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Inverse and differentiable rendering

15-468, 15-668, 15-868
Physics-based Rendering
Spring 2023, Lecture 16http://graphics.cs.cmu.edu/courses/15-468
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Course announcements

• Take-home quiz 10 posted, due 4/19, worth 150 points.

• Will try to have feedback for all proposals by Friday.
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Two graphics/rendering talks this week
Speaker: Angjoo Kanazawa

Title: From Videos to 4D Worlds and Beyond

Time and location: April 11 (today), 3:30-4:30 pm, NSH 3305.

Abstract: The world underlying images and videos is 3-dimensional and dynamic, i.e. 4D, with people interacting with each other, objects, and the underlying scene. Even in videos of a static scene, there is always 
the camera moving about in the 4D world. Accurately recovering this information is essential for building systems that can reason about and interact with the underlying scene, and has immediate applications in 
visual effects and creation of immersive digital worlds. However, disentangling this 4D world from a video is a particularly ill-posed inverse problem rife with fundamental ambiguities.
In this talk, I will discuss recent updates in 4D human perception, which includes disentangling the camera and the human motion from challenging in-the-wild videos with multiple people. Our approach takes 
advantage of background pixels as cues for camera motion, which when combined with motion priors and inferred ground planes can resolve scene scale and depth ambiguities up to an "anthropometric" scale. I 
will also talk about nerf.studio, a modular open-source framework for easily creating photorealistic 3D scenes and accelerating NeRF development. I will discuss our recent works, which highlight how language 
can be incorporated for editing and interacting with the recovered 3D scenes.

Bio: Angjoo Kanazawa is an Assistant Professor in the Department of Electrical Engineering and Computer Science at the University of California at Berkeley. Her research is at the intersection of Computer Vision, 
Computer Graphics, and Machine Learning, focusing on the visual perception of the dynamic 3D world behind everyday photographs and video. Previously, she was a research scientist at Google NYC, and prior to 
that she was a BAIR postdoc at UC Berkeley. She completed her PhD in Computer Science at the University of Maryland, College Park, where she also spent time at the Max Planck Institute for Intelligent Systems. 
She has been named a Rising Star in EECS and has been honored with the Google Research Scholar Award and most recently the Sloan Fellowship 2023.

Webpage: https://people.eecs.berkeley.edu/~kanazawa/

Speaker: Ethan Tseng

Title: Neural Cameras and Displays: Building Machine Learning Frameworks for Optical System Design.

Time and location: April 13, 5:00-6:00 PM, graphics lounge

Abstract: Although optical design is a mature field, the introduction of novel optical devices such as metasurfaces will require a concurrent introduction of new design methods. Coincident with the invention of 
these new light-shaping tools is the rise of artificial intelligence, specifically deep learning with neural networks. In this talk, I will present my research on differentiable wave propagation and its application to 
cameras and displays. Specifically, the optical components are treated as differentiable layers, akin to neural network layers, that can be trained jointly with the computational blocks of the imaging/display 
system. I will show how this framework can be used to design salt-sized metasurface optics, commercial camera optics, and étendue expanding optics for holographic displays.

Bio: Ethan Tseng is a Ph.D. candidate advised by Prof. Felix Heide at Princeton University and he received his B.S. in Electrical and Computer Engineering from Carnegie Mellon University. Ethan’s research involves 
light, optics, image signal processors, machine learning, and optimization. He explores next generation camera and display systems for smartphones, medical practice, autonomous vehicles, and 
virtual/augmented reality. He has interned with Marc Levoy’s team at Adobe Research and in Prof. Aswin Sankaranarayanan’s Image Science Lab. Ethan’s work on nano-optics has been highlighted by Optics & 
Photonics News and has been featured in international media such as Vice News, BBC, NSF Discovery Files, and Jimmy Fallon’s Tonight Show. 

Webpage: https://ethan-tseng.github.io
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Overview of today’s lecture

• Inverse rendering.

• Differentiable rendering.

• Differentiating local parameters.

• Differentiating global parameters.

• Path-space differentiable rendering.

• Reparameterizations.
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Slide credits

Many of these slides were directly adapted from:

• Shuang Zhao (UC Irvine).
• Tzu-Mao Li (UCSD).
• Sai Praveen Bangaru (MIT).
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physically-accurate 
rendering

photorealistic 
simulated image

digital scene specification 
(geometry, materials, 
optics, light sources)

Forward rendering
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physically-accurate 
inverse rendering

photorealistic 
synthetic image

digital scene specification 
(geometry, materials, 
camera, light sources)

image 
measurements

Inverse rendering



What I was doing in 2013

mustard

whole milk

shampoo

hand cream

coffee

wine

robitussin

olive oil curacao

mixed soap

milk soap

liquid clay

reduced milk



I wanted to make images such as this one
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mixed soap

glycerine soap olive oil curacao whole milk



scattering albedo

Scattering: extremely multi-path transport

random walks 
inside volume

θ

material π =
σt

a
frphase function

volumetric density



Acquisition setup



min ǁ              - render  ǁ2

m
min ǁ              - render(m) ǁ2

m

Analysis by synthesis (a.k.a. inverse rendering)

