Rendering for scientific imaging applications

15-468, 15-668, 15-868
Physics-based Rendering
http://graphics.cs.cmu.edu/courses/15-468 Spring 2023, Lecture 17




Course announcements

We're all done with homework!

Please vote for the topic of tomorrow’s reading group.



Overview of today’s lecture

Rendering continuous refraction.

GRIN optics.

Rendering the refractive radiative transfer equation.
Acousto-optics.

Rendering speckle.

Fluorescence microscopy.



Slide credits

Many of these slides were directly adapted from:

e Adithya Pediredla (CMU).
e Arjun Teh (CMU).
e Chen Bar (Technion).
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Nonlinear Ray Tracing

U(X) : refractive index of the volume at location, X



Nonlinear Ray Tracing
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Nonlinear Ray Tracing
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Nonlinear Ray Tracing

min ||%x — x¢[|?



Nonlinear Ray Tracing




Nonlinear Rayv Tracing in reverse
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Optimizing Gradient-Index (GRIN) Optics

A

Luneburg Lens GRIN Fiber




Luneburg Lens

n(z) = v2 - [z

[Luneburg, R. K. 1944]



Luneburg Lens




Luneburg Lens







Luneburg Lens
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Optimizing Gradient-Index (GRIN) Optics



GRIN Fiber

https://en.wikipedia.org/wiki/Optical_fiber



GRIN Fiber

Modal dispersion
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Multiview Display
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unbiased techniques for scientific imaging

experimental experimental
hardware capture photon mapping  unbiased (ours)
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mr(solution 2)
1. background on refractive radiative transfer equation 2. direct connections: our solution to unbiased rendering

measurements BDPT (ours)

ed
e
function

3. acceleration techniques 4. experiments



1. background on refractive radiative transfer equation



continuous refraction and no scattering

Hamilton’s equations for refractive ray tracing

dv
E — Vxn(x)
dx v

ds — n(x)




continuous refraction and no scattering

solved using symplectic integration




scattering and no continuous refraction

radiative transfer equation (RTE)

dL
ds
| Usf (w', w)Ldw'
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scattering and no continuous refraction

solved using Monte Carlo integration




scattering and no continuous refraction

bidirectional path tracing (BDPT):
1.trace a random sensor subpath
2.trace a random emitter subpath

3.join vertices with a straight line




continuous refraction and scattering

bidirectional path tracing (BDPT):

1.trace a random sensor subpath
use refractive ray tracing

2.trace a random emitter subpath
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mr(solution 2)
2. direct connections: our solution to unbiased rendering



direct connections

we have to solve this:

dv
E N vxn(x);

boundary conditions: x;, X¢

ax 1%

ds n(x)

boundary value problem (BVP)

we know how to solve this:
dv — V.n(x) dx v
ds XM qs T n(x)

boundary conditions: x;, v;

initial value problem (IVP),
a.k.a. refractive ray tracing



direct connections

error(xf, Xi, Ul') = ml_in”xf — IVP('XU (2% T)Hz

we have to solve this:
dv_v (%) dx_ v
ds _ *"YY 4 T o

boundary conditions: x;, X¢

boundary value problem (BVP)

we know how to solve this:

C.v_v (%) dx_ v
ds XM ds n(x)

boundary conditions: x;, v;

initial value problem (IVP),
a.k.a. refractive ray tracing



direct connections

we have to solve this:

rriljiin error(xf, Xi, vi)

boundary conditions: x;, X¢

boundary value problem (BVP)

we know how to solve this:

C.v_v (%) dx_ v
ds XM ds n(x)

boundary conditions: x;, v;

2 C
error(xf, xl-,vi) = mln”xf — IVP(Xi,Ui; T)H initial value prOblem (lVP);
t a.k.a. refractive ray tracing




direct connections

we have to solve this:

rr}]iin error(xf, Xi, vi)

boundary conditions: x;, X¢

boundary value problem (BVP)
differentiable

dv
E — Vxn(x);
differentiable boundary conditions: x;, v;

initial value problem (IVP),
a.k.a. refractive ray tracing




direct connections




multiple direct connections

total throughput = z throughput(solution)
all solutions
approach 1:
exhaustively enumerate all solutions

.
Q 2

mr(solution 2)




multiple direct connections

total throughput = z throughput(solution)

all solutions

impractical

approach 2:
unbiased single-sample Monte Carlo

X
d 1. randomly sample initial direction
2. solve BVP

m(solution 2) 3. form estimate

throughput(solution)

total th hput =
otal throughpu probability(solution)

set of initial directions that converge to the solution

Zeltner et al. “Specular manifold sampling for rendering high-frequency caustics and glints”, TOG 2020



3. acceleration techniques




acceleration: sphere tracing

standard ray tracing

ray-mesh .
intersection test "

