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Course announcements

* Programming assignment 1 is due on Friday 2/9.
- Any issues with the homework?

 Take-home quiz 1 due tonight.

e (Office hours on website and Slack.



Alan Lee (soohyun3@andrew.cmu.edu)

BS in Computer Science, (hopefully) starting MS in CS this Fall

Research Interests: Virtual reality, non-photorealistic rendering

: My PBR Final Project: Photon mapping!
Previously TA-ed...

15462 Computer Graphics 15466 Computer Game Programming

®

| Al: Rasterization | | A2: MeshEdit |

You won’t understand what’s going on here
[ A3: PathTracer ] [ A4: Animation ] but hey it looks cool



Overview of today’s lecture

e 3D textures.

e Procedural textures.

* Generating “realistic noise”.



Slide credits

Most of these slides were directly adapted from:

* Wojciech Jarosz (Dartmouth).



3D textures

Texture is a function of (u, v, w)
- can evaluate texture at 3D point
- good for solid materials

- often defined procedurally

[Wolfe SG97]




Procedural texturing

Instead of using rasterized image data, define texture
procedurally

Simple example:

- color = 0.5%sin(x) + 0.5

Often called “solid texturing” because texture can easily vary in
all 3 dimensions.

- but you can also do 2D or 1D procedural textures



Raster vs. procedural textures

Why use procedural textures?

- low memory usage

- infinite resolution

- solid texture: no need to parametrize surface



3D stripe texture




3D stripe texture
color stripe(point p):

If (sin(px) > 0)
return co

else
return c1




3D stripe texture
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3D stripe texture

color stripe(point p,
if (sin(mpxw) > 0)
return co
else
return cs

real w):
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3D stripe texture

color stripe(point p, real w):
t = (1 + sin(mpx/w)) /2
return lerp(co, c1, 1)
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2D checkerboard texture

color checkerboard(point p):
real a = floor (px)
real b = floor(py)
real val = a+b
if (1isEven(val))

return co
else
return c7
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3D checkerboard texture

color checkerboard(point p):
real a = floor (px)
real b = floor(py)
real ¢ = floor (pz)
real val = a+b+c
if (1isEven(val))

return co
else
return c7




Procedural synthesis
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created using Terragen 16




rocedural synthesis
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created using MojoWorld 17



Procedural synthesis

Industrial Light + Magic

Digital matte painting for Pirates of the Caribbean 2; created using Vue Infinite 18



Procedural synt

Eisbrachen

created using Vue Infinite



Procedural textures

Our procedurals are “too perfect”

Often want to add controlled variation to a texture
- Real textures have many imperfections

Just calling rand() is not that useful.
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Random noise

albedo = randf();

Not band-limited,
white noise.

Henrik Wann Jensen
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Noise functions
Function: R” —|-1, 1], wheren =1,2,3,...

Desirable properties:

- no obvious repetition

- rotation invariant

- band-limited (i.e., not scale-invariant)

Fundamental building block of most procedural textures
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Value noise

Values associated with integer lattice locations

Given arbitrary position, interpolate value from neighboring
lattice points
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Value noise example
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Value noise example

Random values on grid

o O
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Value noise example

Random values on grid
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il

Cell noise: use value of nearest point on grid
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Value noise example

(Bi-) linearly interpolated values
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Interpolate between 2" nearest grid points

27



Value noise example

(Bi-) cubic interpolation

AN
VARVERY

Interpolate between 4" nearest grid points

-
.
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Value noise - implementation issues

Not feasible to store values at all integer locations
- pre-compute an array of pseudo-random values

- use a randomized hash function to map lattice locations to
pseudo-random values
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Value noise - implementation details

// randomly permuted array of 0...255, duplicated
const unsigned char values[256%2] = [1, 234, ...];

float noiselD(float x)

{
int x1 = int(floor(x)) & 255;
return lerp(values|[xi], values[x1+1], x-x1)/128.0-1;

l

// 2D hashing:

// values[xi1 + values[yi]];

// 3D hashing:

// values|[x1 + values|yl + values|[zi]]];
// etc.
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Value noise - limitations
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Value noise - limitations

Lattice structure apparent
- Minimal/maxima always on lattice

Slow/many lookups
- 8 values for trilinear

- 64 values for tricubic
e 4" for n dimensions
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Perlin noise

Perlin noise, invented by Ken Perlin in 1982
- First used in the movie Tron!