Monte Carlo 
rendering

material m
image 
data

optimization problem
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several 
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exhaustive search?
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not scalable




min ǁ              - render(m) ǁ2

m

material m

optimization problem

material m material m+∂m

image(m)
∂image(m)
∂m

Analysis by synthesis (a.k.a. inverse rendering)

Monte Carlo 
rendering



Other scattering materials

everyday materials
[Gkioulekas et al. 2013]

woven fabrics
[Khungurn et al. 2015, 

Zhao et al. 2016]

clouds
[Levis et al. 2015, 2017]

industrial dispersions
[Gkioulekas et al. 2013]

computed tomography
[Geva et al. 2018]

3D printing
[Elek et al. 2017, 2019]

optical 
tomography

[Gkioulekas et al. 
2016]



Making sense of global illumination

reflectance

scattering

analysis by synthesis

X
min ǁ              - render(X) ǁ2

X: 3D shape
X: surface reflectance
X: occluded imaging
X: illumination

differentiable rendering: image 
gradients with respect to arbitrary X

Monte-Carlo 
rendering∂loss(X)

∂X
~

while (not converged)

update X with

stochastic gradient descent



Differentiable rendering and deep learning

𝜎𝜎𝑡𝑡
𝜎𝜎𝑠𝑠
𝑔𝑔

encoder parameters πimage physics-based 
renderer

image

force input and output images to be the same

Img = Rphysics(π)π = (Rphysics) -1 (Img) needs to be 
differentiable for 

training with 
backpropagation



Differentiable rendering

Not related to:

“Gradient” in their case refers to image edges.
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REMINDER (?) FROM CALCULUS
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Account for discontinuities of 
integrand that depend on 𝜋𝜋

Account for changes in 
integration limits

Reminder from calculus

?d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

+

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥

𝑓𝑓 𝑏𝑏 𝜋𝜋 ,𝜋𝜋
d𝑏𝑏(𝜋𝜋)

d𝜋𝜋
− 𝑓𝑓 𝛼𝛼 𝜋𝜋 ;𝜋𝜋

d𝑎𝑎(𝜋𝜋)
d𝜋𝜋

+ �
𝑖𝑖

𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 −,𝜋𝜋 − 𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 +,𝜋𝜋
d𝑐𝑐𝑖𝑖(𝜋𝜋)

d𝜋𝜋

Move derivative 
inside integral
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A simple example

𝑓𝑓 𝑥𝑥,𝜋𝜋 = �0 if 𝑥𝑥 < 2𝜋𝜋
1 if 𝑥𝑥 ≥ 2𝜋𝜋

+ 0 − 1
d(2𝜋𝜋)

d𝜋𝜋
Account for discontinuities of 
integrand that depend on 𝜋𝜋

+ 1
d(4𝜋𝜋)

d𝜋𝜋
− 0

d0
d𝜋𝜋

Account for changes in 
integration limits

d
d𝜋𝜋

�
0

4𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 = �

0

2𝜋𝜋 d
d𝜋𝜋

0d𝑥𝑥 + �
2𝜋𝜋

4𝜋𝜋 d
d𝜋𝜋

1d𝑥𝑥 Move 
derivative 

inside integral
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Account for discontinuities of 
integrand that depend on 𝜋𝜋

Account for changes in 
integration limits

Interior integral

Boundary terms

Leibniz integral rule

d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

+

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥

𝑓𝑓 𝑏𝑏 𝜋𝜋 ,𝜋𝜋
d𝑏𝑏(𝜋𝜋)

d𝜋𝜋
− 𝑓𝑓 𝛼𝛼 𝜋𝜋 ;𝜋𝜋

d𝑎𝑎(𝜋𝜋)
d𝜋𝜋

+ �
𝑖𝑖

𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 −,𝜋𝜋 − 𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 +,𝜋𝜋
d𝑐𝑐𝑖𝑖(𝜋𝜋)

d𝜋𝜋

Move derivative 
inside integral
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Interior integral

Boundary terms

Simplified Leibniz integral rule

d
d𝜋𝜋

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋
𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥 =

+

Differentiation under the integral sign
Also known as the Leibniz integral rule

�
𝑎𝑎 𝜋𝜋

𝑏𝑏 𝜋𝜋 d
d𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝑥𝑥

𝑓𝑓 𝑏𝑏 𝜋𝜋 ,𝜋𝜋
d𝑏𝑏(𝜋𝜋)

d𝜋𝜋
− 𝑓𝑓 𝛼𝛼 𝜋𝜋 ;𝜋𝜋

d𝑎𝑎(𝜋𝜋)
d𝜋𝜋

�
𝑖𝑖

𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 −,𝜋𝜋 − 𝑓𝑓 𝑐𝑐𝑖𝑖 𝜋𝜋 +,𝜋𝜋
d𝑐𝑐𝑖𝑖(𝜋𝜋)

d𝜋𝜋

Move derivative 
inside integral

+Account for discontinuities of 
integrand that depend on 𝜋𝜋

Account for changes in 
integration limitsDifferentiation wrt 𝝅𝝅 simplifies to just moving derivative inside integral 
when:
• Integration limits are independent of 𝝅𝝅.
• Integrand discontinuities are independent of 𝝅𝝅.
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Reynolds transport theorem
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Boundary integral