"’
‘0
‘0
O/f R

refractive ray tracing

switch to
standard tests

does not introduce bias



measurements

BDPT (ours)

photon

4. experiments




continuously refractive media and scattering

=EINEE set up light propagation



Luneburg lenses

n(x)

https://en.wikipedia.org/wiki/Luneburg_lens



equal to
standard >
lens

rendering
time: 10 mins




comparison with photon mapping

BDPT (ours) photon mapping photon mapping
(default parameters) (optimized parameters)

BDPT is 5x faster than photon mapping rendering time: 10 min




transient rendering (videos)

constant refractive index continuous refractive index










transient rendering

constant refractive index continuous refractive index

Time:1.54 ns Time:1.54 ns

.®




transient rendering

constant refractive index continuous refractive index

Time:2.50 ns Time:2.50 ns




virtual ultrasonic waveguides




virtual ultrasonic waveguides

virtual GRIN
waveguide

__, ultrasonic
array

Chamanzar et al. “Ultrasonic sculpting of virtual optical waveguides in tissue”. Nature communications, 2019
Scopelliti et al. “Ultrasonically sculpted virtual relay lens for in situ microimaging”. Light: Science and Applications, 2019
Karimi et al. “In situ 3D reconfigurable ultrasonically sculpted optical beam paths”. Optics express, 2019
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Karimi et al. “In situ 3D reconfigurable ultrasonically sculpted optical beam paths”. Optics express, 2019



Rendering acousto-optics

setup for ultrasonic
lensing in scattering

real capture our algorithm previous algorithm

[Pediredla et al. Transactions on Graphics 2020]



Ultrasonic light guiding inside tissue

q’; /\_“ !

High-dimensional, highly-non-linear
design problem:

* ultrasound frequency

e ultrasound voltage

* shape of waveguides

* placement of transducers

* sensorsize

 and more...

Guiding performance strongly affected
by different parameter values

camera

ultrasonic

1 "‘- ik |

Painstaking experiments:
* several hours of work to test
one set of parameter values




Optimizing ultrasonic GRIN waveguides

* Hundreds of thousands of virtual experiments.

50 %
Each dot on these

graphs would have
been a real
experiment taking a
PhD student a full
day’s work

waveguide length

ultrasound frequency

light throughput improvement

0 %

ultrasound voltage ultrasound voltage

[Pediredla et al., submitted to Nature Communications 2021]



Improved light guiding in human bladder

simulations
50 '
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Improved light guiding performance by

e 200% compared to unoptimized waveguides
* 50% compared to external optics

Simulation predictions verified experimentally

[Pediredla et al., submitted to Nature Communications 2021]



Speckle and memory effect

speckle: noise-
like pattern

what real laser
images look like

what standard
rendered images
look like

projected
speckle image

laser beam

7
*

scattering
volume




Applications and Related Work
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SimUIating SpECkles In graphics we describe

materials by statistical

inefficient
, bulk parameters, as
’\-> Specify exact (sub-wavelength) ﬁ? the density of scatterers
position of scatterers

A
solve wave
equations ke
D
SCaf‘t?éed ilumination
N anARa Iy . >
IEWE B cns N
Coherent L
Lases ' ;‘
Slow . ¢ Ny
Wave equation solvers ’(_\Ca\ n\ fo dia For simplicity: Flatland
. . . Scattering medium is 2D
 Differential equation F P"ac \\y \h\ﬂ me Sensor isgm

* Integral equation (e.g.,, O Speckle pattern is 1D
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Monte Carlo (MC) Simulation of Speckles

5. nput 9 507 S Standard intensity MC

Monte Carlo Modeling of Light
Transport in Multi-layered Tissues,
Wang & Jacques, 1992
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Wave Solution v.s. Monte Carlo

scatterers ‘ 2]

scatterers :
Intensity = Egcatterers ”u
Scattered Light

N
7 Ne ne, Peckies

o R Memor,, Effect

Intensity

veiws
A
4 p. p. 2\
Scattered
Intensity: |w)? + + ooco +
t ¢ t
N . 4
Sample ’ . ©c . o .-
scatterers | .

MC requires the scatterers density — no need for exact positions
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Speckle Statistics

Speckles Sufficig,

nt s tt’Slcs
MM\/W\AN N (Mean, Covariance)

]Rn
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% [ 1 2
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= Intensity Mean = Esrarrere sttt c J Incoherent —
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ss-lllumination . . -
: : _ ight,,scatterers ight,,scatterers
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2" Moment - Covariance

scatterers Covariance scatterers _ . scatterers *]

= Escatterers [uviewi Uview;

4 I 4

R
| W || iy,
by,

M \t/ N

Sample R ‘ o . o o .
scatterers . K .
. 73




Cross —illumination statistics

scatterers Scatterers Scatterers

» sample sample

Memory Effect:
tilting illumination results in highly correlated shifted speckles

Next: Cross lllumination Covariance
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Cross —illumination statistics

scatterers

light,,scatterers light,,scatterers™
eW; view;

