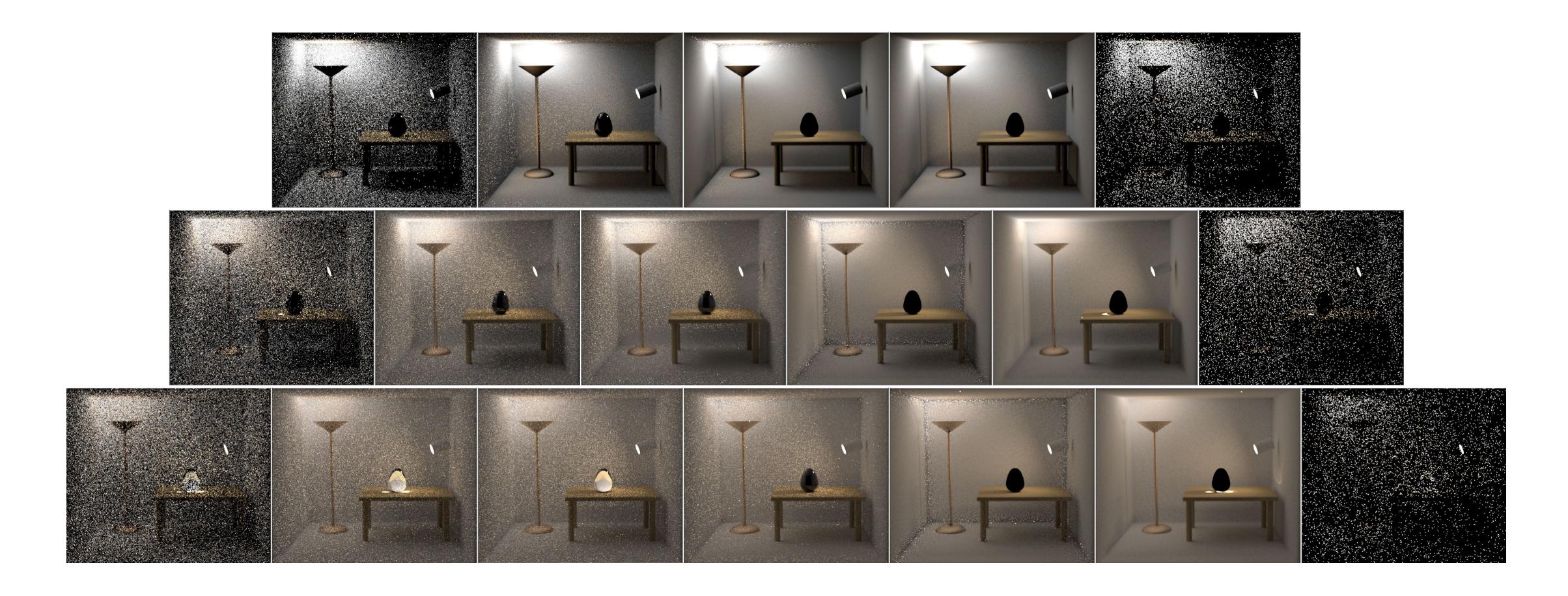
Bidirectional path tracing



15-468, 15-668, 15-868 Physics-based Rendering Spring 2023, Lecture 13

Course announcements

- Take-home quiz 8 posted, due Wednesday 3/29 at 3:00.
- Programming assignment 4 posted, due Friday 3/31 at 23:59.
 - How many of you have looked at/started/finished it?
 - Any questions?

Overview of today's lecture

- Types of light paths.
- Light tracing.
- Bidirectional path tracing.

Slide credits

Most of these slides were directly adapted from:

Wojciech Jarosz (Dartmouth).

Light Paths

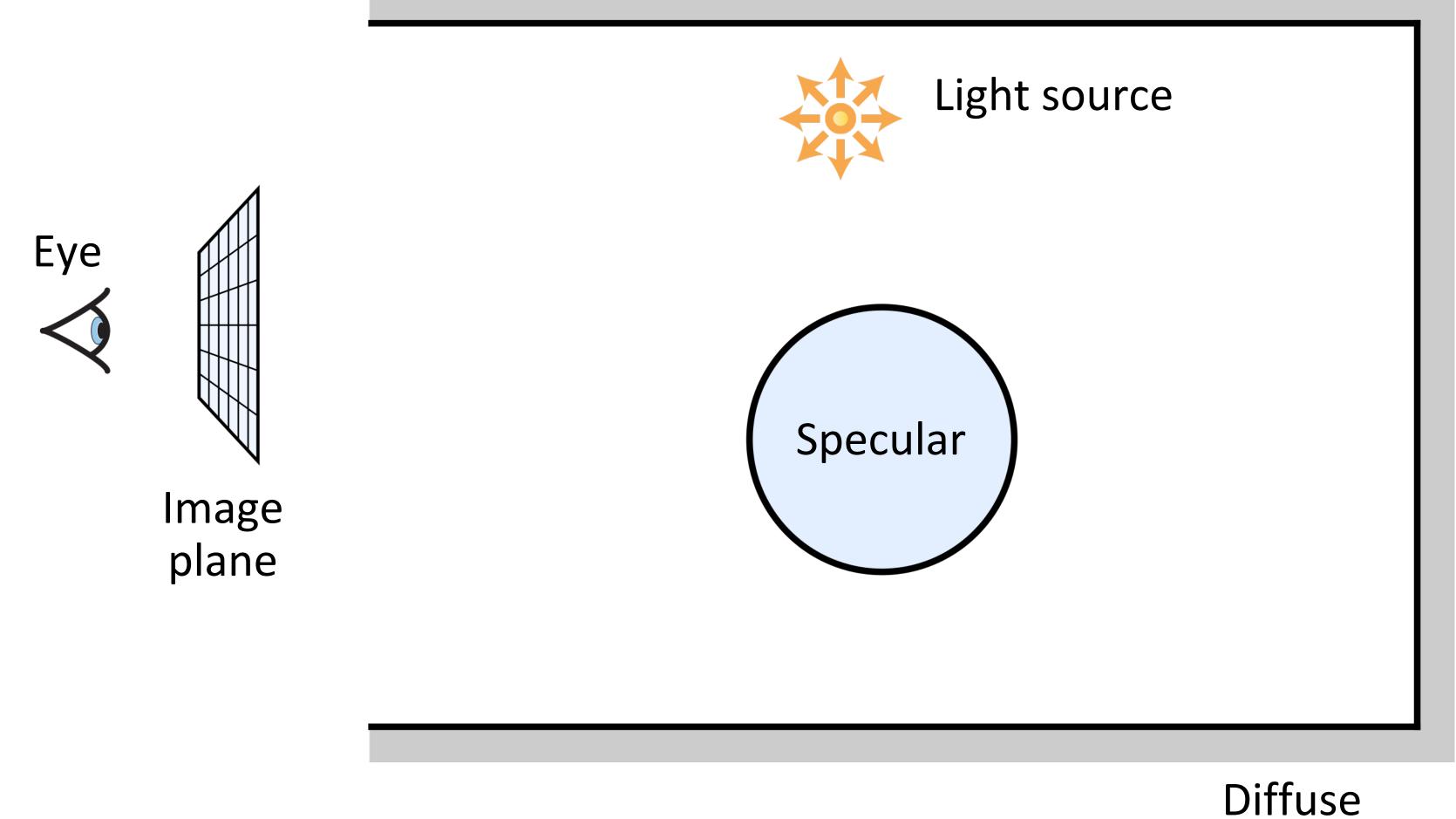
Light Paths

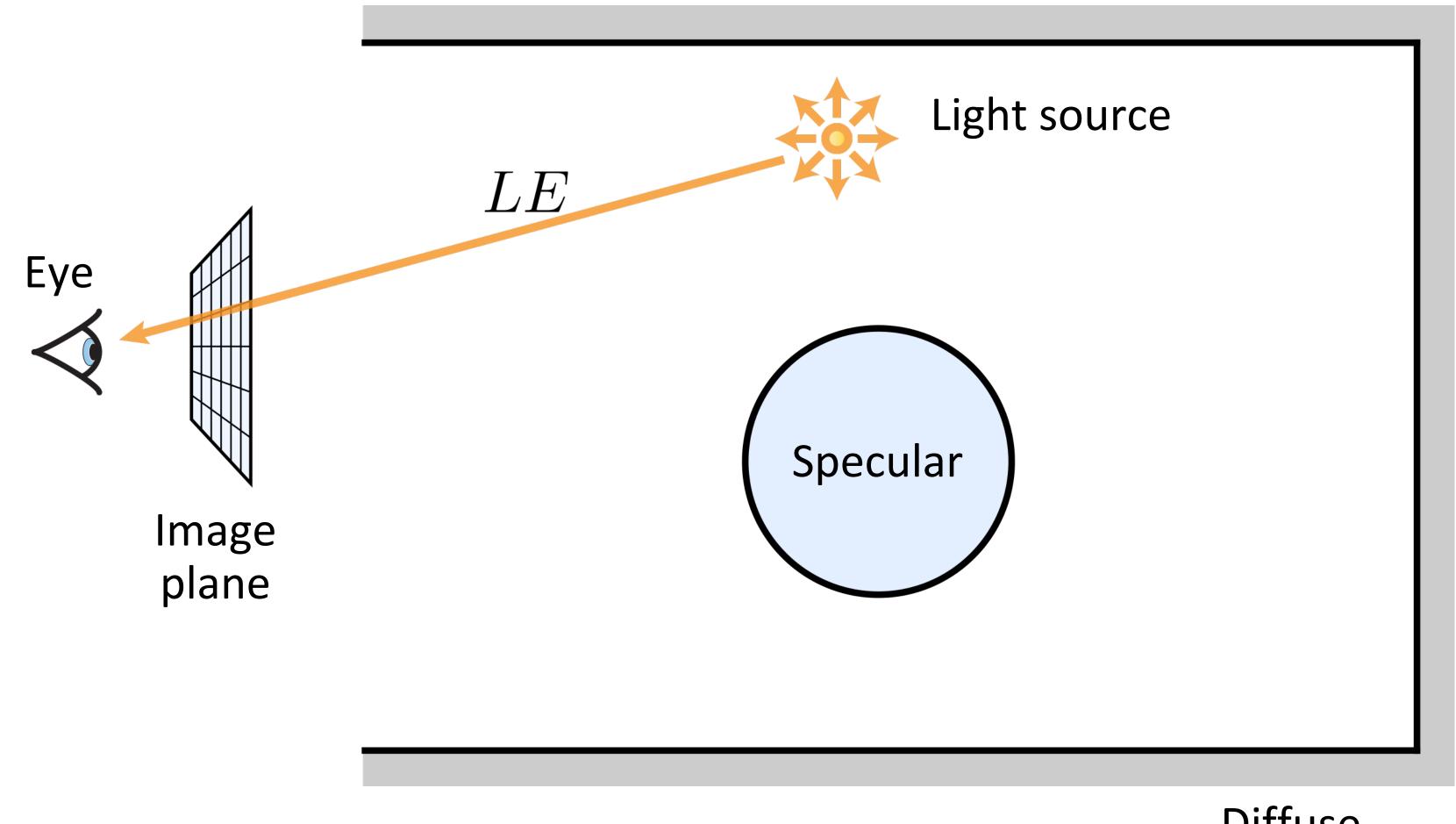
Express light paths in terms of the surface interactions that have occurred

A light path is a chain of linear segments joined at event "vertices"

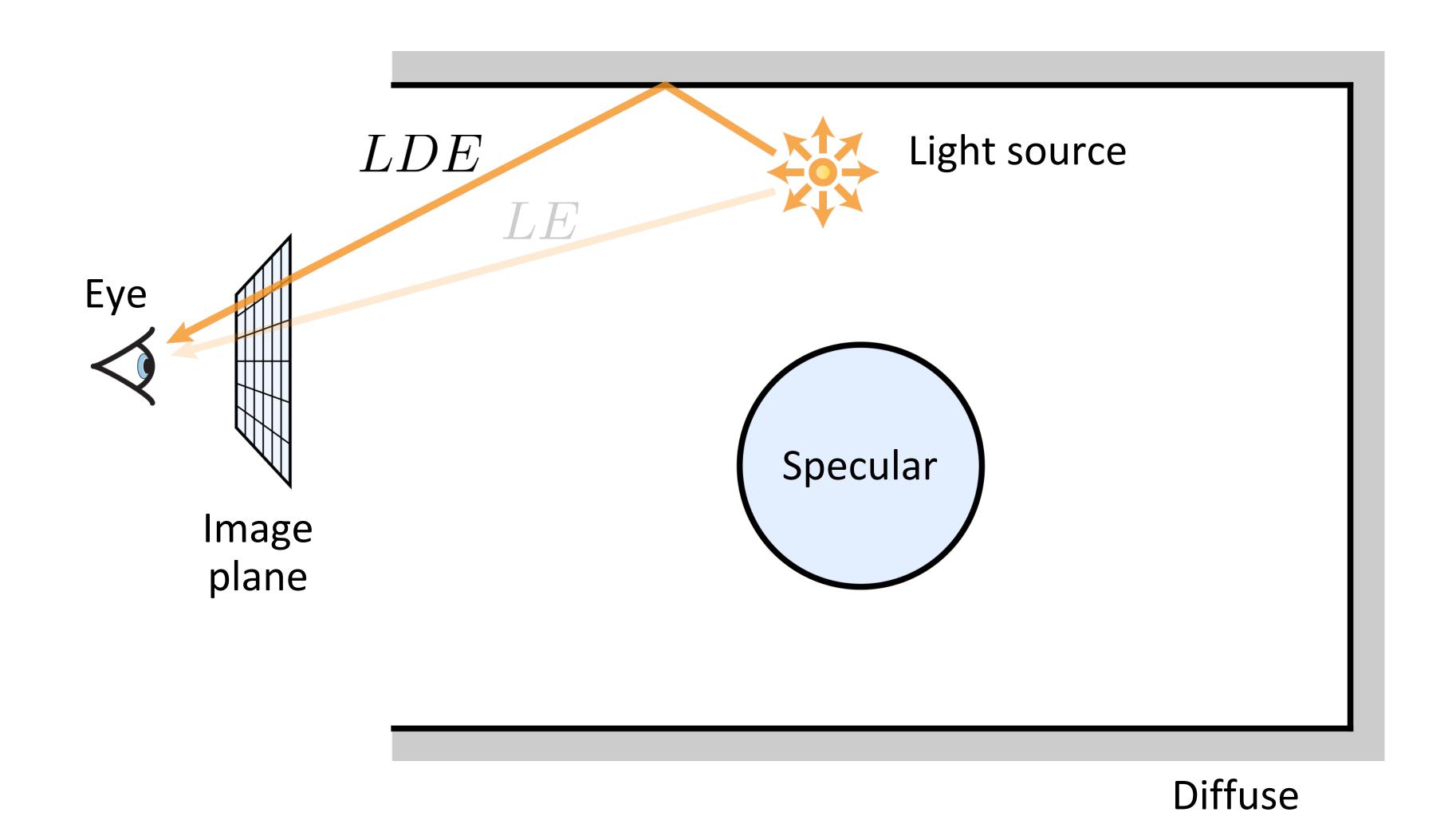
Classification of "vertices":