𝑓𝑓 = 0 𝑓𝑓 = 1

?d
d𝜋𝜋

�
Ω 𝜋𝜋

𝑓𝑓 𝑥𝑥,𝜋𝜋 d𝐴𝐴 𝑥𝑥 = + �
𝜕𝜕Ω(𝜋𝜋)

𝑔𝑔 𝑥𝑥,𝜋𝜋 d𝑙𝑙 𝑥𝑥

𝜋𝜋
discontinuity points

discontinuity points ∪ boundary of domain Ω
(if they depend on 𝜋𝜋)

=Boundary domain
Reynolds transport theorem [1903]

Generalization of the Leibniz rule
Interior integral

�
Ω(𝜋𝜋)

d𝑓𝑓(𝑥𝑥,𝜋𝜋)
d𝜋𝜋

d𝐴𝐴 𝑥𝑥



DIFFERENTIATING DIRECT 
ILLUMINATION
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Unit hemisphere

Reflectance 
(BRDF)

Incident 
radiance

Shading wrt
normal 𝒏𝒏

Direct illumination integral
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Radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓
Monte Carlo rendering:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖

• Form estimator

𝐼𝐼 ≈�
𝑠𝑠

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖

𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠

𝐼𝐼 = �
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)



Differential direct illumination
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Differential radiance from 𝑥𝑥:

d𝐼𝐼
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓



d𝐼𝐼
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)
d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Differential direct illumination: local parameters
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Differential radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: local parameters
• BRDF parameters
• shading normal
• illumination brightness

Monte Carlo differentiable rendering:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖

• Form estimator

d𝐼𝐼
d𝜋𝜋

≈�
𝑠𝑠

d
d𝜋𝜋 𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖

𝑠𝑠,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖
𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖

𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠

Just move derivative inside integral

Just differentiate numerator
[Khungurn et al. 2015, Gkioulekas et al. 2015]



Differentiate entire contribution
[Zeltner et al. 2021]

d𝐼𝐼
d𝜋𝜋

≈�
𝑠𝑠

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜔𝜔𝑜𝑜,𝜋𝜋 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖

𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖
𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜋𝜋

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜,𝜋𝜋 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Alternative estimator
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Differential radiance from 𝑥𝑥:

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: local parameters
• BRDF parameters

Monte Carlo estimation:
• Sample random directions 𝜔𝜔𝑖𝑖

𝑠𝑠 from PDF 𝑝𝑝 𝜔𝜔𝑖𝑖 ,𝜋𝜋
• Form estimator

d𝐼𝐼
d𝜋𝜋

≈�
𝑠𝑠

d
d𝜋𝜋 𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖

𝑠𝑠,𝜔𝜔𝑜𝑜,𝜋𝜋 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖
𝑠𝑠 𝑛𝑛 � 𝜔𝜔𝑖𝑖

𝑠𝑠

𝑝𝑝 𝜔𝜔𝑖𝑖
𝑠𝑠,𝜋𝜋

Just move derivative inside integral



Differential direct illumination: global parameters

29

Differential radiance from 𝑥𝑥:

d𝐼𝐼
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

𝒙𝒙

𝝎𝝎𝒊𝒊

𝒏𝒏

𝒇𝒇𝒓𝒓

𝝅𝝅: global parameters
• shape and pose of 

different scene elements 
(camera, sources, objects)

= �
ℍ2

d
d𝜋𝜋

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Need to use full Reynolds transport theorem



𝐼𝐼 = �
ℍ2

𝑓𝑓𝑟𝑟 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 𝐿𝐿𝑖𝑖 𝜔𝜔𝑖𝑖 𝑛𝑛 � 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖)

Discontinuities in the integrand

30

Integrand
𝑓𝑓 𝜔𝜔𝑖𝑖

Discontinuous points 
(𝜋𝜋-dependent)

Low High

𝝅𝝅: size of the emitter

𝑓𝑓 𝜔𝜔𝑖𝑖



Applying the Reynolds transport theorem

31

Low High

𝐼𝐼 = �
ℍ2

𝑓𝑓 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 d𝜎𝜎(𝜔𝜔𝑖𝑖)

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d𝑓𝑓
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙

Interior integral
(same as for local 

parameters)

Boundary
integral Integrand

𝑓𝑓 𝜔𝜔𝑖𝑖

Discontinuous points 
(𝜋𝜋-dependent)

[Ramamoorthi et al. 2007, Li et al. 2019]



Includes visibility, fall-off, 
and foreshortening terms

Reparameterizing the direct illumination integral

32

Hemispherical integral

Change of 
variables

Surface integral

𝒚𝒚𝓛𝓛(𝜋𝜋)

𝐼𝐼 = �
𝓛𝓛(𝜋𝜋)

𝑓𝑓 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝒙𝒙𝒙𝒙

𝝎𝝎𝒊𝒊

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝝎𝝎𝒊𝒊 d𝜎𝜎(𝝎𝝎𝒊𝒊)



constant domain evolving domain

continuousdiscontinuous

Reparameterizing the direct illumination integral
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Hemispherical integral