Store random vectors/gradients on lattice

- Use Hermite interp.
- a.k.a. “gradient noise”
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Classic Perlin noise
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Classic Perlin noise

Random gradients on grid
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Classic Perlin noise
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Hermite-interpolated values
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Perlin noise vs. value noise

Perlin Noise
(gradient noise)
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Why is Perlin noise better?
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Cubic Value Noise
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Perlin noise

Typically signed by default, ~in [-1,1] with a mean of O

offset/scale to put into [0,1] range take absolute value

(noise(p)+1)/2 noise(p) |



3D Perlin noise
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Absolute value of noise
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Perlin noise
Change frequency: ?

Change amplitude: ?
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Perlin noise
Change frequency: noise(10*x)

Change amplitude: 10*noise(x)
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Absolute value of noise




Absolute value of noise




Absolute value of noise




Absolute value of noise

noise(p) | |noise(4px,Py,Pz) | |[noise(px,4py,pPz) |
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Perlin noise - limitations




Perlin noise - limitations

Lattice structure apparent for |noise]|
- all lattice locations have value O

Lookups faster, but still slow:

- Perlinis 2" for n dimensions instead
of 4" for value noise

- other variations: simplex noise (O(n))

Not quite rotation invariant




More reading

Fantastic explorable explanation by Andrew Kensler at Pixar

- eastfarthing.com/blog/2015-04-21-noise
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http://eastfarthing.com/blog/2015-04-21-noise

Spectral synthesis

Representing a complex function /s (p) by a sum of weighted
contributions from a scaled function f(p):

fs(p) = Z’wz‘f(si )

(/
Called a “fractal sum” if w; and s; are set so:

- increasing frequencies have decreasing amplitude,
eg..wi=2"s=2"

- when s; =2! each term in summation is called an “octave”

What function f(p) should we use?
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fBm - fractional Brownian motion

In graphics:
- Fractal sum of Perlin noise functions
- “Fractal noise”
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fBm - 1 octave




fBm - 2 octaves
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fBm - 3 octaves
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fBm - 4 octaves
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Turbulence

Same as fBm, but sum absolute value of noise function
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Turbulence - 1 octave

Wojciech'Jarosz 2007
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Turbulence - 2 octaves

ojciechJarosz 2007
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Turbulence - 3 octaves




Turbulence - 4 octaves

%
1
‘ojciech Jarosz 2007






Bump mapping

PBRT

m

PBRT

Turbulence
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2D fBm

s

A fractional Brownian motion (fBm) terrain patch of fractal dimension ~2.1.

source: Ken Musgrave 63



Fractal dimension

Fractals have fractional dimension, e.g. D = 1.2.

- under some appropriate definition of dimension...

Integer component indicates the underlying Euclidean dimension of the fractal,
in this case a line ("1" in 1.2).

Fractional part is called the fractal increment (".2" in 1.2).

Fractal increment varies from .0 to .999...

- fractal goes from (locally) occupying only its underlying Euclidean dimension (the
line), to filling some part of the next higher dimension (the plane).

Continuous "slider" for the visual complexity of a fractal

- “smoother” < “rougher”
What determines the dimension of fBm?
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Fractal dimension of fBm
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Traces of fBm for H varying from 1.0 to 0.0 in increments of 0.2
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fBm

fBm is statistically homogeneous and isotropic.
- Homogeneous means "'the same everywhere"
- |sotropic means "the same in all directions”

Fractal phenomena in nature are rarely so simple and well-
behaved.
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Multifractals

Fractal system which has a different fractal dimension in
different regions

Heterogeneous fBm

- Scale higher frequencies in the summation by the value of the
previous frequency.