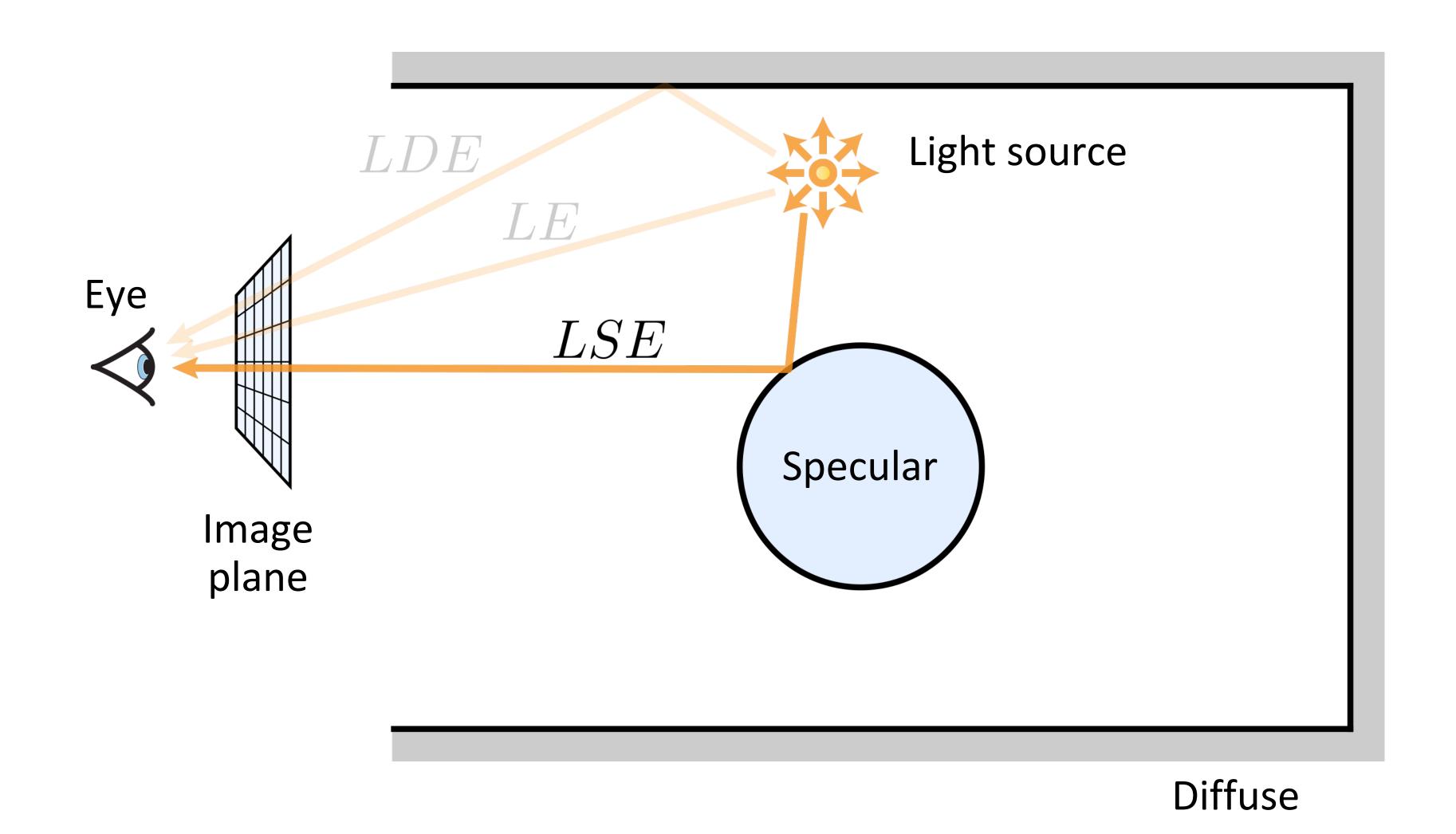
- L: a light source
- E: the eye
- S: a specular reflection
- D: a diffuse reflection

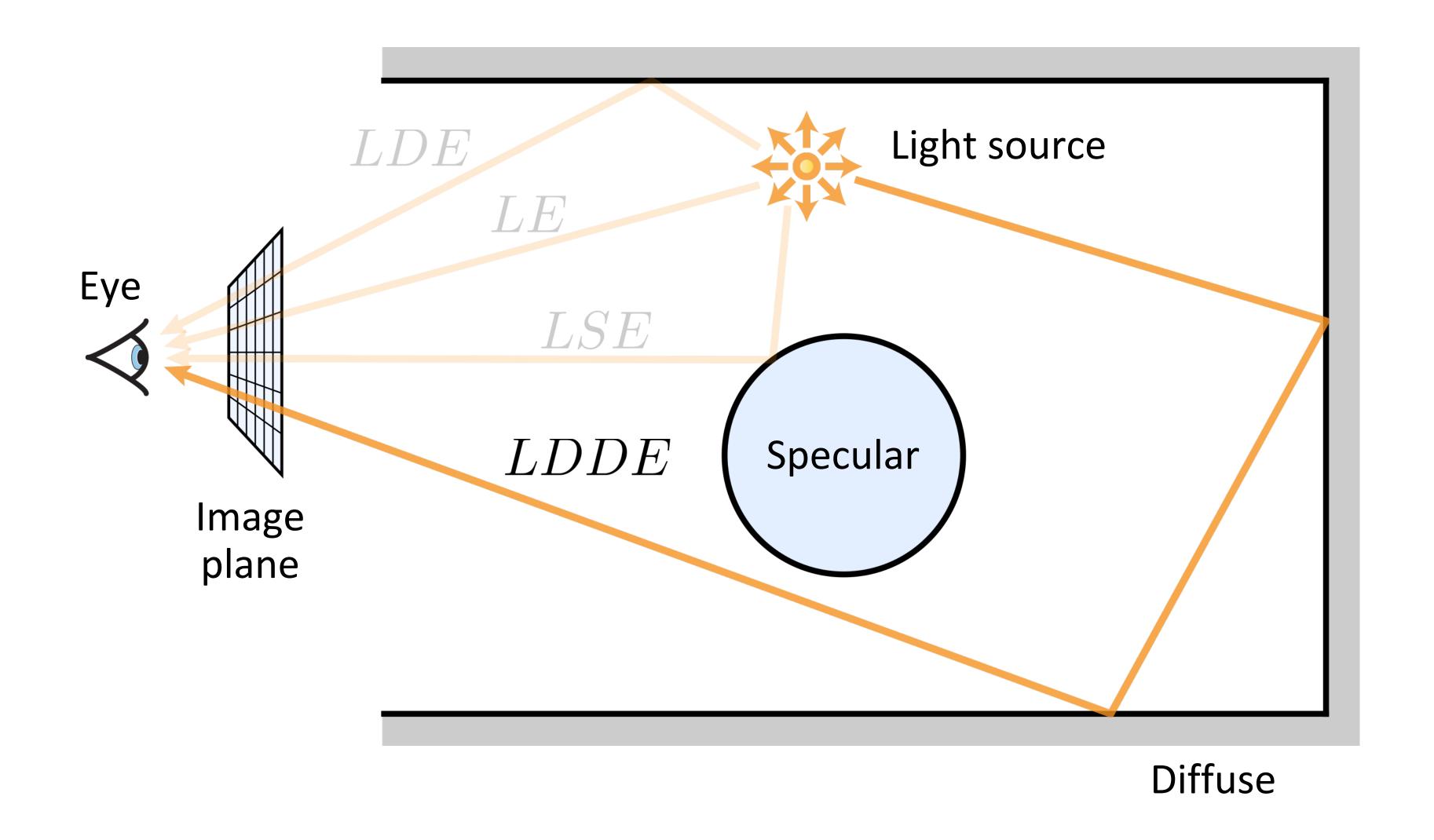


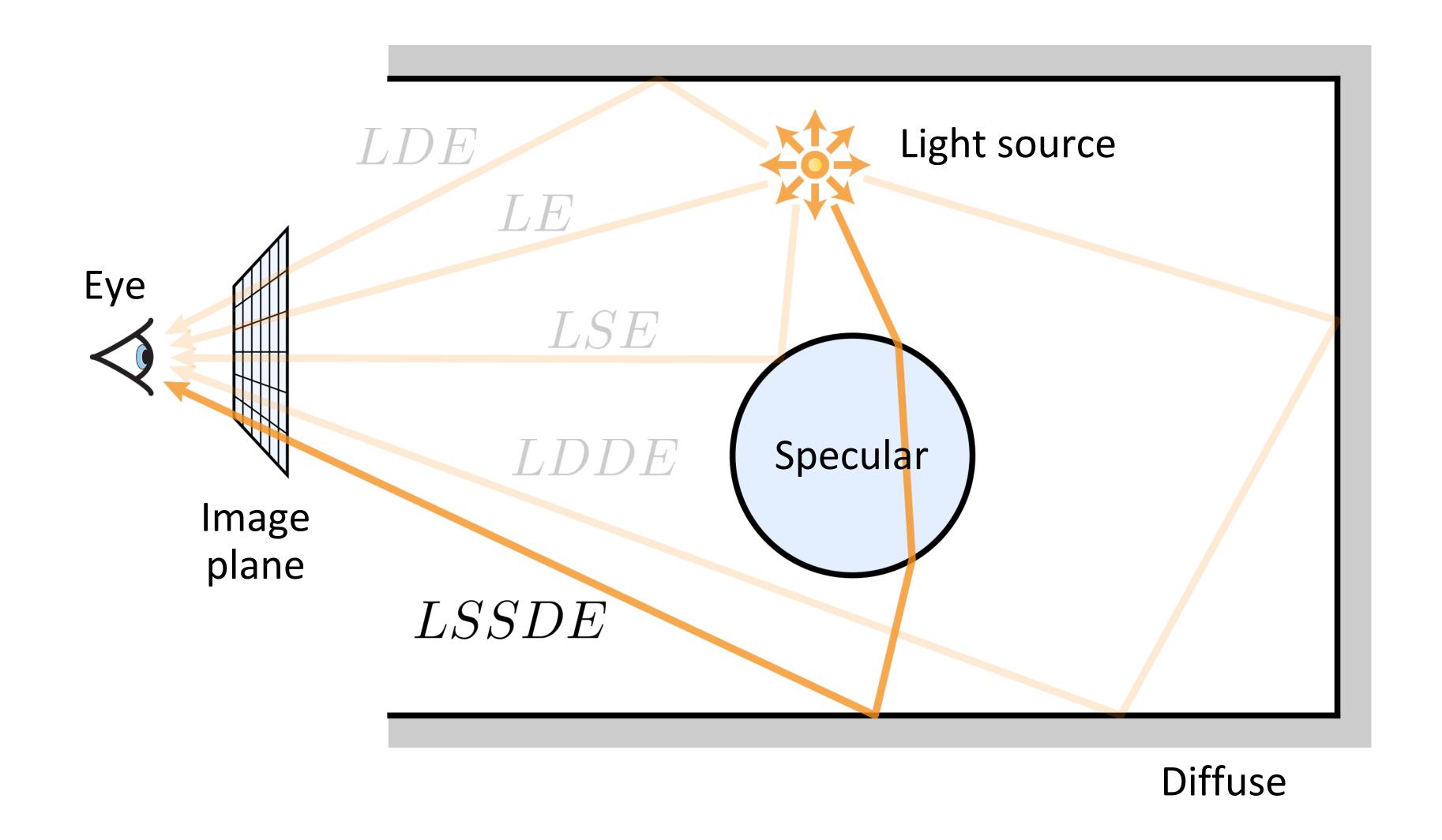


Diffuse









Can express arbitrary classes of paths using a regular expression type syntax:

- k^+ : one or more of event k
- k^* : zero or more of event k
- k? : zero or one k events
- (k|h): a k or h event