Change of 
variables

Surface integral

Low High

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝑖𝑖) 𝐼𝐼 = �

ℒ(𝜋𝜋)
𝑓𝑓 𝑦𝑦 → 𝑥𝑥 𝐺𝐺 𝑥𝑥,𝑦𝑦 d𝐴𝐴(𝑦𝑦)



Differentiating the hemispherical integral

34

Low High Discontinuities of 𝑓𝑓𝜋𝜋: size of the emitter

𝒙𝒙

𝝎𝝎

Differentiation

Reynolds transport 
theorem 

𝐼𝐼 = �
ℍ2
𝑓𝑓 𝜔𝜔𝑖𝑖 d𝜎𝜎(𝜔𝜔𝜄𝜄)

d𝐼𝐼
d𝜋𝜋

= �
ℍ2

d(𝑓𝑓)
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙

Interior Boundary



𝒙𝒙

Differentiating the area integral

35

Low High Boundary of 𝓛𝓛(𝜋𝜋)𝜋𝜋: size of the emitter

Differentiation

Reynolds transport 
theorem 

d𝐼𝐼
d𝜋𝜋

= �
𝓛𝓛(𝜋𝜋)

d(𝑓𝑓𝐺𝐺)
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛(𝜋𝜋)

𝑔𝑔 d𝑙𝑙

Interior Boundary

𝐼𝐼 = �
ℒ(𝜋𝜋)

𝑓𝑓 𝑦𝑦 → 𝑥𝑥 𝐺𝐺 𝑥𝑥,𝑦𝑦 d𝐴𝐴(𝑦𝑦)



Sources of discontinuities

36

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection



Significance of the boundary integral

37

Original image Derivative image
w.r.t. vertical offset of

the area light and the cube

Derivative image
w/o boundary integral



Gradient Accuracy Matters

38

Inverse-rendering results with identical optimization settings

Luan et al. 2021



Sources of discontinuities

39

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection

• We still need to account for discontinuities when using smooth closed 
surfaces (e.g., neural SDFs)

[Gargallo et al., ICCV 2007] 



DIFFERENTIATING GLOBAL 
ILLUMINATION

40



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emmision)

𝐼𝐼(𝜋𝜋) = �
ℙ
𝑓𝑓 �𝐱𝐱;𝜋𝜋 d�𝐱𝐱

Images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths



Monte Carlo rendering: approximating path integrals

light

camera

𝐼𝐼(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁
𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋
𝑝𝑝(�𝐱𝐱𝑖𝑖;𝜋𝜋)

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths

Algorithms such as path 
tracing, bidirectional path 
tracing, etc. sample paths.

𝑀𝑀𝑀𝑀(𝜋𝜋)



How can we approximate the derivative of the image?

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 ≈?



Easy approach 1: finite differences

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 ≈
𝑀𝑀𝑀𝑀 𝜋𝜋 + 𝜀𝜀 − 𝑀𝑀𝑀𝑀(𝜋𝜋 − 𝜀𝜀)

2𝜀𝜀

Any issues with this?

• Incredibly noisy for small ε
• Very inaccurate for large ε
• Techniques for noise 

reduction exist, but generally 
impractical approach



Easy approach 2: automatic differentiation

light

camera

𝜕𝜕𝜕𝜕
𝜕𝜕𝜋𝜋

𝜋𝜋 ≈ autodiff(𝑀𝑀𝑀𝑀(𝜋𝜋))

Any issues with this?

• Many path sampling techniques 
are not differentiable

• High variance (consider f(x;π) = 
constant)

• Rendering produces enormous, 
non-local computational graphs.



DIFFERENTIATING GLOBAL ILLUMINATION 
WITH RESPECT TO LOCAL PARAMETERS
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𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

𝐼𝐼(𝜋𝜋) = �
ℙ
𝑓𝑓 �𝐱𝐱;𝜋𝜋 d�𝐱𝐱

Images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

Derivatives of images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 =?



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

Derivatives of images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 = �
ℙ

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 d�𝐱𝐱

differentiation under the integral sign



Monte Carlo differentiable rendering (for local parameters)

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁 𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋 �𝐱𝐱𝑖𝑖;𝜋𝜋
𝑝𝑝(�𝐱𝐱𝑖𝑖;𝜋𝜋)

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths

Sample paths using path 
tracing etc.

This term is generally easy to 
compute during path tracing 



Score estimator

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 = �
𝑏𝑏=1

𝐵𝐵

𝑓𝑓𝑠𝑠 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋
V 𝑥𝑥𝑏𝑏−1 ↔ 𝑥𝑥𝑏𝑏
𝑥𝑥𝑏𝑏−1 − 𝑥𝑥𝑏𝑏 2

�
𝑏𝑏=1

𝐵𝐵 𝜕𝜕𝑓𝑓𝑠𝑠
𝜕𝜕𝜋𝜋 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋
𝑓𝑓𝑠𝑠 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋

𝑓𝑓 �𝐱𝐱;𝜋𝜋 = �
𝑏𝑏=1

𝐵𝐵

𝑓𝑓𝑠𝑠 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋
V 𝑥𝑥𝑏𝑏−1 ↔ 𝑥𝑥𝑏𝑏
𝑥𝑥𝑏𝑏−1 − 𝑥𝑥𝑏𝑏 2

