
Ray tracing and geometric representations

15-468, 15-668, 15-868
Physics-based Rendering

Spring 2024, Lecture 2http://graphics.cs.cmu.edu/courses/15-468

1

Course announcements

• Programming assignment 1 will be posted on Friday 1/26 and will be due two weeks later.

• Take-home quiz 1 will be posted on Tuesday 1/23 and will be due a week later.

2

Course announcements

• Is anyone not on Canvas?

• Is anyone not on Slack?

3

Overview of today’s lecture

• Introduction to ray tracing.

• Intersections with geometric primitives.

• Triangular meshes.

4

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

5

Two forms of 3D rendering
Rasterization: object point to image plane
- start with a 3D object point
- apply transforms
- determine the 2D image plane point it projects to

Ray tracing: image plane to object point
- start with a 2D image point
- generate a ray
- determine the visible 3D object point

Inverse processes

6

Two forms of 3D rendering

7

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Triangle-centric

for (each triangle)
for (each pixel)

if (triangle covers pixel)
keep closest hit

Ray-centric

for (each pixel or ray)
for (each triangle)

if (ray hits triangle)
keep closest hit

Rasterization Ray tracing

Rasterization advantages
Modern scenes are more complicated than images
- A 1920x1080 frame (1080p) at 64-bit color and 32-bit depth per pixel is 24 MB

(not that much)
• of course, if we have more than one sample per pixel this gets larger, but e.g.

4x supersampling is still a relatively comfortable ~100 MB
- Our scenes are routinely larger than this

• This wasn’t always true

A rasterization-based renderer can stream over the triangles, no need to
keep entire dataset around
- Allows parallelism and optimizations of memory systems

8

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Rasterization limitations
Restricted to scan-convertible primitives
- Pretty much: triangles

Faceting, shading artifacts
- This is largely going away with programmable per-pixel

shading, though

No unified handling of shadows,
reflection, transparency

9

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

Ray/path tracing
Advantages
- Generality: can render anything that can be intersected with a ray
- Easily allows recursion (shadows, reflections, etc.)

Disadvantages
- Hard to implement in hardware (lacks computation coherence, must fit

entire scene in memory, bad memory behavior)
• Not such a big point anymore given general purpose GPUs

- Has traditionally been too slow for interactive applications
- Both of the above are changing rather rapidly right now!

10

Af
te

r a
 sl

id
e

by
 F

ré
do

 D
ur

an
d

A ray-traced image

11

Wojciech Jarosz

Ray tracing today

Rapid change in film industry
2008:
- Most CGI in films rendered using micro-polygon rasterization.

- “You’d be crazy to render a full-feature film with ray/path tracing.”

- Ray/path tracing mostly interesting to academics

2018:
- Most major films now rendered using ray/path tracing.

- “You’d be crazy not to render a full-feature film using path tracing.”

13

Albrecht Dürer (1525)

14

René Descartes (1650)

15

Isaac Newton (1670)

16

Appel (1968)

17

Ray casting
- Generate an image by sending one ray per pixel

- Check for shadows by sending a ray towards the light

Whitted (1979)

18

recursive ray tracing (reflection & refraction)

Light Transport - Assumptions
Geometric optics:
- no diffraction, no polarization, no interference

Light travels in a straight line in a vacuum
- no atmospheric scattering or refraction
- no gravity effects
Color can be represented as three numbers: (R,G,B)

19

Emission theory of vision

20*http://www.ncbi.nlm.nih.gov/pubmed/12094435?dopt=Abstract

Eyes send out “feeling rays” into the world

Supported by:
- Ancient greeks

- 50% of US college
students*

http://www.ncbi.nlm.nih.gov/pubmed/12094435?dopt=Abstract

Ray Tracing - Overview
“light tracing”

21

eye point

image plane

light source

Basic Ray Tracing Pipeline

22

Ray Generation

Basic Ray Tracing Pipeline

23

Ray Generation

Intersection

Basic Ray Tracing Pipeline

24

Intersection

Shading

Ray Generation

Basic Ray Tracing Pipeline

25

Shading

Ray Generation

Intersection

Basic Ray Tracing Pipeline

26

Intersection

Ray Generation

Shading

Basic Ray Tracing Pipeline

27

Ray Generation

Intersection

Shading

Basic Ray Tracing Pipeline

28

Intersection

Shading

Ray Generation

Ray Tracing Pseudocode
rayTraceImage()
{

parse scene description

for each pixel
ray = generateCameraRay(pixel)
pixelColor = trace(ray)

}

29

might trace more rays (recursive)

trace(ray)
{

hit = find first intersection with scene
objects

color = shade(hit)
return color

}

Ray Tracing Pseudocode

30

how do we generate a camera ray?what is a ray?