Direct illumination: $L(D \mid S)E$

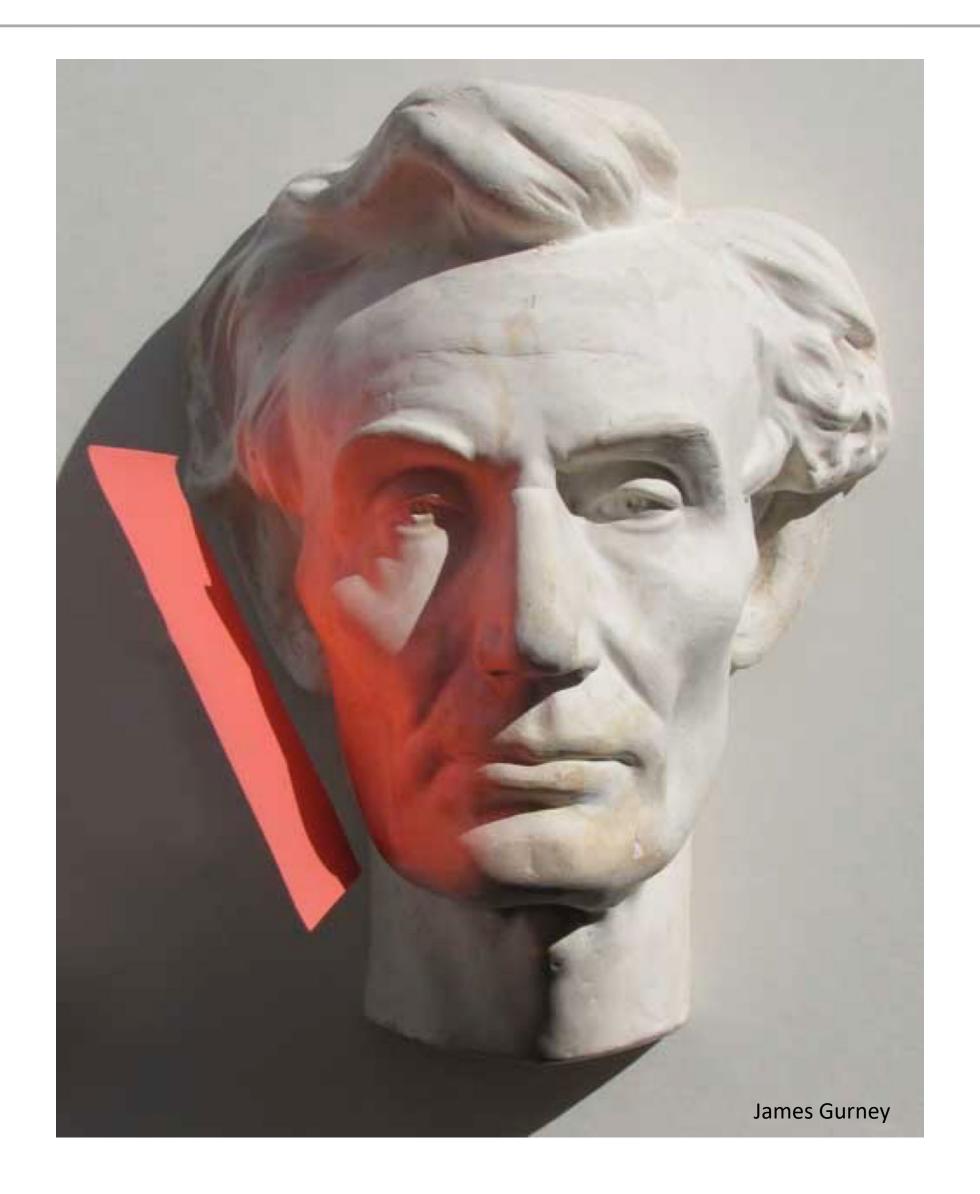
Indirect illumination: $L(D \mid S)(D \mid S)^{+}E$

Direct illumination: $L(D \mid S)E$

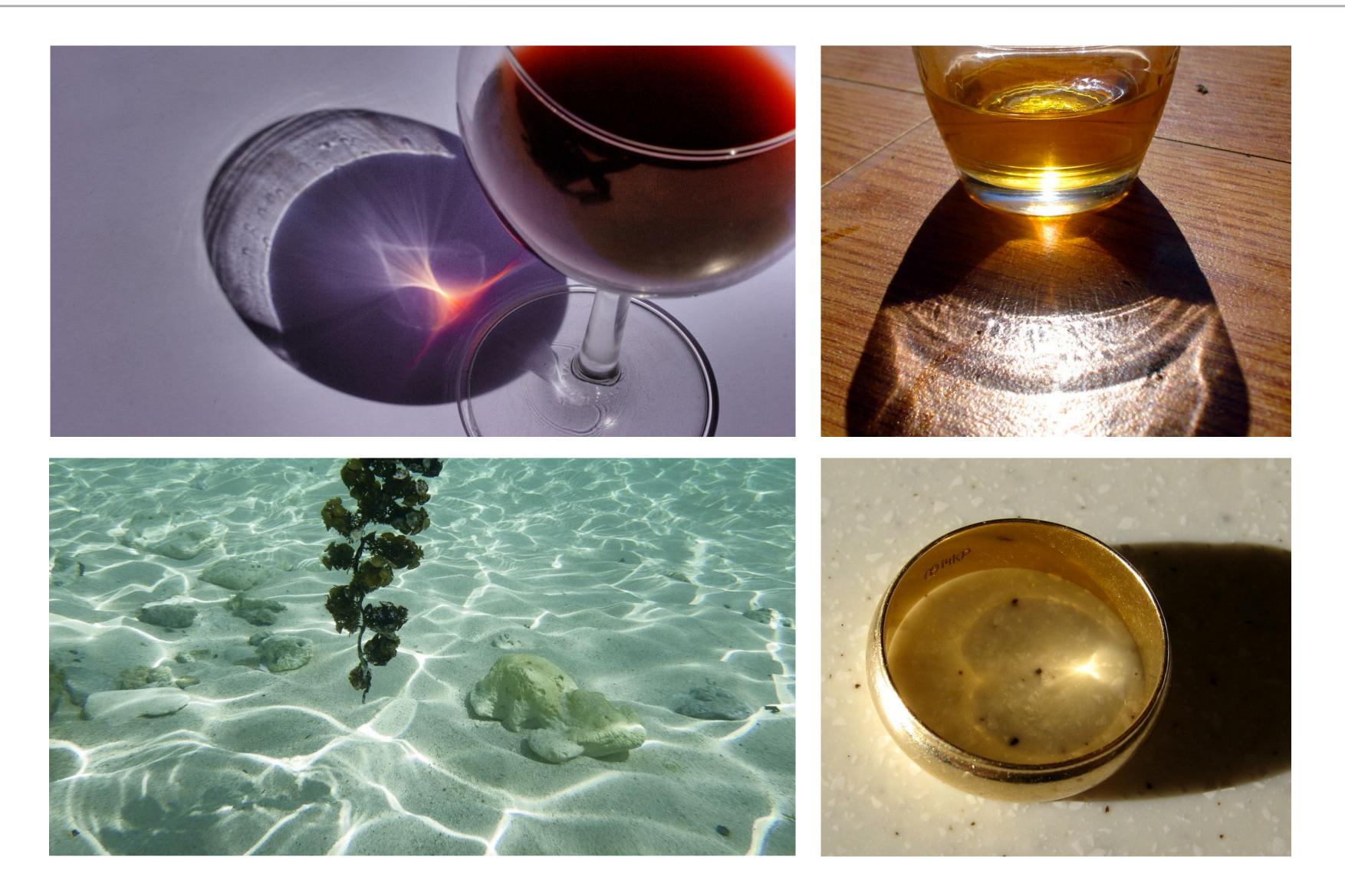
Indirect illumination: $L(D \mid S)(D \mid S)^+E$