- Many possibilities: hetero terrain, hybrid multifractal, ridged
multifractal
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2D fBm

s

A fractional Brownian motion (fBm) terrain patch of fractal dimension ~2.1.

source: Ken Musgrave 68



Heterogeneous fBm

A hybrid multifractal terrain patch made with a Perlin noise basis: the
“alpine hills” Bryce 4 terrain model.

source: Ken Musgrave 69



Heterogeneous fBm

The “ridges” terrain model from Bryce 4: a hybrid multifractal made
from one minus the absolute value of Perlin noise.

source: Ken Musgrave 70



Heterogeneous fBm

A hybrid multifractal made from Worley’s Voronoi distance-squared basis

source: Ken Musgrave 71



Heterogeneous fBm

A hybrid multifractal made from Worley’s Voronoi distance basis

source: Ken Musgrave 72



fBm distorted with fBm

source: Ken Musgrave 73



Domain Distortion

A sample of the “warped ridges” terrain model in Bryce 4: the “ridges” model distorted with fBm.

source: Ken Musgrave 74



Domain Distortion

A sample of the “warped slickrock” terrain model in Bryce 4: fBm constructed from one
minus the absolute value of Perlin noise, distorted with fBm.

source: Ken Musgrave /5



Recall: 3D stripe texture

color stripe(point p, real w):
t = (1 + sin(mpx/w)) /2
return lerp(co, c1, 1)

How can we make this less structured
(less “boring”)?
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from http://lodev.org/cetutor/randomnoise.html 77



http://lodev.org/cgtutor/randomnoise.html

Marble

(1+sin(kipx+ turbulence(kap))/w)/2

/8



Wood (1+sin(sqrt(p2+py?) + fBm(p)))/2

-

from http://lodev.org/cgtutor/randomnoise.html 79



http://lodev.org/cgtutor/randomnoise.html

Wood

(1 +sin(sqrt(px*+py*) + TBm(p))) /2

AdVancediReEndermaln
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and more...
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and more...

Wojciech.Jarosz 2000
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https://twitter.com/ciaccodavide/status/964407412634472448?s=12






https://twitter.com/minionsart/status/964257071423283200




Worley noise

“Cellular texture” function

- Introduced in 1996 by Steve Worley
- Different from cell texture!

Randomly distribute “feature points” in space
- fn(x) = distance to n'" closest point to x
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2D Worley noise: 1




2D Worley noise: f1
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2D Worley noise: 1




2D Worley noise: f1

What do we call this image in geometry?
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2D Worley noise: f1




Worley Noise
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fractal F1, bump map

Steve Worley 92



Worley Noise

fractal F1, bump map

Steve Worley 93



2D Worley noise: f1

er yoalomm

/00¢ 2S0J
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2D Worley noise: 1-f1




Worley Noise

fractal 1-f1, color and bump map

Steve Worley 96



2D Worley noise: f1

er yoalomm
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2D Worley noise: f1, thresholded
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2D Worley noise: f1, thresholded




2D Worley noise: f>-f1
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2D Worley noise: f-f1, thresholded




3D Worley noise

Steve Worley 102



orley Noise

fractal f1-f4 combinations

Steve Worley 103



Other Resources

Creating CGl for Motion Pictures

ﬁ'

TEXTI.IRIN EMODE

A Procedural Approach

David S. Ebert THIRD EDITION

F. Kenton Musgrave
Darwyn Peachey
Ken Perhin

Anthony A. Apodaca
Larry Gritz

Steven Wi '-|'||.-j.
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Demos

Amazing realtime demos using fractal noise:

- http://www.iquilezles.org/www/articles/morenoise/morenoise.ht
m

- https://www.shadertoy.com/view/4ttSWf
- https://www.shadertoy.com/view/XttSz?2

105


http://www.iquilezles.org/www/articles/morenoise/morenoise.htm
http://www.iquilezles.org/www/articles/morenoise/morenoise.htm
https://www.shadertoy.com/view/4ttSWf
https://www.shadertoy.com/view/XttSz2
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