Solid and procedural textures

15-468, 15-668, 15-868
Physics-based Rendering

raphics.cs.cmu.edu/courses/15-468 Spring 2024, Lecture 5

http://graphics.cs.cmu.edu/courses/15-468

Course announcements

* Programming assignment 1 is due on Friday 2/9.
- Any issues with the homework?

 Take-home quiz 1 due tonight.

e (Office hours on website and Slack.

Alan Lee (soohyun3@andrew.cmu.edu)

BS in Computer Science, (hopefully) starting MS in CS this Fall

Research Interests: Virtual reality, non-photorealistic rendering

: My PBR Final Project: Photon mapping!
Previously TA-ed...

15462 Computer Graphics 15466 Computer Game Programming

®

| Al: Rasterization | | A2: MeshEdit |

You won’t understand what’s going on here
[A3: PathTracer] [A4: Animation] but hey it looks cool

Overview of today’s lecture

e 3D textures.

e Procedural textures.

* Generating “realistic noise”.

Slide credits

Most of these slides were directly adapted from:

* Wojciech Jarosz (Dartmouth).

3D textures

Texture is a function of (u, v, w)
- can evaluate texture at 3D point
- good for solid materials

- often defined procedurally

[Wolfe SG97]

Procedural texturing

Instead of using rasterized image data, define texture
procedurally

Simple example:

- color = 0.5%sin(x) + 0.5

Often called “solid texturing” because texture can easily vary in
all 3 dimensions.

- but you can also do 2D or 1D procedural textures

Raster vs. procedural textures

Why use procedural textures?

- low memory usage

- infinite resolution

- solid texture: no need to parametrize surface

3D stripe texture

3D stripe texture
color stripe(point p):

If (sin(px) > 0)
return co

else
return c1

3D stripe texture

11

3D stripe texture

color stripe(point p,
if (sin(mpxw) > 0)
return co
else
return cs

real w):

12

3D stripe texture

color stripe(point p, real w):
t = (1 + sin(mpx/w)) /2
return lerp(co, c1, 1)

13

2D checkerboard texture

color checkerboard(point p):
real a = floor (px)
real b = floor(py)
real val = a+b
if (1isEven(val))

return co
else
return c7

14

3D checkerboard texture

color checkerboard(point p):
real a = floor (px)
real b = floor(py)
real ¢ = floor (pz)
real val = a+b+c
if (1isEven(val))

return co
else
return c7

Procedural synthesis

Ry 7 ~ A2 ! T IN02 @M, GIULT
ey il ki }

created using Terragen 16

rocedural synthesis

" drmands. Quseklisg

F =
i

g TSR S SR
-t i T,

= lerrgescapercoiiie . '_'-'-::'-'."1-:;_'_'. e~ g T u.siru-; Mogoiertd by B dromerm it e e ic I-:-':.-'-Ifglrn':.-'tr":.-' Lavrae

created using MojoWorld 17

Procedural synthesis

Industrial Light + Magic

Digital matte painting for Pirates of the Caribbean 2; created using Vue Infinite 18

Procedural synt

Eisbrachen

created using Vue Infinite

Procedural textures

Our procedurals are “too perfect”

Often want to add controlled variation to a texture
- Real textures have many imperfections

Just calling rand() is not that useful.

20

Random noise

albedo = randf();

Not band-limited,
white noise.

Henrik Wann Jensen

21

Noise functions
Function: R” —|-1, 1], wheren =1,2,3,...

Desirable properties:

- no obvious repetition

- rotation invariant

- band-limited (i.e., not scale-invariant)

Fundamental building block of most procedural textures

22

Value noise

Values associated with integer lattice locations

Given arbitrary position, interpolate value from neighboring
lattice points

23

Value noise example

24

Value noise example

Random values on grid

o O

25

Value noise example

Random values on grid

BE=S iR
il

Cell noise: use value of nearest point on grid

26

Value noise example

(Bi-) linearly interpolated values

W AW
vV N/ V

Interpolate between 2" nearest grid points

27

Value noise example

(Bi-) cubic interpolation

AN
VARVERY

Interpolate between 4" nearest grid points

-
.