Full global illumination: $L(D \mid S)*E$

Diffuse inter-reflections: $LDD^{+}E$



Caustics: LS+DE



source: Flickr 18

Subsurface Scattering

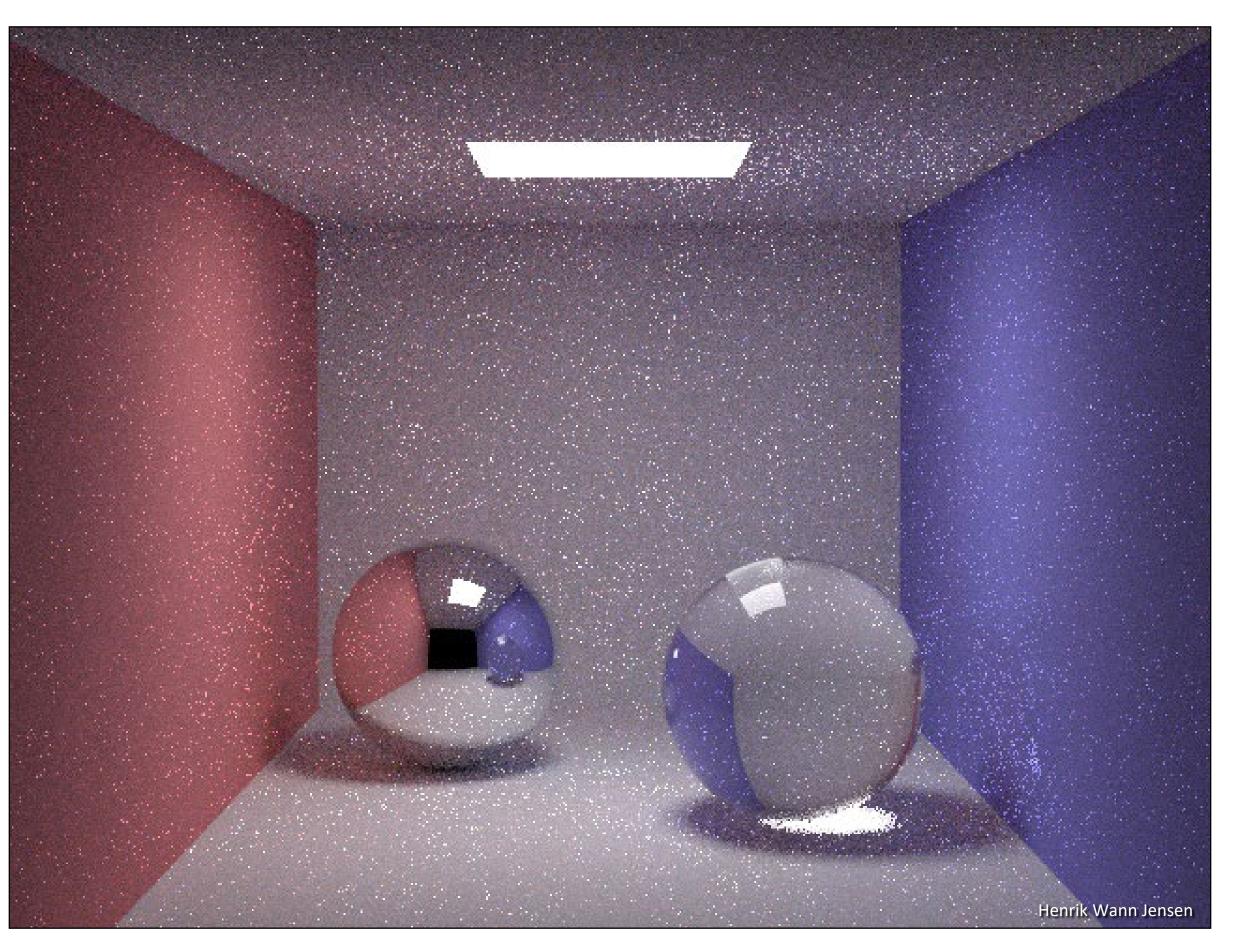
http://www.math.psu.edu/jech

A Simple Scene

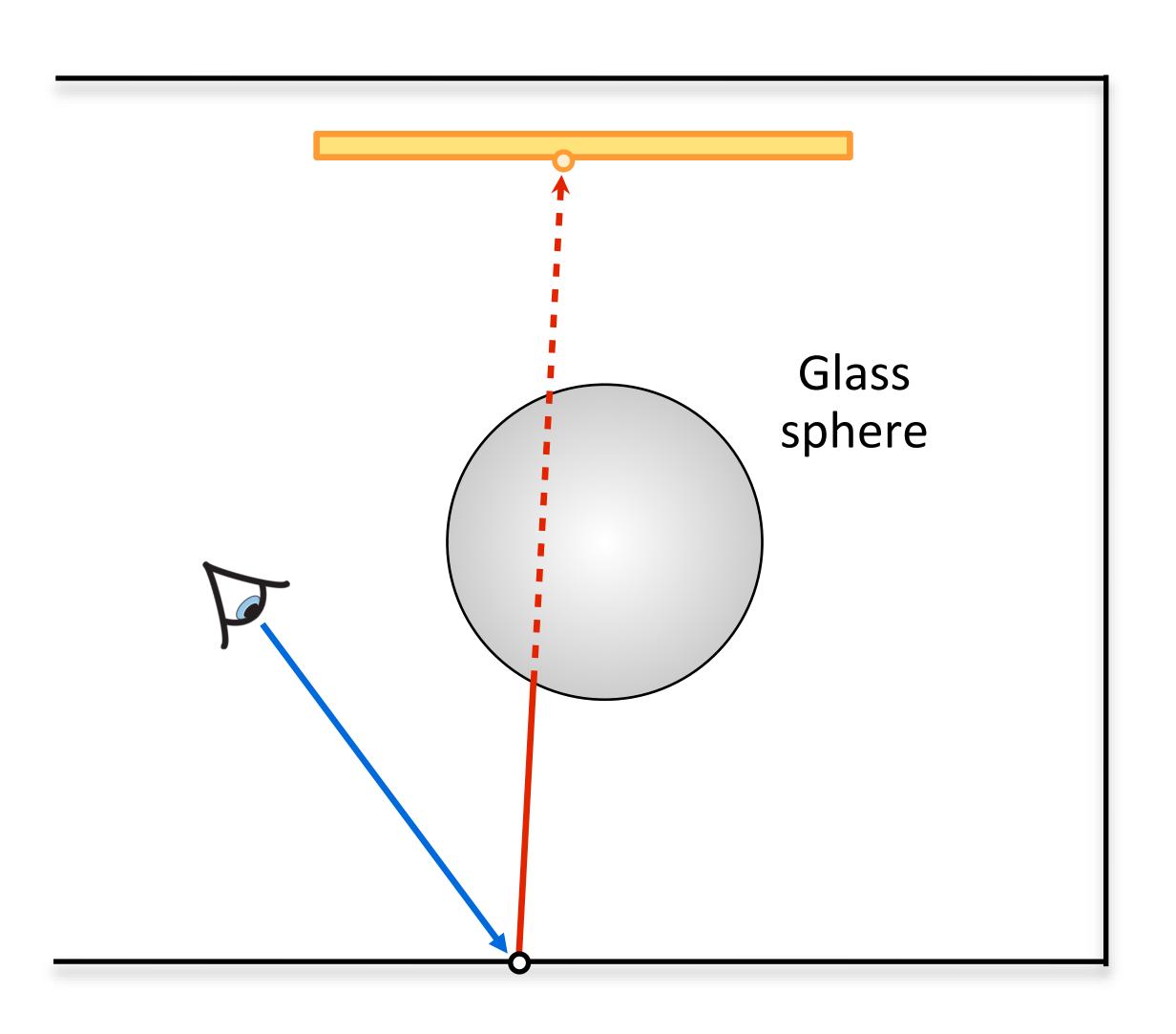


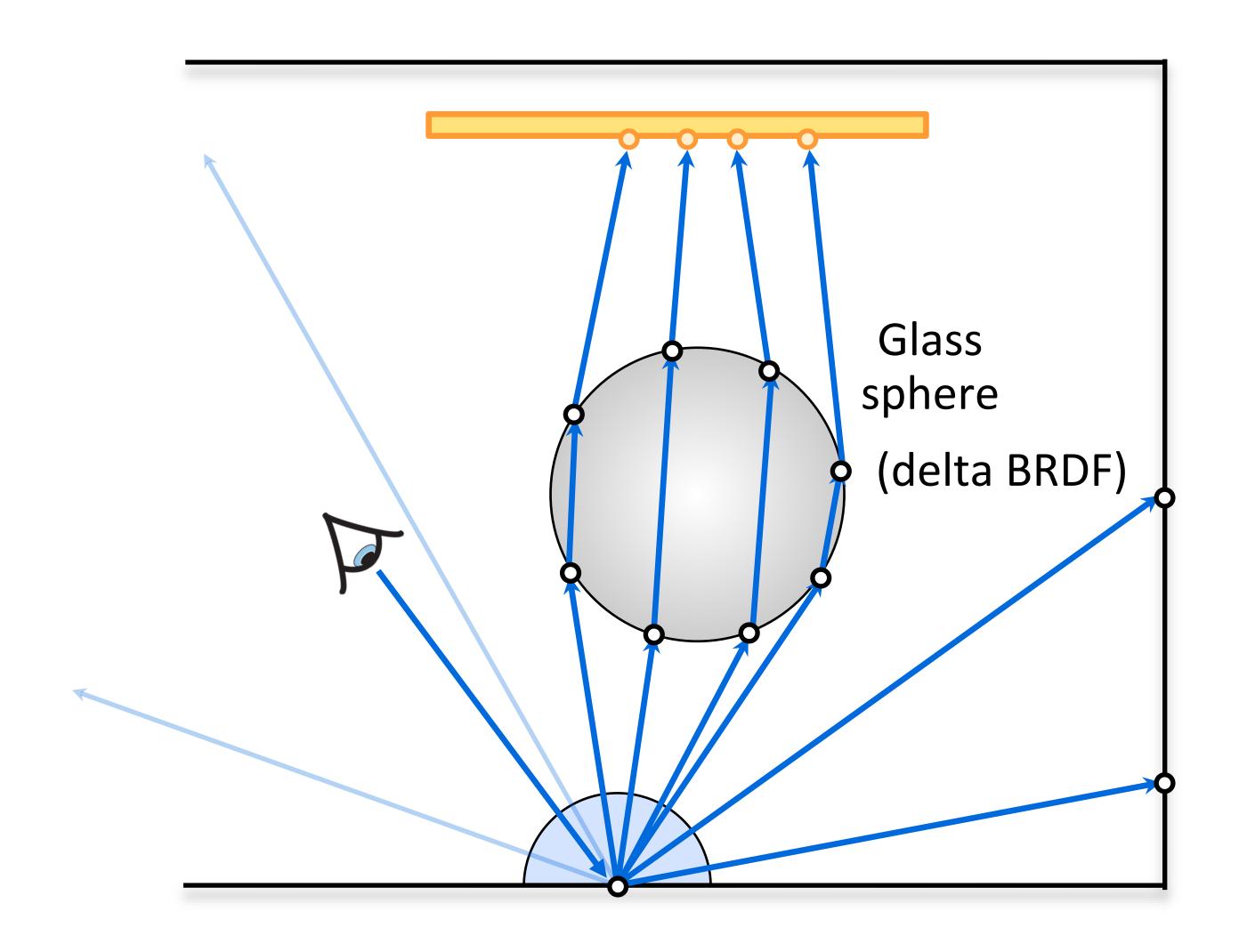
10 paths/pixel

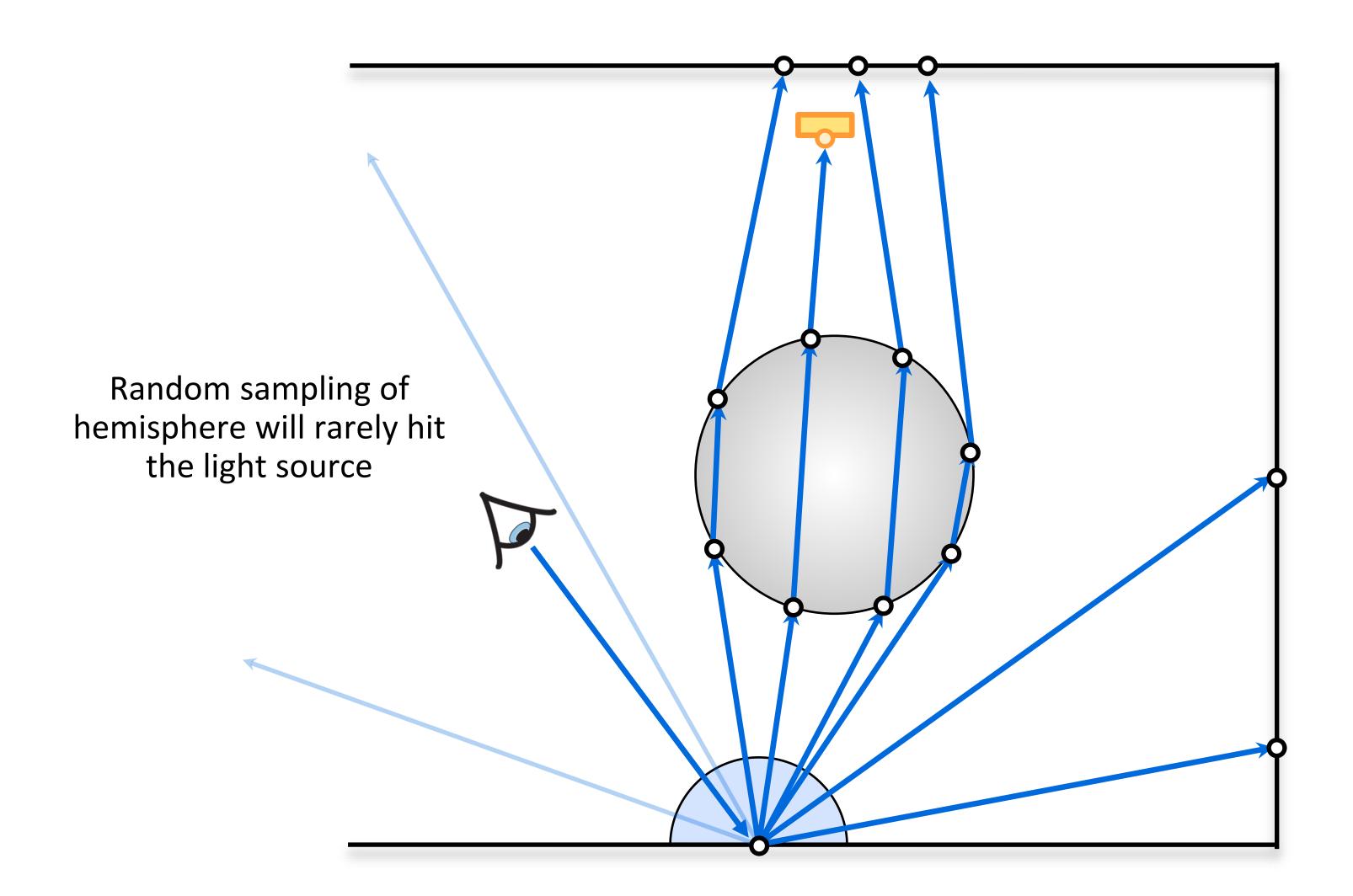
+ Glass/Mirror Material

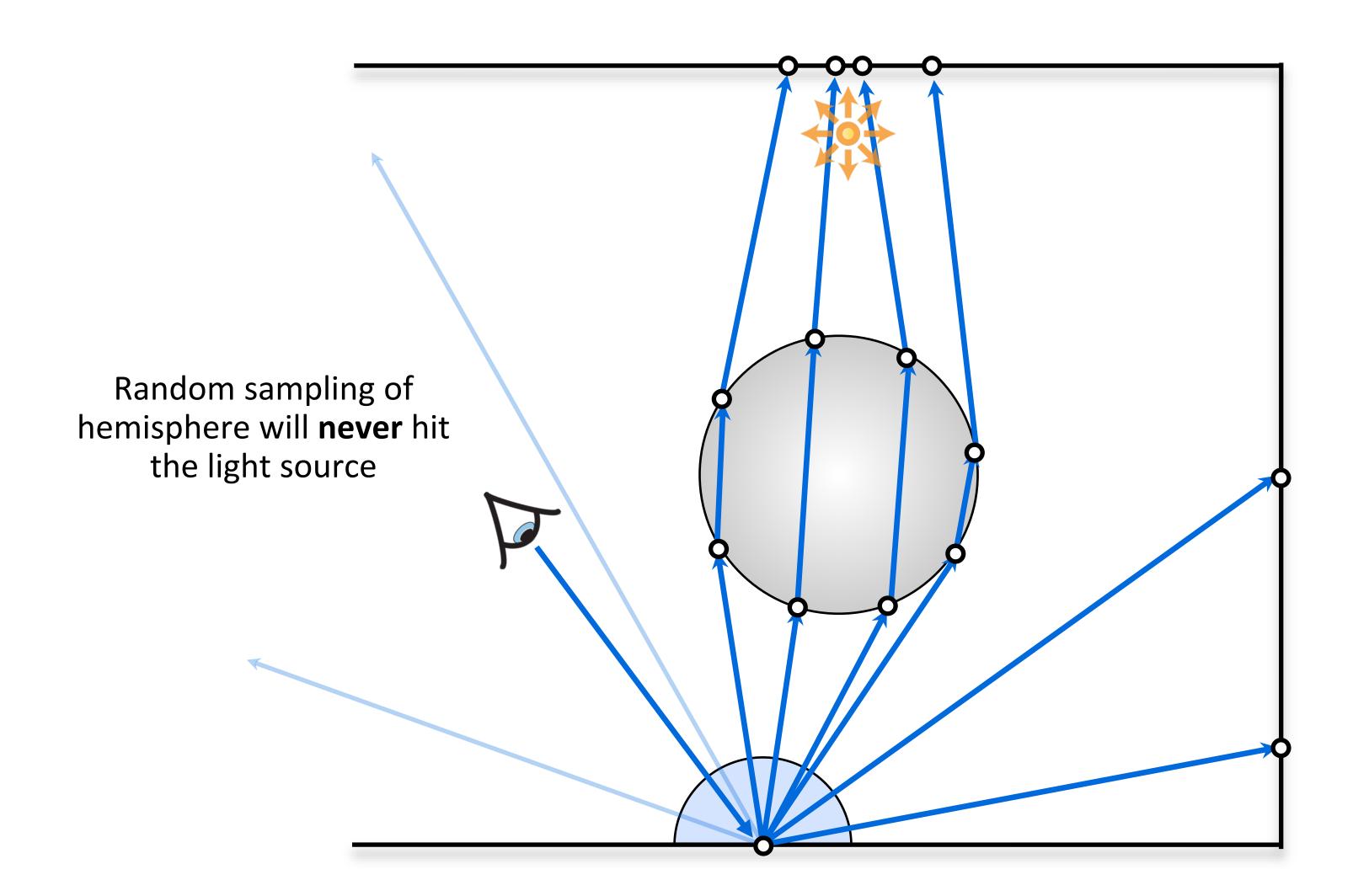


10 paths/pixel





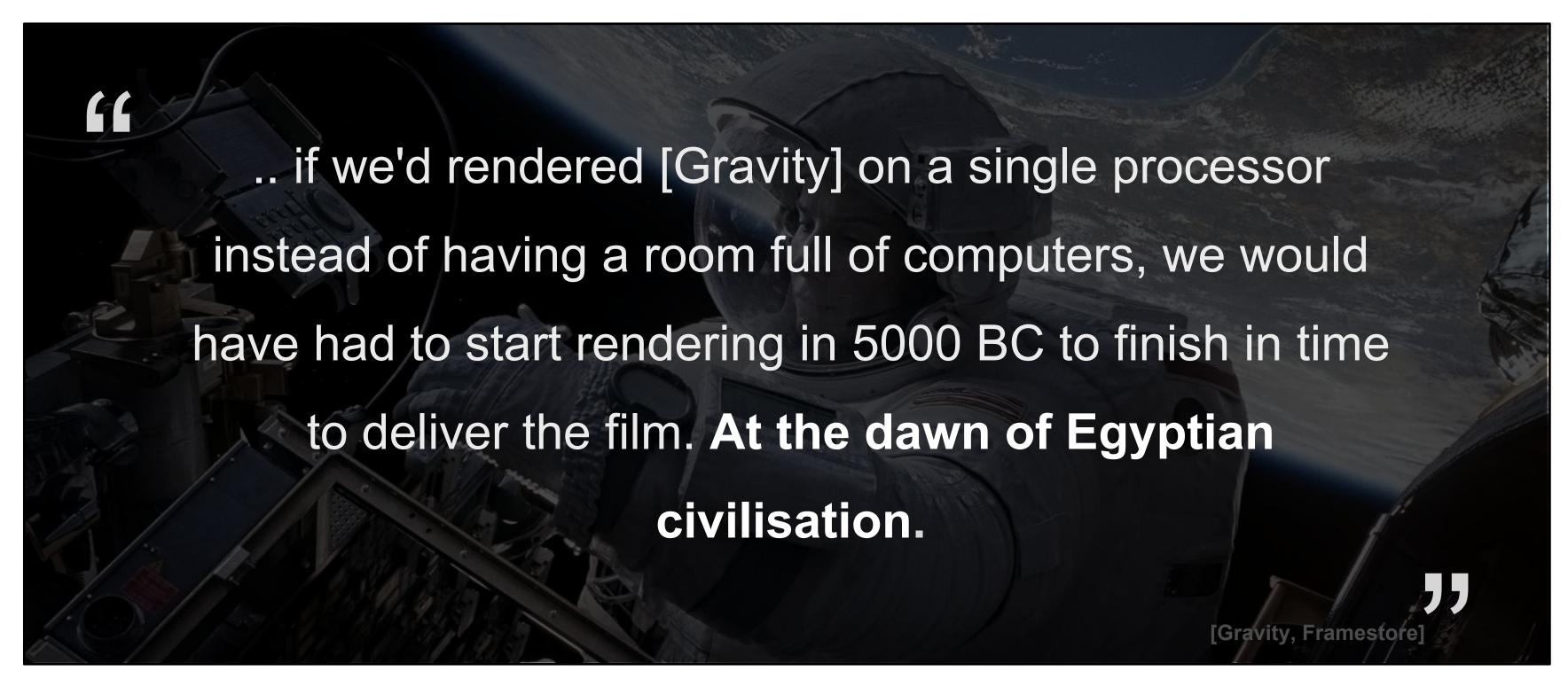




Let's just give it more time...

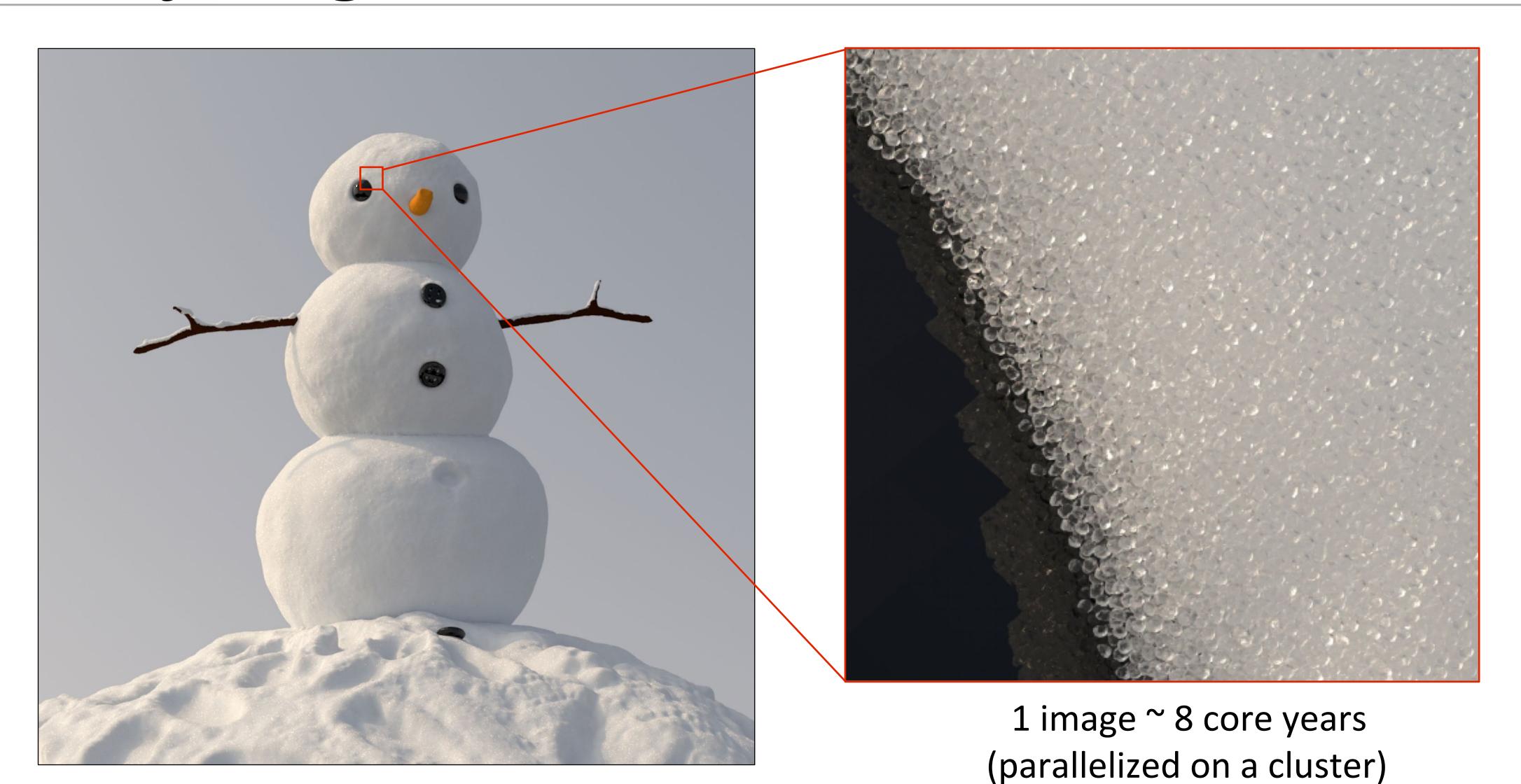
Nature $\sim 2 \times 10^{33}$ / second

Fastest GPU ray tracer ~ 2 × 10⁸ / second