Ray Tracing Pseudocode

31

rayTraceImage()
{

parse scene description

for each pixel
ray = generateCameraRay(pixel)
pixelColor = trace(ray)

}

Standard representation: origin (point) o and direction d

- this is a parametric equation for the line
- lets us directly generate the points on the line
- if we restrict to t > 0 then we have a ray
- note replacing d with ad does not change ray (for a > 0)

Ray: a half line
Af

te
r a

 sl
id

e
by

 S
te

ve
 M

ar
sc

hn
er

t

Generating eye rays

33

Orthographic Perspective

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Pinhole Camera (Camera Obscura)

34

Pinhole Camera
Pinhole Camera

35

film / physical
image plane

viewing
volume

pinhole

virtual image
plane

virtual image
plane

Pinhole Camera
Pinhole Camera

36

viewing
volume

eye

Generating eye rays—perspective
Establish view rectangle in X–Y plane, specified by, e.g.
- l, r, t, b

Place rectangle at z = -d

37

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Z

Y

X
O

Does distance d matter?

Placing the camera in the scene

OZ

Y

X

Generating eye rays—orthographic
How do you generate a ray for an orthographic camera?

39

Ray-Surface Intersections

40

Intersection

Ray Generation

Shading

Ray-Surface Intersections
Surface primitives
- spheres

- planes

- triangles

- general implicits

- etc.

41

Algebraic approach:
- Condition 1: point is on ray:

- Condition 2: point is on sphere:

- substitute and solve for t:

Ray-Sphere Intersection

42

point of
interest

center radius

Ray-Sphere Intersection
substitute and solve for t

which reduces to:

Solve for t using quadratic equation:

43What happens when square root is zero or negative?

Ray-Surface Intersections
Surface primitives
- spheres

- planes

- triangles

- general implicits

- etc.

44

Plane equation (implicit)

Ray-Plane Intersection

45

Algebraic form:

Plane equation (implicit)

substitute ray equation for x and solve for t

Ray-Plane Intersection

46

point on
plane

plane
normal

point of
interest

Ray-Surface Intersections
Surface primitives
- spheres

- planes

- triangles

- general implicits

- etc.

47

Ray-Triangle intersection
Condition 1: point is on ray:

Condition 2: point is on plane:

Condition 3: point is on the inside of all three edges

First solve 1&2 (ray–plane intersection) for t:

Several options for 3

48

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

In plane, triangle is the intersection of 3 half spaces

Ray-Triangle intersection (Approach 1)

49

Ray-Triangle intersection (Approach 1)

50

Which way does n point?

Ray-Triangle intersection (Approach 1)

51

Which way does n point?

What about nx13?

Ray-Triangle intersection (Approach 1)

52

Which way does n point?

What about nx13?
- How about now?

Ray-Triangle intersection (Approach 1)

53

Which way does n point?

What about nx13?
- How about now?

- Edge test:

Ray-Triangle intersection (Approach 1)

54

Which way does n point?

What about nx13?
- How about now?

- Edge test:

Ray-Triangle Intersection (Approach 2)
Intersect ray with triangle’s plane

Test whether hit-point is within triangle
- compute sub-triangle areas α, β, γ
- test inside triangle conditions

55

Barycentric coordinates
Barycentric coordinates:

Inside triangle conditions:

56

Interpretations of barycentric coords
Sub-triangle areas

Ray-Triangle Intersection (Approach 3)
Insert ray equation:

Solve directly

Can be much faster!

58

Ray-Surface Intersections
Other primitives
- cylinder

- cone, paraboloid, hyperboloid

- torus

- disk

- general polygons, meshes

- etc.

59

Intersecting transformed primitive?
Option 1: Transform the primitive
- simple for triangles, since they transform to triangles

- other primitives get more complicated (e.g. sphere ⟶ ellipsoid)

Option 2: Transform the ray (by the inverse transform)
- more elegant; works on any primitive

- allows simpler intersection tests
(e.g., just use existing sphere-intersection routine)

60

Intersection and coordinate systems

61

o
d

World space Local space

o’
d’

Intersection and coordinate systems

62

o
d

World space Local space

o’

d’

Intersection and coordinate systems

We have a sphere now

But with a different ray

63

o
d

World space Local space

o’

d’

?