Foreshortening terms are 
included in the BRDF

At each path vertex:
• Update product throughput using 𝑓𝑓𝑠𝑠
• Update score sum using gradient of 𝑓𝑓𝑠𝑠
Multiply the two at end of pathScore function of 𝑓𝑓𝑠𝑠



Even simpler: use autodiff

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁
autodiff(𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋 )

𝑝𝑝(�𝐱𝐱𝑖𝑖;𝜋𝜋)

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths



Compare with…

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈ autodiff �
𝑖𝑖=1

𝑁𝑁
𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋
𝑝𝑝 �𝐱𝐱𝑖𝑖;𝜋𝜋

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths



Even simpler: use autodiff

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁
autodiff(𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋 )

𝑝𝑝(�𝐱𝐱𝑖𝑖;𝜋𝜋)

• Depending on how badly 𝑝𝑝
approximates 𝑓𝑓, can have 
much lower variance. 

• Remember: Compute an 
estimate of the derivative, not 
a derivative of the estimator.



OpenDR: An Approximate Differentiable Renderer
[Loper and Black 2015]

• Approach: autodiff of the entire renderer.
• Only direct illumination.
• Only shading parameters (normals, 

reflectance).



Compute an estimate of the derivative

derivative wrt BRDF derivative wrt normal

derivative wrt volumetric density



Comparison with finite differences

⍺σt g

⍺

Forward

σt g

rendered

finite 
differences

Note: Finite differences are great for testing the correctness of your gradient code.



Compute a derivative of the estimate

derivative wrt volumetric density

• A lot more general.
• GPU implementation.



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

Derivatives of images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 = �
ℙ

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 d�𝐱𝐱

differentiation under the integral sign



Derivatives of images as path integrals

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 = �
ℙ

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 d�𝐱𝐱

differentiation under the integral sign

What about parameters π that 
change ℙ?
• Location, pose, and shape of 

light, camera, and scene 
objects.



DIFFERENTIATING GLOBAL ILLUMINATION 
WITH RESPECT TO GLOBAL PARAMETERS
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light

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) = �
𝐺𝐺(𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 𝑉𝑉(𝑥𝑥′ ↔ 𝑥𝑥;𝜋𝜋)d𝐴𝐴(𝑥𝑥′)

We’ll work with the rendering equation for a few

camera

𝐺𝐺 All surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

V Visibility



light

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) = �
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s slightly rewrite the rendering equation

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off



light

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) =
𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s differentiate it

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

Can we just move the integral inside?



light

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) =
𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s differentiate it

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

Can we just move the integral inside?
• No. What can we do?



light

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) =
𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s differentiate it

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

What are the “boundary” and 
discontinuities of 𝑉𝑉?



Boundaries



light

Let’s differentiate it

camera
Not terribly good, as we ray trace, we need to:
• recompute silhouette at each vertex
• branch twice

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿 𝑥𝑥,ω;𝜋𝜋 =

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿d𝐴𝐴 𝑥𝑥 + �
𝜕𝜕𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐻𝐻 𝐿𝐿 d𝜎𝜎 𝑥𝑥

recursively estimate 
derivative of L at 

some visible point

recursively estimate 
radiance L at some 

boundary point



Boundary edge detection and sampling

Not terribly good, as we ray trace, we 
need to:
• recompute silhouette at each vertex
• branch twice



Global geometry differentiation



Global geometry differentiation
target init

target init

optimize 
bunny 
pose

optimize 
reflectance 
and camera 

pose









light

Let’s differentiate it

camera Not terribly good:
• As we ray trace, we need to recompute 

silhouette
• Branching of two at each recursion

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋)

= �
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐹𝐹
𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿 d𝐴𝐴 𝑥𝑥 + �
𝜕𝜕𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐻𝐻 𝐿𝐿 d𝜎𝜎 𝑥𝑥

render derivative 
of L at some 
visible point

render L at some 
boundary 

(silhouette) point



CHALLENGES

73

Complex light transport effects Complex geometry



REPARAMETERIZATION 
APPROACHES

74



THE REYNOLDS TRANSPORT THEOREM

75

Interior term

=

: Set of discontinuous points

: Set of continuous points

Edge term

+



CONVERTING EDGE-SAMPLES TO AREA-SAMPLES

76

Goal: Rewrite                                 into area integral

is estimated through edge-samples

can be estimated through area-samples



THE DIVERGENCE THEOREM [Gauss 1813]

77



QUICK RECAP

• Used Reynolds transport theorem to find the boundary integral

• Rewrote                                  to                                      using the divergence theorem.