28

Value noise - implementation issues

Not feasible to store values at all integer locations
- pre-compute an array of pseudo-random values

- use a randomized hash function to map lattice locations to
pseudo-random values

29

Value noise - implementation details

// randomly permuted array of 0...255, duplicated
const unsigned char values[256%2] = [1, 234, ...];

float noiselD(float x)

{
int x1 = int(floor(x)) & 255;
return lerp(values|[xi], values[x1+1], x-x1)/128.0-1;

l

// 2D hashing:

// values[xi1 + values[yi]];

// 3D hashing:

// values|[x1 + values|yl + values|[zi]]];
// etc.

30

Value noise - limitations

31

Value noise - limitations

Lattice structure apparent
- Minimal/maxima always on lattice

Slow/many lookups
- 8 values for trilinear

- 64 values for tricubic
e 4" for n dimensions

32

Perlin noise

Perlin noise, invented by Ken Perlin in 1982
- First used in the movie Tron!

Store random vectors/gradients on lattice

- Use Hermite interp.
- a.k.a. “gradient noise”

33

Classic Perlin noise

34

Classic Perlin noise

Random gradients on grid

35

Classic Perlin noise

RN AWVN
VAV

Hermite-interpolated values

36

Perlin noise vs. value noise

Perlin Noise
(gradient noise)

A

RN AW
VanY

\

Why is Perlin noise better?

[N
Ay

Cubic Value Noise

37

Perlin noise

Typically signed by default, ~in [-1,1] with a mean of O

offset/scale to put into [0,1] range take absolute value

(noise(p)+1)/2 noise(p) |

3D Perlin noise

39

Absolute value of noise

40

Perlin noise
Change frequency: ?

Change amplitude: ?

41

Perlin noise
Change frequency: noise(10*x)

Change amplitude: 10*noise(x)

42

Absolute value of noise

Absolute value of noise

Absolute value of noise

Absolute value of noise

noise(p) | |noise(4px,Py,Pz) | |[noise(px,4py,pPz) |

46

Perlin noise - limitations

Perlin noise - limitations

Lattice structure apparent for |noise]|
- all lattice locations have value O

Lookups faster, but still slow:

- Perlinis 2" for n dimensions instead
of 4" for value noise

- other variations: simplex noise (O(n))

Not quite rotation invariant

More reading

Fantastic explorable explanation by Andrew Kensler at Pixar

- eastfarthing.com/blog/2015-04-21-noise

49

http://eastfarthing.com/blog/2015-04-21-noise

Spectral synthesis

Representing a complex function /s (p) by a sum of weighted
contributions from a scaled function f(p):

fs(p) = Z’wz‘f(si)

(/
Called a “fractal sum” if w; and s; are set so:

- increasing frequencies have decreasing amplitude,
eg..wi=2"s=2"

- when s; =2! each term in summation is called an “octave”

What function f(p) should we use?

50

fBm - fractional Brownian motion

In graphics:
- Fractal sum of Perlin noise functions
- “Fractal noise”

51

fBm - 1 octave

fBm - 2 octaves

53

fBm - 3 octaves

54

fBm - 4 octaves

55

Turbulence

Same as fBm, but sum absolute value of noise function

56

Turbulence - 1 octave

Wojciech'Jarosz 2007

57

Turbulence - 2 octaves

ojciechJarosz 2007

58

Turbulence - 3 octaves

Turbulence - 4 octaves

%
1
‘ojciech Jarosz 2007

Bump mapping

PBRT

m

PBRT

Turbulence

62

2D fBm

s

A fractional Brownian motion (fBm) terrain patch of fractal dimension ~2.1.

source: Ken Musgrave 63

Fractal dimension

Fractals have fractional dimension, e.g. D = 1.2.

- under some appropriate definition of dimension...

Integer component indicates the underlying Euclidean dimension of the fractal,
in this case a line ("1" in 1.2).