Tim Webber, Gravity VFX supervisor

Let's just give it more time...



Path Tracing - Summary

- √ Full solution to the rendering equation
- √ Simple to implement
- X Slow convergence
 - requires 4x more samples to half the error
- X Robustness issues
 - does not handle some light paths well (or not at all), e.g. caustics (LS^+DE)
- X No reuse or caching of computation
- X General sampling issue
 - makes only locally good decisions

Today's agenda

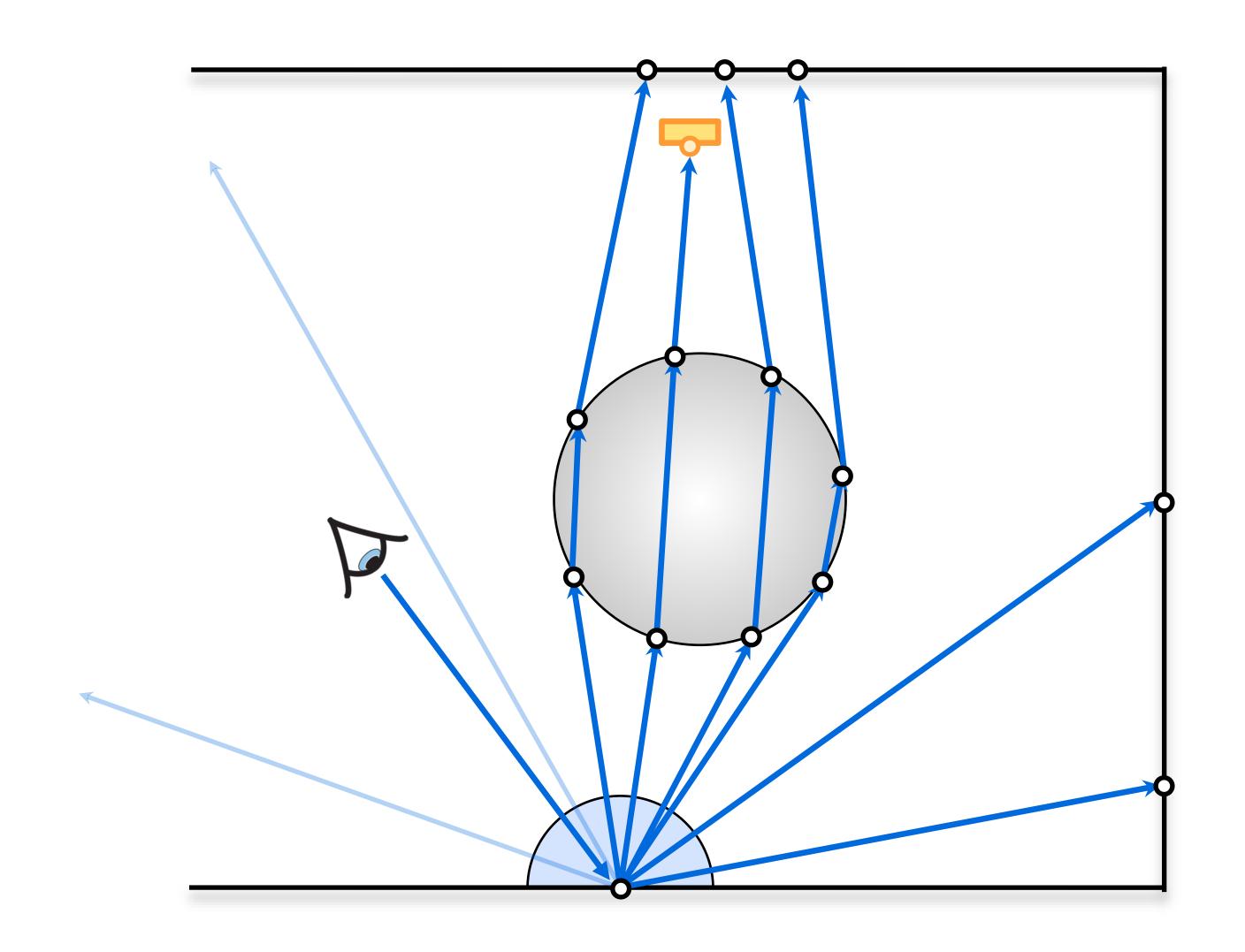
Measurement Equation

Path Integral Framework

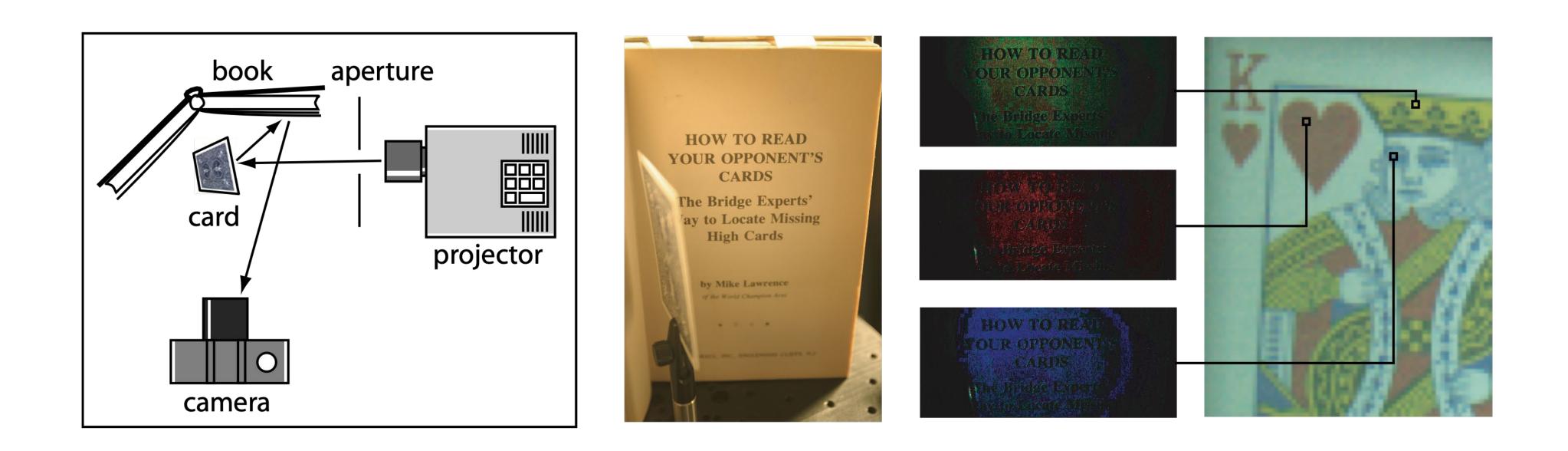
Solving the Rendering Equation

- Light tracing
- Bidirectional path tracing

Can we simulate this better?