• Have to define the vector field           over domain D

78



, the domain of integration

A 2D EXAMPLE SCENE

79

, the discontinuous set



VELOCITY : THE BOUNDARY DERIVATIVE

80

: Derivative of boundary position w.r.t θ

θ






81

WARP FIELD      : EXTENSION OF      TO ALL POINTS

: defined over 𝝏𝝏𝑫𝑫

: defined over 𝑫𝑫



VALIDITY OF 

Rule 1: Continuous

82



Rule 2: Boundary Consistent

VALIDITY OF 

83



CONSTRUCTING 

84

Attempt 1                 Find            through implicit derivative  

At all points (not just boundaries)

+ Boundary consistent
- Not continuous

(Incorrect)



CONSTRUCTING 

85

Attempt 2                  Filter Attempt 1 with a Gaussian filter

k(.,.) = Gaussian filter

+ Continuous
- Not boundary consistent

(Incorrect)



BOUNDARY-AWARE WEIGHTING

86

Ideal weighting function

Goal: Find weights                              s.t. at boundaries.=

Approach Dirac delta near boundaries 









PATH-INTEGRAL FOR 
DIFFERENTIABLE RENDERING

87



Area-product
measure

Measurement
contribution function

𝐼𝐼 = �
Ω
𝑓𝑓 �𝒙𝒙 d 𝜇𝜇(�𝒙𝒙)

FORWARD PATH INTEGRAL

88

Path space

Light path �𝒙𝒙 = (𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏



DIFFERENTIAL PATH INTEGRAL

89

A generalization of 
Reynolds theorem 

d𝐼𝐼
d𝜋𝜋

= �
Ω

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙 d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω
𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙𝐼𝐼 = �

Ω
𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)

Path Integral

？

Full derivation in the paper



Boundary integral Interior integral 

DIFFERENTIAL PATH INTEGRAL
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d𝐼𝐼
d𝜋𝜋

= �
Ω

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙 d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω
𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙𝐼𝐼 = �

Ω
𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)

Path Integral Differential Path Integral

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Original
light path

A generalization of 
Reynolds theorem 

Boundary
light path

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Types of discontinuity edge:

path space boundary path space



SOURCE OF DISCONTINUITIES
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Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection



TEXTURE PARAMETERIZATION FOR 
SIMPLIFYING THE BOUNDARY TERM
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REPARAMETERIZATION
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𝒑𝒑 X(𝒑𝒑,𝜋𝜋1)
X(𝒑𝒑,𝜋𝜋2) Parameterize 𝓛𝓛 𝜋𝜋 using some fixed 𝓛𝓛0:

𝒚𝒚 = X 𝒑𝒑,𝜋𝜋
where X(� ,𝜋𝜋) is one-to-one and continuous

𝐸𝐸 = �
𝓛𝓛0
𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚

d𝐴𝐴(𝒚𝒚)
d𝐴𝐴(𝒑𝒑)

d𝐴𝐴(𝒑𝒑)Reparameterization 
with 𝒚𝒚 = X(𝒑𝒑,𝜋𝜋):

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝓛𝓛 𝜋𝜋0𝓛𝓛0

𝓛𝓛 𝜋𝜋2

𝓛𝓛 𝜋𝜋1

=



= 0≠ 0

= 0 ≠ 0

REPARAMETERIZATION
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d𝐸𝐸
d𝜋𝜋

= �
𝓛𝓛(𝜋𝜋)

d𝑓𝑓
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛(𝜋𝜋)

𝑔𝑔 d𝑙𝑙

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝑓𝑓

d𝐸𝐸
d𝜋𝜋

= �
𝓛𝓛0

d𝑓𝑓0
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛0

𝑔𝑔0 d𝑙𝑙

𝐸𝐸 = �
𝓛𝓛0
𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚

d𝐴𝐴(𝒚𝒚)
d𝐴𝐴(𝒑𝒑)

d𝐴𝐴(𝒑𝒑)

𝒚𝒚 = X(𝒑𝒑,𝜋𝜋) 𝑓𝑓0



REPARAMETERIZATION
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𝒚𝒚 = X(𝒑𝒑,𝜋𝜋)

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚) 𝐸𝐸 = �
𝓛𝓛0
𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚

d𝐴𝐴(𝒚𝒚)
d𝐴𝐴(𝒑𝒑)

d𝐴𝐴(𝒑𝒑)

Reparameterization for irradiance 

�
𝑖𝑖

d𝐴𝐴(𝒙𝒙𝑖𝑖)
d𝐴𝐴(𝒑𝒑𝑖𝑖)

=

Fixed surface

Reparameterization for path integral 

𝐼𝐼 = �
Ω(𝜋𝜋)

𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)
�𝒙𝒙 = X(�𝒑𝒑,𝜋𝜋)

𝐼𝐼 = �
Ω0
𝑓𝑓 �𝒙𝒙

d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑)

Fixed path space



DIFFERENTIAL PATH INTEGRAL
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𝐼𝐼 = �
Ω(𝜋𝜋)

𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)

�𝒙𝒙 = X(�𝒑𝒑,𝜋𝜋)

𝐼𝐼 = �
Ω0
𝑓𝑓 �𝒙𝒙

d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑)

d𝐼𝐼
d𝜋𝜋

= �
Ω(𝜋𝜋)

d𝑓𝑓 �𝒙𝒙
d𝜋𝜋

d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω(𝜋𝜋)

𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙

d𝐼𝐼
d𝜋𝜋

= �
Ω0

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

Pro: No global parametrization required
Con: More types of discontinuities

Con: Requires global parametrization X
Pro: Fewer types of discontinuities

Original

Reparameterized Reparameterized

Original



DIFFERENTIAL PATH INTEGRAL

97

Differential path integral 

Topology-driven

d𝐼𝐼
d𝜋𝜋

= �
Ω(𝜋𝜋)

d𝑓𝑓 �𝒙𝒙
d𝜋𝜋

d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω(𝜋𝜋)

𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙
d𝐼𝐼
d𝜋𝜋

= �
Ω0

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

sensor sensorSharp
edge

Silhouette
edge

Visibility-driven



MONTE CARLO ESTIMATORS
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Boundary integral 

ESTIMATING INTERIOR INTEGRAL

99

Interior integral 

• Can be estimated using identical path 
sampling strategies as forward rendering
– Unidirectional path tracing

– Bidirectional path tracing

– …

(Reparameterized) 
Differential path Integral 

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

= �
Ω0

𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Original
light path Different MC estimators



𝒙𝒙𝟐𝟐

Silhouette detection
[Li et al. 2018, Zhang et al. 2019]

ESTIMATING BOUNDARY INTEGRAL
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(Reparameterized) 
Differential path Integral 

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

= �
Ω0

𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

Boundary integral 

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Boundary
light path



ESTIMATING BOUNDARY INTEGRAL
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(Reparameterized) 
Differential path Integral 

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

= �
Ω0

𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

Boundary integral 

Boundary
light path

• Construct boundary segment
• Construct  source and sensor subpaths

• To improve efficiency
– Next-event estimation
– Importance sampling of boundary segments

where �𝒙𝒙 = X(�𝒑𝒑,𝜋𝜋)



OUR ESTIMATORS
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Unidirectional estimator
Interior: unidirectional path tracing
Boundary: unidirectional sampling of subpaths

Bidirectional estimator
Interior: bidirectional path tracing
Boundary: bidirectional sampling of subpaths

Bidirectional path tracingUnidirectional path tracing + NEE

Boundary
light paths

Boundary
light paths



SOME RESULTS
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HANDLING COMPLEX GEOMETRY
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Reference

hours

Equal-sample
comparison

[Zhang et al. 2019] [Loubet et al. 2019] Ours

5.7 s 0.3 s 0.5 sComplex geometry



HANDLING COMPLEX GEOMETRY

O
ur

s
[L

ou
be

t2
01

9]
[Z

ha
ng

 2
01

9]

Target image

• Optimizing rotation angle
• Equal-sample per iteration
• Identical optimization setting

– Learning rate (Adam)
– Initializations

105



HANDLING CAUSTICS
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[Zhang et al. 2019] [Loubet et al. 2019] Ours

101.3 s 153 s 19.7 s

Equal-sample
comparison

Complex light transport effects

Reference

hours



HANDLING CAUSTICS
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Reference

[Zhang et al. 2019]

101.3 s

[Loubet et al. 2019]

153 s

Ours (bidirectional)

19.7 s

Ours (unidirectional)

19.7 s

hours

Equal-sample comparison



HANDLING CAUSTICS
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O
ur

s 
(u

ni
di

r.)
O

ur
s 

(b
id

ir.
)

[Z
ha

ng
 2

01
9]

Target image

• Optimizing
– Glass IOR
– Spotlight position

• Equal-time per iteration
• Identical optimization setting



SHAPE OPTIMIZATION
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Target image

Initial

Optimizing cross-sectional shape (100 variables)



RESULTS
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Config. Optimize (initial) Optimize (final) Target

Original image Derivative image Original image Derivative image
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Inverse scattering [Gkioulekas et al. 2013]

mustard

whole milk

shampoo

hand cream

coffee

wine

robitussin

olive oil curacao

mixed soap

milk soap

liquid clay

reduced milk
112



Acquisition setup

Invert using 
differentiable 

rendering

113



Synthetic renderings

114mixed soap

glycerine soap olive oil curacao whole milk



Inverse transport networks [Che et al. 2020]
• Integrate physics-based rendering into machine learning pipeline
• Predict scattering parameters from images

115

TrainingTesting

• Utilize image loss provided by a volume path tracer to regularize training

• Use the trained encoder to perform inverse scattering during testing



Examples
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Groundtruth

Inverse transport network
parameter loss:  0.60x
appearance loss: 0.40x
novel appearance loss: 0.42x

Baseline
parameter loss:  1x
appearance loss: 1x
novel appearance loss: 1x

0 %

50 %



simulated camera 
measurements

reconstructed 
cloud volume

slice through 
the cloud

camera thick smoke cloud

Optical tomography [Gkioulekas et al. 2015]

117






Active area of research

woven fabrics
[Khungurn et al. 2015, 

Zhao et al. 2016]

cloud tomography
[Levis et al. 2015, 

2017, 2020]

industrial dispersions
[Gkioulekas et al. 2013]

computed tomography
[Geva et al. 2018]

efficient algorithms
[Nimier-David et al. 2019, 2020]

3D printing
[Elek et al. 2019, 

Nindel et al. 2021]
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Non-line-of-sight (NLOS) imaging

occluder

NLOS 
objectsource & sensor

in
te

ns
ity

time 𝜏𝜏
𝑥𝑥

𝑦𝑦

𝜏𝜏

Time-of-flight measurements

LOS 
signal

NLOS 
signal
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single-photon 
avalanche photodiode 