Transformations in homogeneous coords
A 3D transformation matrix:

A 3D homogenous vector:

A position has , and a direction has
64

w ≠ 0 w = 0

Transformations
Matrix-vector multiplication, 𝑀𝑀𝑀𝑀, transforms the vector

A translation matrix:

A scaling matrix:

65

Intersection and coordinate systems
Have a transform M, a ray r(t), and a surface S

To intersect:
1. Transform ray to local coords (by inverse of M)
2. Call surface intersection
3. Transform hit data back to global coords (by M)

How to transform a ray r(t) = p + td by M-1?
- r’(t) = M-1p + tM-1d
- Remember: p forms as a point, d as a direction!

66

Ray-Surface Intersections
Other primitives
- cylinder

- cone, paraboloid, hyperboloid

- torus

- disk

- general polygons, meshes

- etc.

67

Image so far
With eye ray generation and sphere intersection

parse scene description

for each pixel:
ray = camera.getRay(pixel);
hit = s.intersect(ray, 0, +inf);
if hit:

image.set(pixel, white);

68

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Intersecting many shapes
Intersect each primitive

Pick closest intersection
- Only within considered range [tmin, tmax]

- After each valid intersection, update tmax

Essentially a line search

69

The basic idea is:

- this is linear in number of surfaces but there are sublinear methods
(acceleration structures)

Intersection against many shapes

Surfaces::intersect(ray, tMin, tMax):
tBest = +inf; firstHit = null;
for s in surfaces:

hit = s.intersect(ray, tMin, tBest);
if hit:

tBest = hit.t;
firstHit = hit;

return firstHit;

70

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Image so far
With eye ray generation and scene intersection

for each pixel:
ray = camera.getRay(pixel);
c = scene.trace(ray, 0, +inf);
image.set(pixel, c);

Scene::trace(ray, tMin, tMax):
hit = surfaces.intersect(ray, tMin, tMax);
if (hit)

return hit.color();
else

return backgroundColor;

71

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Ray-Surface Intersections
Other primitives
- cylinder

- cone, paraboloid, hyperboloid

- torus

- disk

- general polygons, meshes

- etc.

72

How should we represent complex geometry?
How are they obtained?
- modeled by hand

- scanned

What operations must we support?
- modeling/editing
- animating
- texturing
- rendering

73

Parametric Implicit Discrete/Sampled

• Meshes
• Splines, tensor-product surfaces
• Subdivision surfaces

• Metaballs/blobs
• Distance fields
• Procedural, CSG
• Neural nets

• Meshes
• Point set surfaces

Surface representation zoo!

74After a slide by Olga Sorkine-Hornung

Polygonal Meshes
Boundary representations of objects
- Piecewise linear

75

Af
te

r a
 sl

id
e

by
 O

lg
a

So
rk

in
e-

Ho
rn

un
g

A small triangle mesh

76

12 triangles, 8 vertices

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

A large mesh

Tr
ad

iti
on

al
 T

ha
i s

cu
lp

tu
re

—
sc

an
 b

y
XY

ZR
GB

, i
nc

.,
im

ag
e

by
 M

es
hL

ab
 p

ro
je

ct10 million triangles from a high-
resolution 3D scan

77

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

spheres approximate
sphere

Andrzej Barabasz
Rineau

& Yvinec
CGAL manual

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Meshes as Approx. of Smooth Surfaces
Piecewise linear approximation
- Error is O(h2)

81

25% 6.5% 1.7% 0.4%

3 6 2412

Af
te

r a
 sl

id
e

by
 O

lg
a

So
rk

in
e-

Ho
rn

un
g

h

h

Piecewise linear approximation
- Error is O(h2)

Meshes as Approx. of Smooth Surfaces

82

25% 6.5% 1.7% 0.4%

3 6 2412

0.

5.

10.

15.

20.

25.