Light transport is symmetric



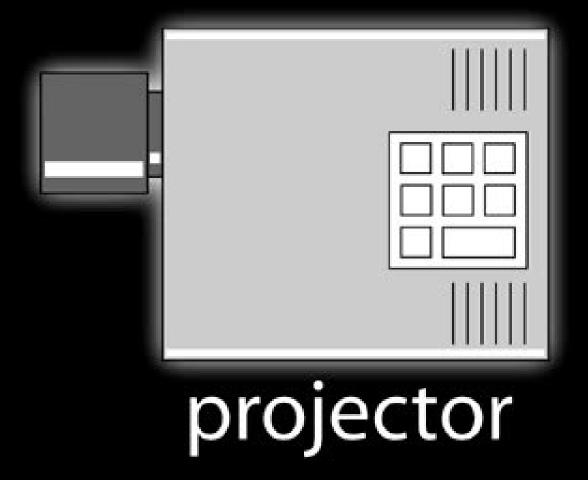
Dual Photography [Sen et al. 2005]

Dual Photography

Pradeep Sen* Billy Chen* Gaurav Garg* Stephen R. Marschner†
Mark Horowitz* Marc Levoy* Hendrik P.A. Lensch*

*Stanford University

†Cornell University



Duality of Radiance and Importance

Measurement Equation

Rendering equation describes radiative equilibrium at point x:

$$L_o(\mathbf{x}, \vec{\omega}_o) = L_e(\mathbf{x}, \vec{\omega}_o) + \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$$

We are interested in the total radiance contributing to pixel j:

Radiometry as Measurements

Weighted integral of 5D radiance function

$$\int_{V} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L(\mathbf{x}, \vec{\omega}) \, \mathrm{d}\vec{\omega} \, \mathrm{d}\mathbf{x}$$

 $\int_V\!\int_{H^2}\!\!W_e({\bf x},\vec\omega)L({\bf x},\vec\omega)\,\mathrm{d}\vec\omega\,\mathrm{d}{\bf x}$ Other radiometric quantities are measurements

- expressing irradiance in terms of radiance:

$$\int_{H^2}\!\!L(\mathbf{x},\vec{\omega})\cos\theta\,d\vec{\omega} = E(\mathbf{x}) \qquad \qquad \text{Integrate radiance} \\ \text{over hemisphere}$$

- expressing *flux/power* in terms of radiance:

$$\int_A \int_{H^2} \!\! L({f x},ec{\omega})\cos heta\,dec{\omega}dA({f x}) = \Phi(A)$$
 Integrate radiance over hemisphere and area

Radiance vs. Importance

Radiance

- emitted from light sources
- describes amount of light traveling within a differential beam

Importance

- "emitted" from sensors
- describes the *response of the sensor* to radiance traveling within a differential beam

$$I_j = \int_{A_{\text{film}}} \int_{H^2} W_e(\mathbf{x}, \vec{\omega}) L_i(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}$$

$$I_{j} = \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}$$

$$= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) \, d\mathbf{y} d\mathbf{x}$$
outgoing quantities

Let's expand L_o and consider direct illumination only

$$\begin{split} I_{j} &= \int_{A_{\mathrm{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x} \\ &= \int_{A_{\mathrm{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) \, d\mathbf{y} d\mathbf{x} \\ &= \int_{A_{\mathrm{film}}} \int_{A} \int_{A_{\mathrm{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{z} d\mathbf{y} d\mathbf{x} \\ &\quad \text{emitted quantities with} \end{split}$$

Let's swap the inner and outer integral

$$\begin{split} I_{j} &= \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x} \\ &= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) \, d\mathbf{y} d\mathbf{x} \\ &= \int_{A_{\text{film}}} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{z} d\mathbf{y} d\mathbf{x} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \int_{A} \int_{A} W_{e}(\mathbf{y}, \mathbf{y}) d\mathbf{y} d\mathbf{$$

$$\begin{split} I_{j} &= \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x} \\ &= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) \, d\mathbf{y} d\mathbf{x} \\ &= \int_{A_{\text{film}}} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{z} d\mathbf{y} d\mathbf{x} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \end{split}$$

$$I_{j} = \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}$$

$$= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) \, d\mathbf{y} d\mathbf{x}$$

$$= \int_{A_{\text{film}}} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{z} d\mathbf{y} d\mathbf{x}$$

$$= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z}$$

$$= \int_{A_{\text{light}}} \int_{A} W_{o}(\mathbf{y}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{y} d\mathbf{z}$$

$$I_{j} = \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}$$

$$= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) L_{o}(\mathbf{y}, \mathbf{x}) \, d\mathbf{y} d\mathbf{x}$$

$$= \int_{A_{\text{film}}} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{z} d\mathbf{y} d\mathbf{x}$$

$$= \int_{A_{\text{light}}} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{x} d\mathbf{y} d\mathbf{z}$$

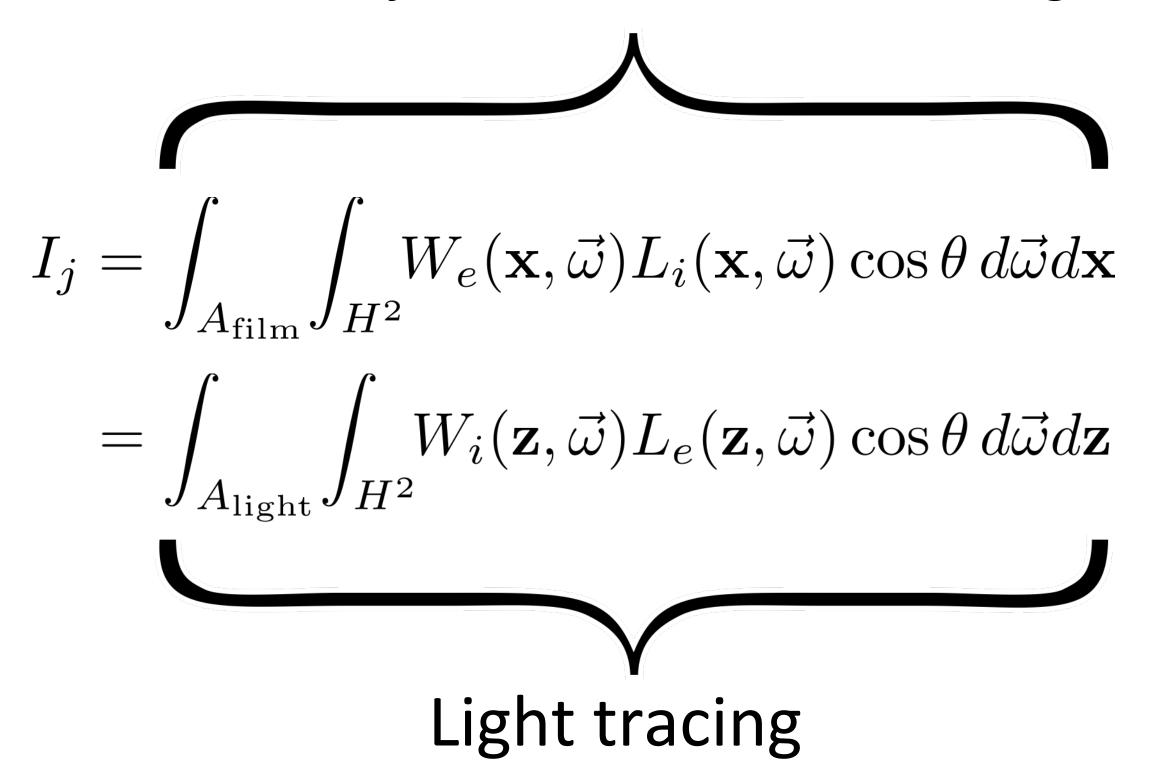
$$= \int_{A_{\text{light}}} \int_{A} W_{o}(\mathbf{y}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_{e}(\mathbf{z}, \mathbf{y}) \, d\mathbf{y} d\mathbf{z}$$

$$= \int_{A_{\text{light}}} \int_{H^{2}} W_{i}(\mathbf{z}, \vec{\omega}) L_{e}(\mathbf{z}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{z}$$



Path tracing

start from film, search for radiance at light



start from light, search for importance at sensor

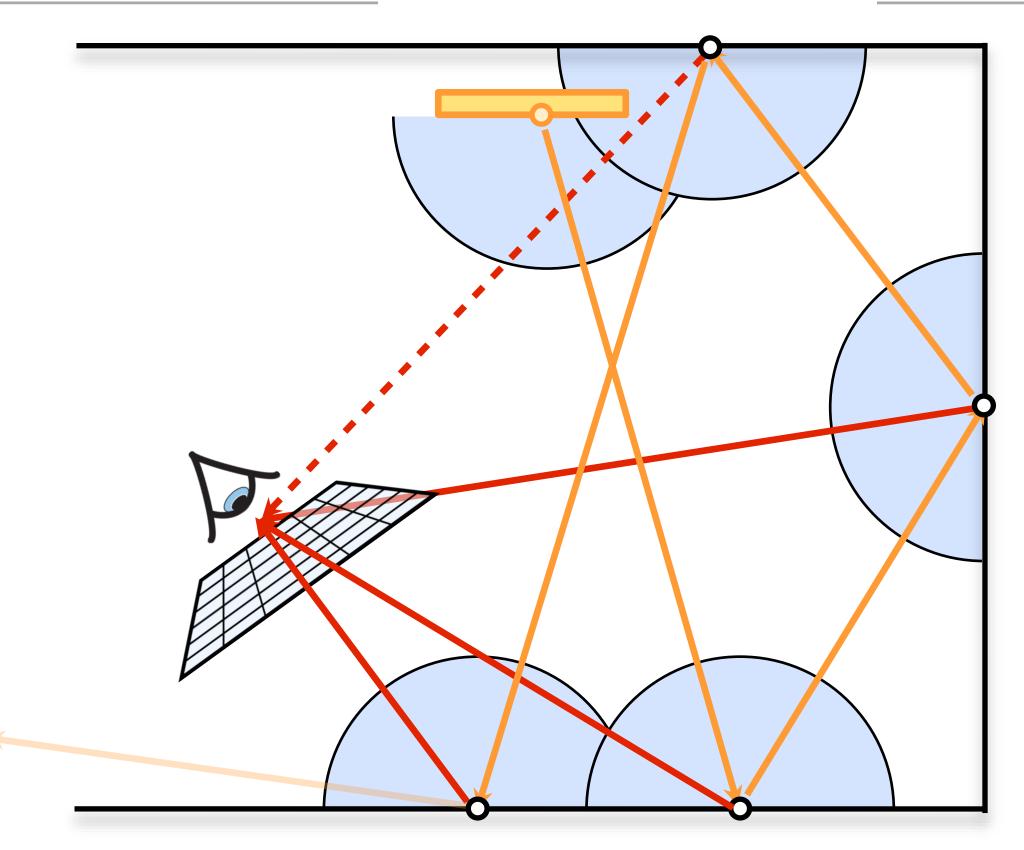
Light Tracing

Light Tracing

Shoot multiple paths from light sources hoping to randomly hit the sensor

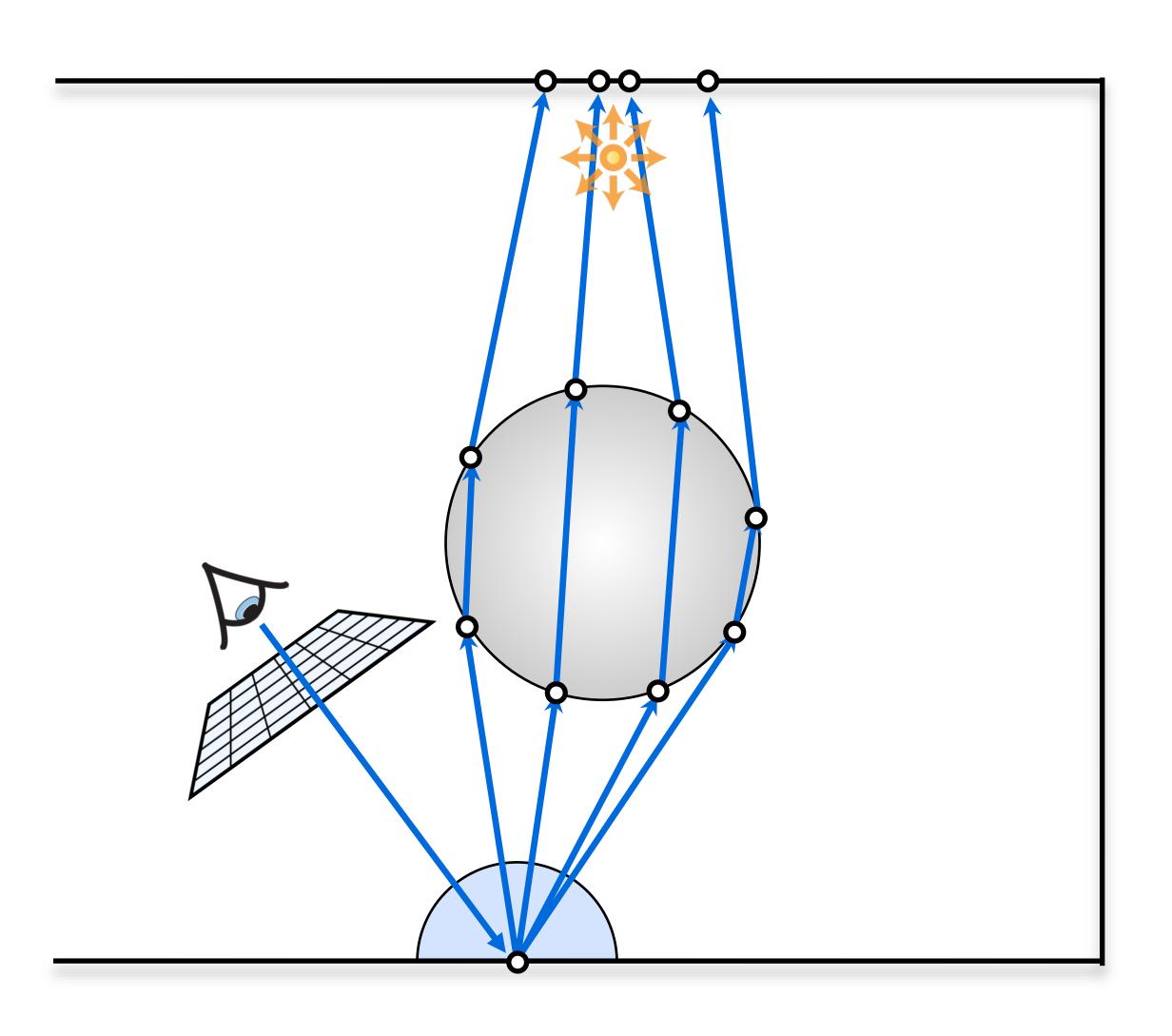
- Optionally: at each path vertex, connect to the image using nextevent estimation (a.k.a. shadow rays in PT)