(SPAD)

picosecon
d laser

galvo 
mirror

SPAD-based lidar

galvo 
mirror

120



NLOS shape optimization [Tsai et al. 2019]

visible surface

source 
and 

sensor
NLOS 
scene

Simulated time-of-flight data 100,000 vertices

121



1 m x 1 m
64 x 64 scan points

1 m
wall

NLOS shape optimization [Tsai et al. 2019]

scene initial mesh 
[O’Toole et al. 2018]

optimized 
mesh

Measured time-of-flight 
data 122



Reflectometry from interreflections [Shem-Tov et al. 2020]

- Many measurements (2D scan of light & camera)
+ Intensities map directly to BRDF entries

material sample 𝑓𝑓 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝜊𝜊
𝜔𝜔𝜊𝜊

𝜔𝜔𝑖𝑖

Higher-order 
bounces

material sample

- Non-linear analysis-by-synthesis optimization
+ Fewer measurements (single image)

Direct illumination measurements Global illumination measurements

𝜔𝜔𝜊𝜊

𝜔𝜔𝑖𝑖

𝑓𝑓 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝜊𝜊

Solvable using differentiable rendering 123



Single-image dense BRDF sampling

Single-bounce 
paths

Two-bounce paths All-bounce paths
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Results on MERL dataset

Groundtruth

Optimize
d shape ~ 11.2x better parameter recovery

~ 6.3x better parameter recovery
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• Reduce number of measurements required for inverse rendering

• We should rethink “optimal” acquisition systems

• Resolve ambiguities between different types of parameters
• We should revisit theory problems on uniqueness results

Global illumination can help…

Shape from interreflections 
[Nayar et al. 1990, Marr 

Prize] 

Interreflections resolve the GBR ambiguity 
[Chandraker et al. 2005] 

< < < ?
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What differentiable rendering does 
not give us

127



Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

𝜋𝜋: BRDF
𝜋𝜋:

scattering

𝜋𝜋:
camera 

pose

𝜋𝜋:
illumination

𝜋𝜋: 3D shape and pose

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 �
dloss 𝜋𝜋

d𝜋𝜋

while (not converged)
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Why we need good initializations

• Analysis-by-synthesis objectives are highly non-convex, non-linear

• Multiple local minima

• Ambiguities exist between different parameters

• Multiple global minima
129

Ambiguities between BRDF and lighting 
[Romeiro and Zickler 2010] 

Ambiguities between shape and lighting 
[Xiong et al. 2015] 

Ambiguities between scattering 
parameters [Zhao et al. 2014] 



Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 �
dloss 𝜋𝜋

d𝜋𝜋

while (not converged)
Neural network

Learned initializations help:
• avoid local minima
• accelerate convergence
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Why we need discriminative loss functions

• Well-designed loss functions can help reduce ambiguities

• Perceptual losses can help emphasize design aspects that matter

• Differentiable rendering can be combined with any loss function that can be 
backpropagated through

131

VGG-based perceptual loss [Johnson et al. 2016] 



Inverse rendering (a.k.a. analysis by synthesis)

Analysis-by-synthesis optimization:

𝜋𝜋: BRDF
𝜋𝜋:

scattering

𝜋𝜋:
camera 

pose

𝜋𝜋:
illumination

𝜋𝜋: 3D shape and pose

min
scene

unknowns 𝜋𝜋

loss , render scene
unknowns 𝜋𝜋

Stochastic gradient descent (e.g., Adam):

Differentiable 
rendering

initialize 𝜋𝜋 ← 𝜋𝜋0

update 𝜋𝜋 ← 𝜋𝜋 + 𝜂𝜂 �
dloss 𝜋𝜋

d𝜋𝜋

while (not converged)
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• The extent to which we can improve upon an initialization strongly depends on the 
signal-to-noise ratio of our measurements

• We need reliable camera models (noise, aberrations, other non-idealities) 

High signal-to-noise ratio is critical

133

Optical gradient descent [Chen et al. 2020] 
scene initial mesh optimized mesh

simulated 
data

measured 
data

Non-line-of-sight imaging [Tsai et al. 2019] 



Stuff we are missing

We need path sampling algorithms tailored to differentiable rendering:
• Some simple versions exist for local differentiation (Gkioulekas et al. 2013, 2016).
• We need to take into account diff. geometric quantities in global case.
• We need to take into account loss function.

We need theory that can handle very low-dimensional path manifolds:
• We can’t easily incorporate specular and refractive effects into arbitrary pipelines.
• Doable in isolation (Chen and Arvo 2000, Jakob and Marschner 2013, Xin et al. 2019).
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Some more general thoughts
Initialization is super important:
• Approximate reconstruction assuming direct lighting is usually good enough.
• Coarse-to-fine schemes work well.

Parameterizations are super important:
• Loss functions very non-linear and change shape easily. 
• Working with meshes is a pain (topology is awful and not (easily?) differentiable).

You don’t always need Monte Carlo differentiable rendering:
• If you don’t have strong global illumination, just use direct lighting.
• A lot of research in computer vision on differentiable rasterizers.

135

Remember that you are doing optimization:
• Unbiased and consistent gradients are very expensive to compute.
• Biased and/or inconsistent gradients can be very cheap to compute.
• Often, biased and/or inconsistent gradients are enough for convergence.
• Stochastic gradient descent matters a lot.
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