Fractional part is called the fractal increment (".2" in 1.2).

Fractal increment varies from .0 to .999...

- fractal goes from (locally) occupying only its underlying Euclidean dimension (the
line), to filling some part of the next higher dimension (the plane).

Continuous "slider" for the visual complexity of a fractal

- “smoother” < “rougher”
What determines the dimension of fBm?

64

Fractal dimension of fBm

W
M

o s s

|

Traces of fBm for H varying from 1.0 to 0.0 in increments of 0.2

ve 65

fBm

fBm is statistically homogeneous and isotropic.
- Homogeneous means "'the same everywhere"
- |sotropic means "the same in all directions”

Fractal phenomena in nature are rarely so simple and well-
behaved.

66

Multifractals

Fractal system which has a different fractal dimension in
different regions

Heterogeneous fBm

- Scale higher frequencies in the summation by the value of the
previous frequency.

- Many possibilities: hetero terrain, hybrid multifractal, ridged
multifractal

67

2D fBm

s

A fractional Brownian motion (fBm) terrain patch of fractal dimension ~2.1.

source: Ken Musgrave 68

Heterogeneous fBm

A hybrid multifractal terrain patch made with a Perlin noise basis: the
“alpine hills” Bryce 4 terrain model.

source: Ken Musgrave 69

Heterogeneous fBm

The “ridges” terrain model from Bryce 4: a hybrid multifractal made
from one minus the absolute value of Perlin noise.

source: Ken Musgrave 70

Heterogeneous fBm

A hybrid multifractal made from Worley’s Voronoi distance-squared basis

source: Ken Musgrave 71

Heterogeneous fBm

A hybrid multifractal made from Worley’s Voronoi distance basis

source: Ken Musgrave 72

fBm distorted with fBm

source: Ken Musgrave 73

Domain Distortion

A sample of the “warped ridges” terrain model in Bryce 4: the “ridges” model distorted with fBm.

source: Ken Musgrave 74

Domain Distortion

A sample of the “warped slickrock” terrain model in Bryce 4: fBm constructed from one
minus the absolute value of Perlin noise, distorted with fBm.

source: Ken Musgrave /5

Recall: 3D stripe texture

color stripe(point p, real w):
t = (1 + sin(mpx/w)) /2
return lerp(co, c1, 1)

How can we make this less structured
(less “boring”)?

76

from http://lodev.org/cetutor/randomnoise.html 77

http://lodev.org/cgtutor/randomnoise.html

Marble

(1+sin(kipx+ turbulence(kap))/w)/2

/8

Wood (1+sin(sqrt(p2+py?) + fBm(p)))/2

-

from http://lodev.org/cgtutor/randomnoise.html 79

http://lodev.org/cgtutor/randomnoise.html

Wood

(1 +sin(sqrt(px*+py*) + TBm(p))) /2

AdVancediReEndermaln

30

and more...

- -l-,.' :
e Vejciceh
S)"A" —

k-

B

31

and more...

Wojciech.Jarosz 2000

32

https://twitter.com/ciaccodavide/status/964407412634472448?s=12

https://twitter.com/minionsart/status/964257071423283200

Worley noise

“Cellular texture” function

- Introduced in 1996 by Steve Worley
- Different from cell texture!

Randomly distribute “feature points” in space
- fn(x) = distance to n'" closest point to x

36

2D Worley noise: 1

2D Worley noise: f1

38

2D Worley noise: 1

2D Worley noise: f1

What do we call this image in geometry?