Light Tracing with NEE

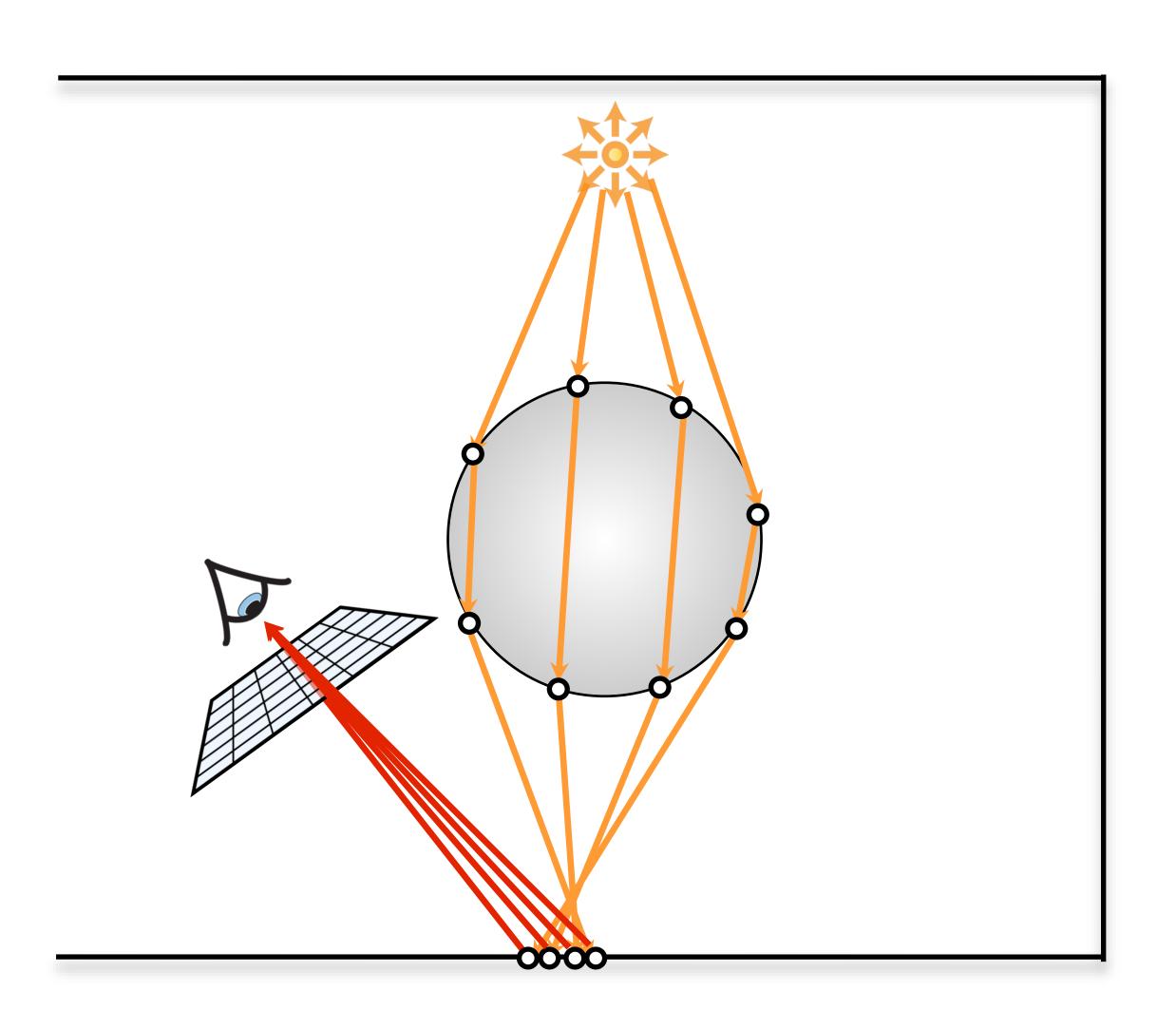


Splat to the image at each vertex

Path Tracing Caustics

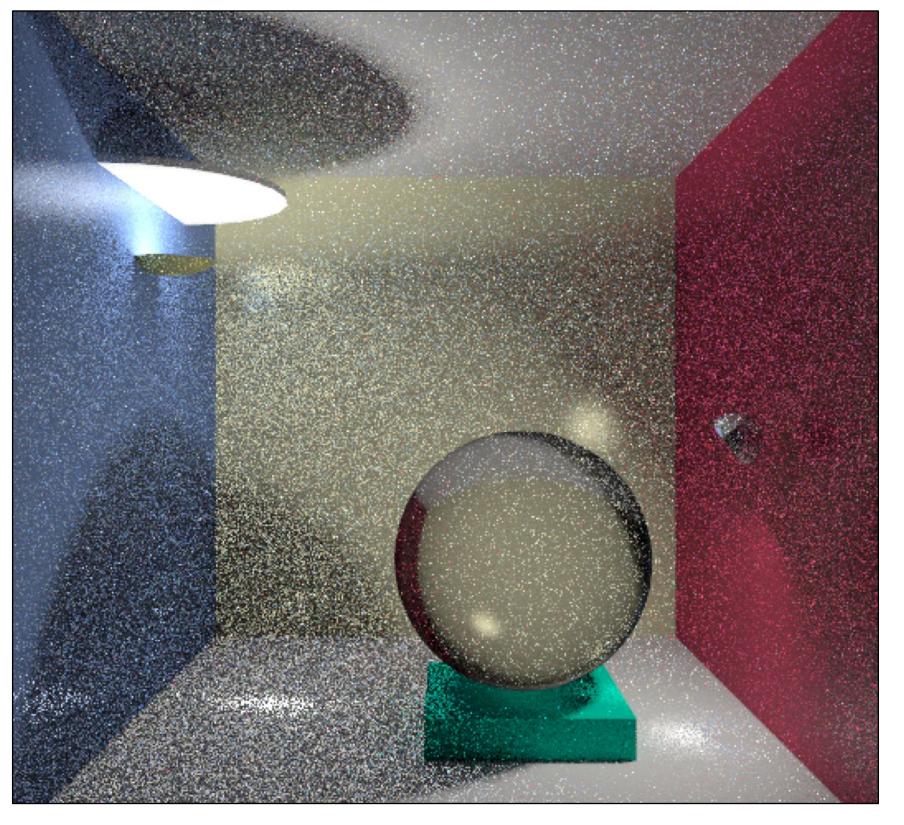


Light Tracing Caustics

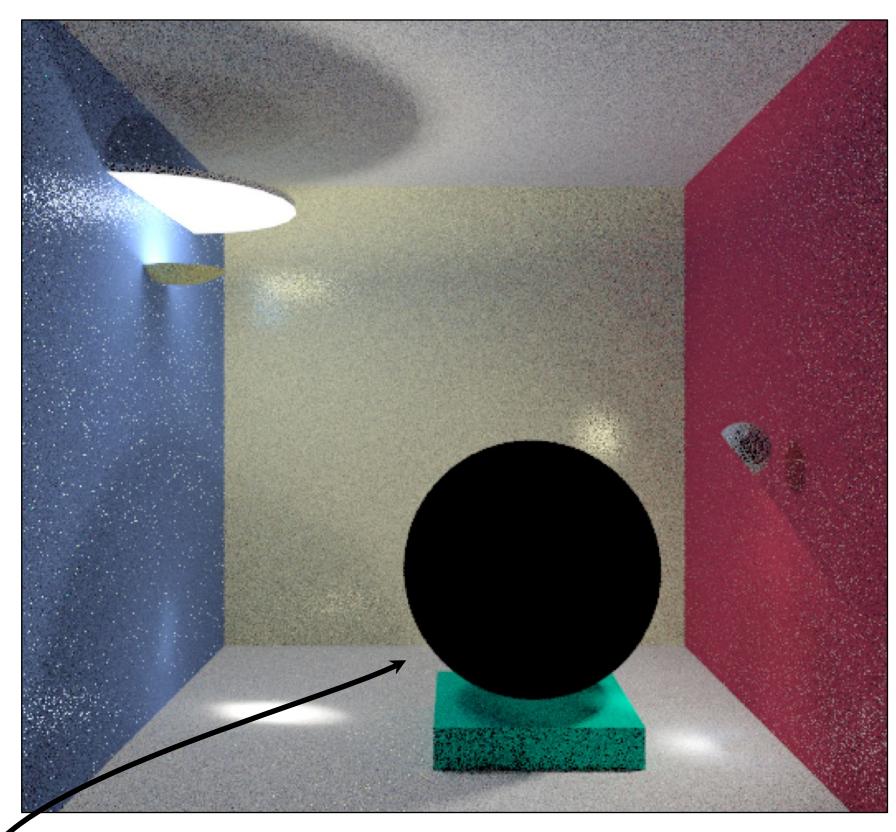


Path vs. Light Tracing

Path tracing



Light tracing

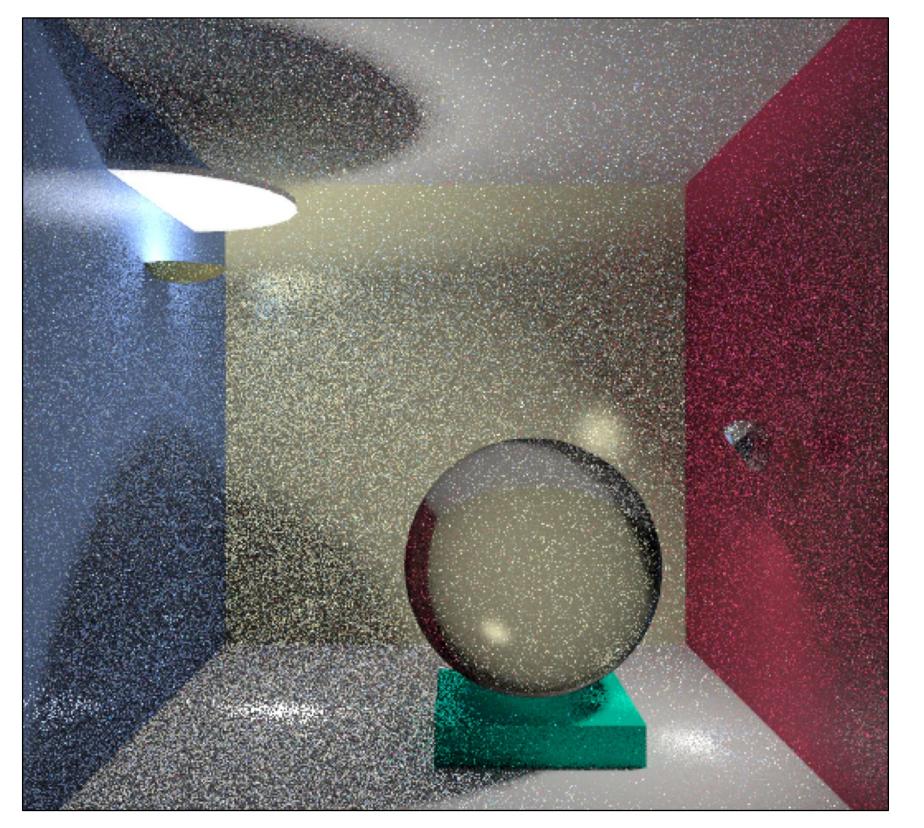


Images courtesy of F. Suykens

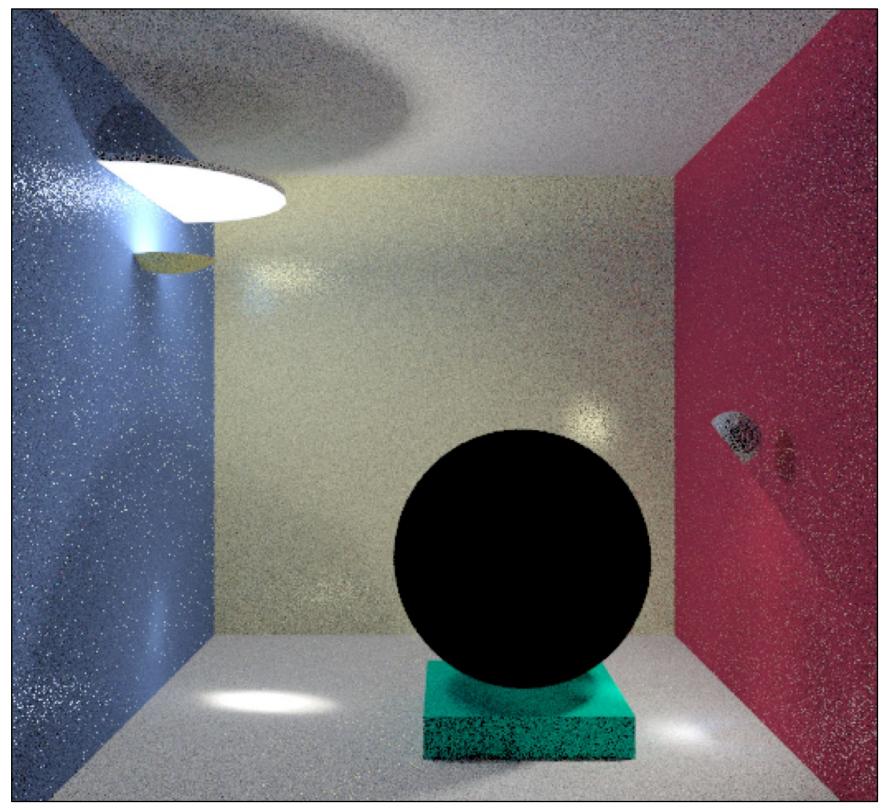
Why is this glass sphere black?