— Covariance, = E  tterers [u
al shift =

ift

Speckles are Gaussijgn-
Mean + Covariance
are Sufficient Statistics

e
N\ _ 8 g |
M, :@'M
ik \/\f\/\&/\ e e @
R + Lo g, s lel %o o
=P ) T T P,
b~ o

L ] [ ] l °
SEE ’ . . oo .
scatterers . .
.. ' 75




Monte Carlo Rendering 101

Image = | f(path)

paths ZThroughput that acts on
each path, depends on
the scattering material

volumetric density
(extinction coefficient) | g

scattealer ibedo | a

O 1O

phase function |Pg

view 76



Covariance Rendering

ight, Covariance = fU(PathO - u*(path,)

path,,path, .
| u=ul e’ phase
light,

Need to consider products of pairs of paths

Each path contributes a complex number U

phase « Length ( path )

path. :
Iight11 > view, A phase « Length ( path, ) - Length ( path, )
path, :

VIEW;, view, light, > view, N



light,

path, :
light, = view,

view,

Covariance Rendering

view,

Image = f f(path)

paths

path, = path,
2

Same complex contribution
u(path,) = u(path,)

1
A phase = 0 Real

o r

path, :U(path) - u*(path) = f (path)
light, = view,
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Covariance rendering

Covariance = fu(path1) - u*(path,)

path,,path, .
u=ul e’ phase

O

u(path,) - u*(path,)
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Covariance rendering

“ghtzl Covariance

= f u(path,) - u*(path,)

path,,path,
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Covariance rendering

“ghtzl Covariance

= f u(path,) - u*(path,)

path,,path,
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Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,
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Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,
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Covariance rendering

”ght‘ Covariance = fu(patm)-u*(pathz)

path,,path,
Im
4
O
© @
Integral
O
O
O
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Covariance rendering

”ght‘ Covariance = fu(patm)-u*(pathz)

path,,path,
Im
A
© © Real
o O— Re
O
O
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Covariance rendering

“ghtzl Covariance

= f u(path,) - u*(path,)

path,,path,
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Covariance rendering

“ghtzl Covariance

= f u(path,) - u*(path,)

path,,path,
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Covariance rendering

“ghtzl Covariance

= f u(path,) - u*(path,)

path,,path,
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Covariance rendering

“ghtzl Covariance

= f u(path,) - u*(path,)

path,,path,

Integral

Re
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Validation: Wave Equation Covariances v.s. MC

; llghtl = (° llght1 = (° hghtl = (° ClaSSIcal ME
2 light, = 0° light, = 4° light, = 20° holds fo,
r e/ative/y
_ S
g Setup mall angles
Computation 9
takes days ¢
(C
=
\
O
view change in
. .
Several O
. (]
minutes I
— | new types
explored

correlations
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Phase Function 0.
RUESAEET SR WY R T Classical ME
: e . 'f-,‘l' -

'. L '; k*' N .\.l '.- rt'\: - L ..f‘..
e A e AN DNERRS holasfor
L ZAPSE 3) .@_;. AY el .% - relatively small
VD LIS AR N R A angles
ANLS | AT ST DS - 1 K Exact ME extent
—_ {8 w2y 0 G R S ae .
:f-':% '.-_."f _‘3‘_‘@ i .?ﬁfﬁﬁi@ﬁj is different for
S0 A ARSI oA L TP ol different

materials.
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Analytical solution
based on diffusion
approximation
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Summary

Efficient MC Rendering

Problem: Path-integral formulation
Coherent Scattering for speckle covariance ol TN
. . ¥ ' .‘
. l&f‘.. L) \.. .
o - . .
Speckle & % 3 - 17, Covariance = | u(path,) - u*(path V2. el *
In;::;:e e;.'.- \":.\- _:t‘_" j (p 1) (p 2) \\ ngy AN
AN pathpath; Speckle urate '\
At Covariance m@ ~e

= =

Coherent
Laser Scattering

Beam Volume

Memory Effect Evaluation

1
08¢

06

04r

Potentially improve

imaging applications that 002 003 004 005
8 _ncC cg

rely on speckle statistics
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Speckle-based fluorescence microscopy

autocorrelation B
fluorescent and phase
particles retrieval >
scattering microscope captured scattering-
sample objective image \ free image

Performance strongly depends on:
speckle statistics

* image priors

* tissue parameters

[Pls: Gkioulekas, Levin]



Better algorithms for fluorescence microscopy

groundtruth input image prior algorithm our algorithm
- I) . 1 r
¢
-".‘
L 4
{ ¢ \
L m -
- “) ) ". é& ‘ -
e
o :

[Alterman et al. Transactions on Graphics 2021]




Acquisition of scattering materials

Use differentiable speckle rendering to recover material parameters from speckle images

acquisition camera

material samples
* records speckle
correlations

motorized sample mount

8 degrees of freedom

rotating illuminator

high-power coherent

monochromatic laser
two laser beams

at 4° separation

Optical fiber = = = .
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