chapter 14 Geometry Chapter 3