0 8 15 23 30

Ap
pr

ox
im

at
io

n
er

ro
r

Number of faces

#faces vs. approximation error

Af
te

r a
 sl

id
e

by
 O

lg
a

So
rk

in
e-

Ho
rn

un
g

Polygonal Meshes
Polygonal meshes are a good representation
- approximation O(h2)
- arbitrary topology

- piecewise smooth surfaces

- adaptive refinement

- efficient rendering

83

Af
te

r a
 sl

id
e

by
 O

lg
a

So
rk

in
e-

Ho
rn

un
g

Data Structures: What should be stored?
Geometry: 3D coordinates

Attributes
- Normal, color, texture coordinates

- Per vertex, face, edge

Connectivity
- Adjacency relationships

84

Af
te

r a
 sl

id
e

by
 O

lg
a

So
rk

in
e-

Ho
rn

un
g

Separate Triangle List or Face Set (STL)
Face: 3 vertex positions

Storage:
- 4 Bytes/coordinate (using 32-bit floats)

- 36 Bytes/face

Wastes space

85

Triangles
0 x0 y0 z0

1 x1 y1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

...

Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

...

Indexed Face Set (OBJ, OFF, WRL)
Vertex: position

Face: vertex indices

Storage:
- 12 Bytes/vertex

- 12 Bytes/face

Reduces wasted space

Even better with per-vertex attributes

86

Triangles
t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

...

Data on meshes
Often need to store additional information besides just the
geometry

Can store additional data at faces, vertices, or edges

Examples
- colors stored on faces, for faceted objects
- information about sharp creases stored at edges
- any quantity that varies continuously (without sudden changes, or

discontinuities) gets stored at vertices

87

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Key types of vertex data
Surface normals
- when a mesh is approximating a curved surface, store normals at

vertices

Texture coordinates
- 2D coordinates that tell you how to paste images on the surface

Positions
- at some level this is just another piece of data

88

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Defining normals
Face normals: same normal for all points in face
- geometrically correct, but faceted look

89

Af
te

r a
 sl

id
e

by
 Jo

n
De

nn
in

g

Problems with face normals
Piecewise planar approximation converges pretty quickly to the
smooth geometry as the number of triangles increases
- error is O(h2)

But the surface normals don’t converge so well
- normal is constant over each triangle, with discontinuous jumps across

edges
- error is only O(h)

90

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Problems with face normals—2D example
Approximating circle with increasingly many segments

Max error in position error drops by factor of 4 each step

Max error in normal only drops
by factor of 2

91

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Problems with face normals—solution

Better: store the “real” normal at each vertex, and interpolate to get
normals that vary gradually across triangles

92

Af
te

r a
 sl

id
e

by
 S

te
ve

 M
ar

sc
hn

er

Defining normals
Vertex normals: store normal at vertices, interpolate in face
- geometrically “inconsistent”, but smooth look

93

Af
te

r a
 sl

id
e

by
 Jo

n
De

nn
in

g

Barycentric coordinates
Barycentric interpolation:

94

Can use this eqn. to
interpolate any vertex

quantity across triangle!

Barycentric coordinates
Barycentric interpolation:

95

Can use this eqn. to
interpolate any vertex

quantity across triangle!

Barycentric coordinates
Barycentric interpolation:

96

Can use this eqn. to
interpolate any vertex

quantity across triangle!

not guaranteed to be unit length

Andreas Byström

Realism through geometric complexity

Ray Tracing Acceleration
Ray-surface intersection is at the core of every ray tracing
algorithm

Brute force approach:
- intersect every ray with

every primitive

- many unnecessary ray-
surface intersection tests

98

Andreas Byström

Ray Tracing Cost
“the time required to compute the intersections of rays and surfaces is
over 95 percent” [Whitted 1980]

Cost = O(nx · ny · no)
- (number of pixels) · (number of objects)
- Assumes 1 ray per pixel

Example: 1024 x 1024 image of a scene with 1000 triangles
- Cost is (at least) 109 ray-triangle intersections

Typically measured per ray:
- Naive: O(no) - linear with number of objects

99

O(no) Ray Tracing (The Problem)

100

8 primitives → 3 seconds 50K trees each with 1M polygons = 50B polygons

→ 594 years!

Andreas Byström

Sub-linear Ray Tracing

50K trees each with 1M polygons = 50B polygons → 11 minutes
300,000,000x speedup!

Andreas Byström

The solution

Spatial sorting/subdivision (e.g. grid, kd-tree, ochre)
- Decompose space into disjoint regions & assign objects to regions

Object sorting/subdivision (bounding volume hierarchy)
- Decompose objects into disjoint sets & bound using simple volumes

for fast rejection
102

Improve efficiency of ray-surface intersections by constructing
acceleration structures.
- A spatial organization of objects in a scene to minimize the

necessary number of ray-object intersection tests.