90

2D Worley noise: f1

Worley Noise

g

iR : R L R
i

o)) TE T gt e T
P Y B o PRt v VI e e | hosd,
= Al Lt Al e _ e s D e S e i SRS, !
L E ot Ll "
e o Efﬁ.": - lIE — haty

s

= |
I e e ! i e R =l
m - -

fractal F1, bump map

Steve Worley 92

Worley Noise

fractal F1, bump map

Steve Worley 93

2D Worley noise: f1

er yoalomm

/00¢ 2S0J

94

2D Worley noise: 1-f1

Worley Noise

fractal 1-f1, color and bump map

Steve Worley 96

2D Worley noise: f1

er yoalomm

/00¢ 2S0J

97

2D Worley noise: f1, thresholded

2

\ =)
» o
(@)

>

| S
3

wn

N

N

4
N

A

2D Worley noise: f1, thresholded

2D Worley noise: f>-f1

er yaanlom

/00¢ 2S0J

100

2D Worley noise: f-f1, thresholded

3D Worley noise

Steve Worley 102

orley Noise

fractal f1-f4 combinations

Steve Worley 103

Other Resources

Creating CGl for Motion Pictures

ﬁ'

TEXTI.IRIN EMODE

A Procedural Approach

David S. Ebert THIRD EDITION

F. Kenton Musgrave
Darwyn Peachey
Ken Perhin

Anthony A. Apodaca
Larry Gritz

Steven Wi '-|'||.-j.

104

Demos

Amazing realtime demos using fractal noise:

- http://www.iquilezles.org/www/articles/morenoise/morenoise.ht
m

- https://www.shadertoy.com/view/4ttSWf
- https://www.shadertoy.com/view/XttSz?2

105

http://www.iquilezles.org/www/articles/morenoise/morenoise.htm
http://www.iquilezles.org/www/articles/morenoise/morenoise.htm
https://www.shadertoy.com/view/4ttSWf
https://www.shadertoy.com/view/XttSz2

	Solid and procedural textures
	Course announcements
	Slide Number 3
	Overview of today’s lecture
	Slide credits
	3D textures
	Procedural texturing
	Raster vs. procedural textures
	3D stripe texture
	3D stripe texture
	3D stripe texture
	3D stripe texture
	3D stripe texture
	2D checkerboard texture
	3D checkerboard texture
	Procedural synthesis
	Procedural synthesis
	Procedural synthesis
	Procedural synthesis
	Procedural textures
	Random noise
	Noise functions
	Value noise
	Value noise example
	Value noise example
	Value noise example
	Value noise example
	Value noise example
	Value noise - implementation issues
	Value noise - implementation details
	Value noise - limitations
	Value noise - limitations
	Perlin noise
	Classic Perlin noise
	Classic Perlin noise
	Classic Perlin noise
	Perlin noise vs. value noise
	Perlin noise
	3D Perlin noise
	Absolute value of noise
	Perlin noise
	Perlin noise
	Absolute value of noise
	Absolute value of noise
	Absolute value of noise
	Absolute value of noise
	Perlin noise - limitations
	Perlin noise - limitations
	More reading
	Spectral synthesis
	fBm - fractional Brownian motion
	fBm - 1 octave
	fBm - 2 octaves
	fBm - 3 octaves
	fBm - 4 octaves
	Turbulence
	Turbulence - 1 octave
	Turbulence - 2 octaves
	Turbulence - 3 octaves
	Turbulence - 4 octaves
	fBm vs Turbulence
	Bump mapping
	2D fBm
	Fractal dimension
	Fractal dimension of fBm
	fBm
	Multifractals
	2D fBm
	Heterogeneous fBm
	Heterogeneous fBm
	Heterogeneous fBm
	Heterogeneous fBm
	Domain Distortion
	Domain Distortion
	Domain Distortion
	Recall: 3D stripe texture
	Marble
	Marble
	Wood
	Wood
	and more...
	and more...
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Worley noise
	2D Worley noise: f1
	2D Worley noise: f1
	2D Worley noise: f1
	2D Worley noise: f1
	2D Worley noise: f1
	Worley Noise
	Worley Noise
	2D Worley noise: f1
	2D Worley noise: 1-f1
	Worley Noise
	2D Worley noise: f1
	2D Worley noise: f1, thresholded
	2D Worley noise: f1, thresholded
	2D Worley noise: f2-f1
	2D Worley noise: f2-f1, thresholded
	3D Worley noise
	Worley Noise
	Other Resources
	Demos