Bounding Volumes
Spheres

103

70 K

Bounding Volumes
Axis-aligned bounding boxes (most common)

104

70 K

Bounding Volumes Hierarchies
Now do this hierarchically!

105

BVH Traversal
void BVHNode::intersectBVH(ray, &hit):

if (bound.hit(ray)):
if (leaf):

leaf.intersect(ray, hit);
else:

leftChild.intersectBVH(ray, hit);
rightChild.intersectBVH(ray, hit);

106

Constructing BVHs
Top-down:
- partition objects along an axis and create two sub-sets

Bottom-up:
- recursively group nearby objects together

107

Divisive (top-down) BBH construction
1. Choose split axis

2. Choose split plane location

3. Choose whether to create leaf or split + repeat

Many strategies for each of these steps

108

Choosing axis based on centroid extents

109PBRe2 fig. 4.8

Object-median splitting
1. Sort bbox centroids along split axis
2. Take take first half as left child, second half as right

110PBRe2 fig. 4.11

	Ray tracing and geometric representations
	Course announcements
	Course announcements
	Overview of today’s lecture
	Slide credits
	Two forms of 3D rendering
	Two forms of 3D rendering
	Rasterization advantages
	Rasterization limitations
	Ray/path tracing
	A ray-traced image
	Ray tracing today
	Rapid change in film industry
	Albrecht Dürer (1525)
	René Descartes (1650)
	Isaac Newton (1670)
	Appel (1968)
	Whitted (1979)
	Light Transport - Assumptions
	Emission theory of vision
	Ray Tracing - Overview
	Basic Ray Tracing Pipeline
	Basic Ray Tracing Pipeline
	Basic Ray Tracing Pipeline
	Basic Ray Tracing Pipeline
	Basic Ray Tracing Pipeline
	Basic Ray Tracing Pipeline
	Basic Ray Tracing Pipeline
	Ray Tracing Pseudocode
	Ray Tracing Pseudocode
	Ray Tracing Pseudocode
	Ray: a half line
	Generating eye rays
	Pinhole Camera (Camera Obscura)
	Pinhole Camera
	Pinhole Camera
	Generating eye rays—perspective
	Placing the camera in the scene
	Generating eye rays—orthographic
	Ray-Surface Intersections
	Ray-Surface Intersections
	Ray-Sphere Intersection
	Ray-Sphere Intersection
	Ray-Surface Intersections
	Ray-Plane Intersection
	Ray-Plane Intersection
	Ray-Surface Intersections
	Ray-Triangle intersection
	Ray-Triangle intersection (Approach 1)
	Ray-Triangle intersection (Approach 1)
	Ray-Triangle intersection (Approach 1)
	Ray-Triangle intersection (Approach 1)
	Ray-Triangle intersection (Approach 1)
	Ray-Triangle intersection (Approach 1)
	Ray-Triangle Intersection (Approach 2)
	Barycentric coordinates
	Interpretations of barycentric coords
	Ray-Triangle Intersection (Approach 3)
	Ray-Surface Intersections
	Intersecting transformed primitive?
	Intersection and coordinate systems
	Intersection and coordinate systems
	Intersection and coordinate systems
	Transformations in homogeneous coords
	Transformations
	Intersection and coordinate systems
	Ray-Surface Intersections
	Image so far
	Intersecting many shapes
	Intersection against many shapes
	Image so far
	Ray-Surface Intersections
	How should we represent complex geometry?
	Surface representation zoo!
	Polygonal Meshes
	A small triangle mesh
	A large mesh
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Meshes as Approx. of Smooth Surfaces
	Meshes as Approx. of Smooth Surfaces
	Polygonal Meshes
	Data Structures: What should be stored?
	Separate Triangle List or Face Set (STL)
	Indexed Face Set (OBJ, OFF, WRL)
	Data on meshes
	Key types of vertex data
	Defining normals
	Problems with face normals
	Problems with face normals—2D example
	Problems with face normals—solution
	Defining normals
	Barycentric coordinates
	Barycentric coordinates
	Barycentric coordinates
	Realism through geometric complexity
	Ray Tracing Acceleration
	Ray Tracing Cost
	O(no) Ray Tracing (The Problem)
	Sub-linear Ray Tracing
	The solution
	Bounding Volumes	
	Bounding Volumes	
	Bounding Volumes Hierarchies
	BVH Traversal
	Constructing BVHs
	Divisive (top-down) BBH construction
	Choosing axis based on centroid extents
	Object-median splitting