Path vs. Light Tracing

Path tracing



Light tracing



Images courtesy of F. Suykens

Can we combine them?

Path Integral Framework

Measurement Equation

$$I_{j} = \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{1}, \mathbf{x}_{0}) d\mathbf{x}_{1} d\mathbf{x}_{0}$$

$$= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) + \int_{A} f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}) G(\mathbf{x}_{1}, \mathbf{x}_{2}) L_{o}(\mathbf{x}_{2}, \mathbf{x}_{1}) d\mathbf{x}_{2} d\mathbf{x}_{1} d\mathbf{x}_{0}$$

$$= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) + \int_{A} f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}) G(\mathbf{x}_{1}, \mathbf{x}_{2}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) + \int_{A} f(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{1}) G(\mathbf{x}_{2}, \mathbf{x}_{3}) L_{e}(\mathbf{x}_{3}, \mathbf{x}_{2}) + \int_{A} \cdots d\mathbf{x}_{4} d\mathbf{x}_{3} d\mathbf{x}_{2} d\mathbf{x}_{1} d\mathbf{x}_{0}$$

Hard to concisely express arbitrary light transport with all the nested integrals

$$\begin{split} I_{j} &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{1}, \mathbf{x}_{0}) \, d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &= \iint_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &+ \iiint_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}) G(\mathbf{x}_{1}, \mathbf{x}_{2}) d\mathbf{x}_{2} d\mathbf{x}_{1} d\mathbf{x}_{0} + \cdots \\ &+ \int \cdots \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) \prod_{i=1}^{k-1} f(\mathbf{x}_{j}, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}) G(\mathbf{x}_{j}, \mathbf{x}_{j+1}) \, d\mathbf{x}_{k} \cdots d\mathbf{x}_{0} + \cdots \end{split}$$

introduce:
$$\mathcal{P}_k=\{\bar{\mathbf{x}}=\mathbf{x}_0\cdots\mathbf{x}_k;\;\mathbf{x}_0\cdots\mathbf{x}_k\in A\}$$
 space of all paths with k segments

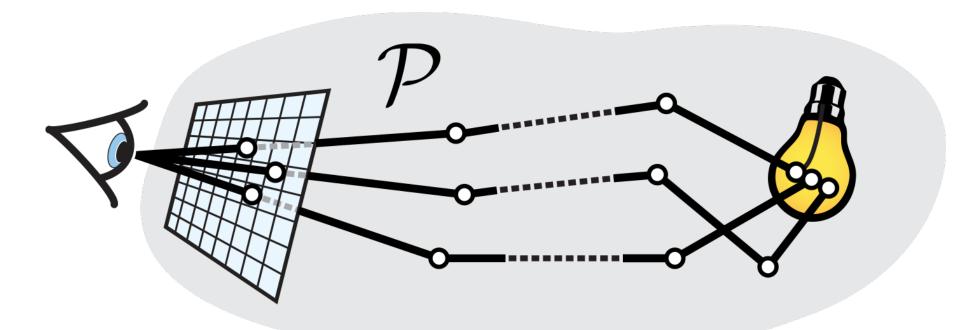
throughput of path

$$\begin{split} I_j &= \int_A \int_A W_e(\mathbf{x}_0,\mathbf{x}_1) G(\mathbf{x}_0,\mathbf{x}_1) L_o(\mathbf{x}_1,\mathbf{x}_0) \, d\mathbf{x}_1 d\mathbf{x}_0 \\ &= \int_{\mathcal{P}_1} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_1,\mathbf{x}_0) G(\mathbf{x}_0,\mathbf{x}_1) d\bar{\mathbf{x}}_1 \\ &+ \int_{\mathcal{P}_2} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_2,\mathbf{x}_1) G(\mathbf{x}_0,\mathbf{x}_1) f(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_0) G(\mathbf{x}_1,\mathbf{x}_2) d\bar{\mathbf{x}}_2 + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_k,\mathbf{x}_{k-1}) G(\mathbf{x}_0,\mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j,\mathbf{x}_{j+1},\mathbf{x}_{j-1}) G(\mathbf{x}_j,\mathbf{x}_{j+1}) \, d\bar{\mathbf{x}}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_0,\mathbf{x}_1) \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) d\mathbf{x}_k \, d\mathbf{x}_k + \cdots \\ &+ \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_0,\mathbf{x}_1) L_e(\mathbf{x}_0,\mathbf{x}_1) \int_{\mathcal{P}_k} W_e(\mathbf{x}_0,\mathbf{x}_1) d\mathbf{x}_k \, d\mathbf{x}_1 \, d\mathbf{x}_1 \, d\mathbf{x}_1 \, d\mathbf{x}_2 \, d\mathbf{x}_1 \, d\mathbf{x}_2 \, d\mathbf{x}_2 \, d\mathbf{x}_$$

$$\begin{split} I_{j} &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{1}, \mathbf{x}_{0}) \, d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &= \int_{\mathcal{P}_{1}} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) T(\bar{\mathbf{x}}_{1}) d\bar{\mathbf{x}}_{1} \\ &+ \int_{\mathcal{P}_{2}} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) T(\bar{\mathbf{x}}_{2}) \, d\bar{\mathbf{x}}_{2} \\ &+ \int_{\mathcal{P}_{2}} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) T(\bar{\mathbf{x}}_{2}) \, d\bar{\mathbf{x}}_{2} \\ &+ \int_{\mathcal{P}_{k}} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}_{k}) \, d\bar{\mathbf{x}}_{k} + \cdots \end{split}$$

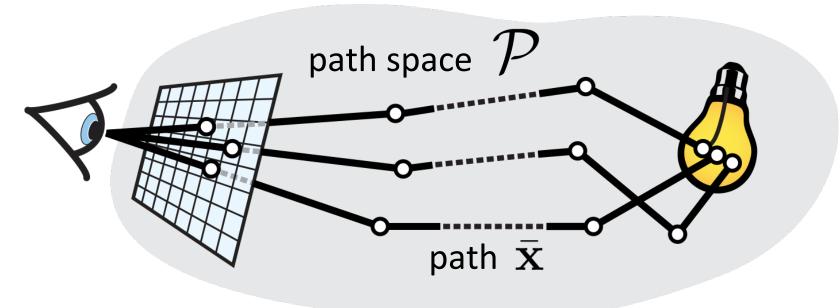
introduce:
$$\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$$

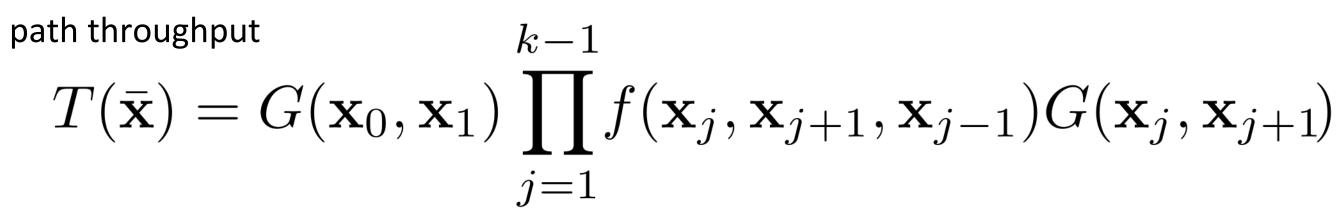
the *path space*, i.e. the space of all paths of all lengths

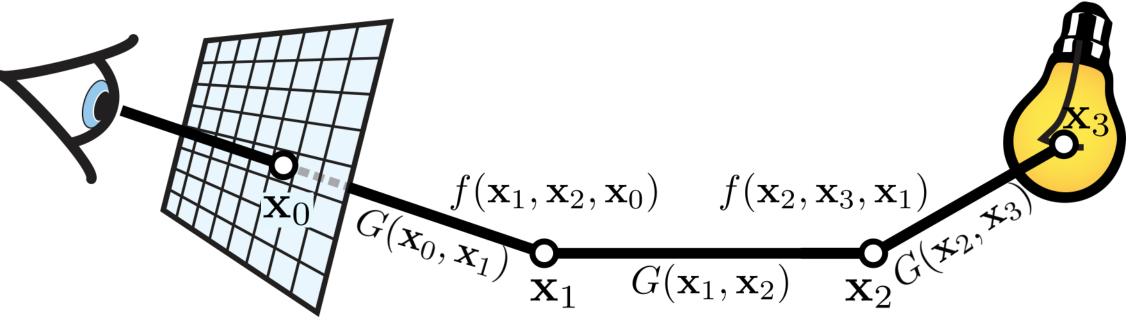


$$\begin{split} I_{j} &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{1}, \mathbf{x}_{0}) \, d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &= \int_{\mathcal{P}}^{\text{global illumination (all paths of all lengths)}} \\ &= \int_{\mathcal{P}} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) \, d\bar{\mathbf{x}} \end{split}$$

$$I_j = \int_{\mathcal{P}} W_e(\mathbf{x}_0, \mathbf{x}_1) L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$$







$$I_j = \int_{\mathcal{P}} W_e(\mathbf{x}_0, \mathbf{x}_1) L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$$

Advantages:

- no recursion, no "nasty" nested integrals
- emphasizes symmetry of light transport
- easy to relate different rendering algorithms
- focuses on path geometry, independent of strategy for constructing paths
- MC estimator on path space looks much simpler

$$I_j = \int_{\mathcal{P}} W_e(\mathbf{x}_0, \mathbf{x}_1) L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$$

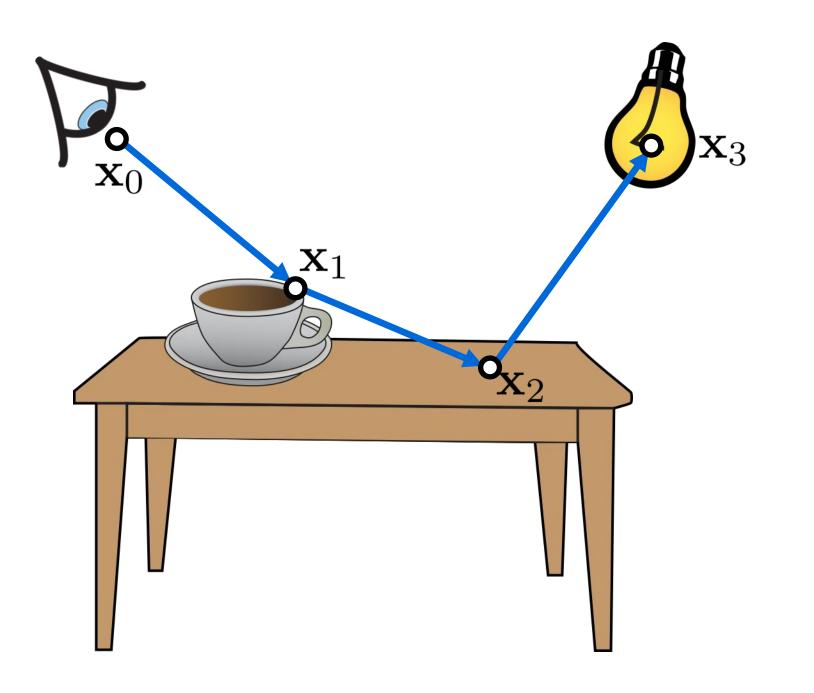
Monte Carlo estimator:

$$I_j \approx \frac{1}{N} \sum_{i=1}^{N} \frac{W_e(\mathbf{x}_{i,0}, \mathbf{x}_{i,1}) L_e(\mathbf{x}_{i,k}, \mathbf{x}_{i,k-1}) T(\bar{\mathbf{x}}_i)}{p(\bar{\mathbf{x}}_i)}$$

$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$$
 path PDF joint PDF of path vertices

$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$$

Path tracing w/o NEE



$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0)$$

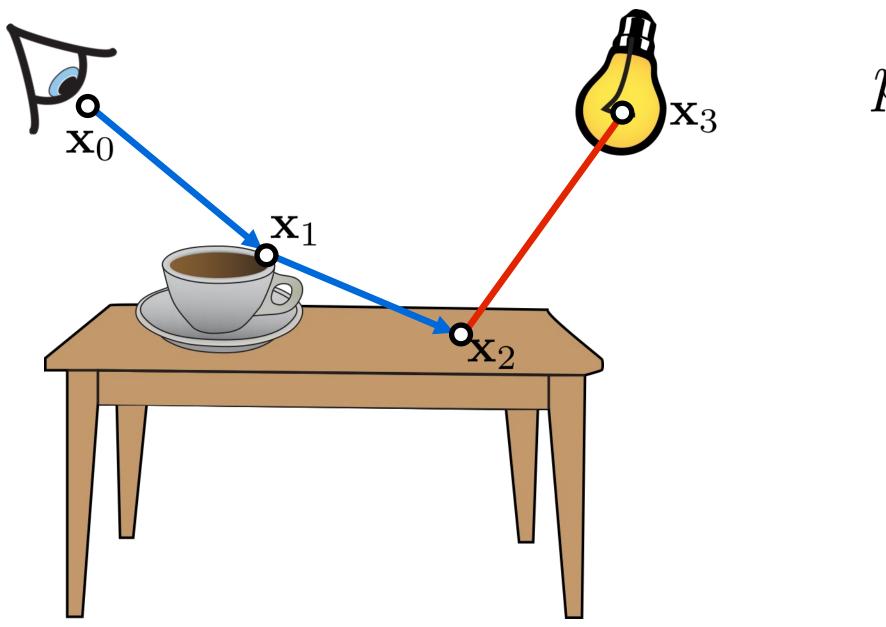
$$\times p(\mathbf{x}_1 | \mathbf{x}_0)$$

$$\times p(\mathbf{x}_2 | \mathbf{x}_0 \mathbf{x}_1)$$

$$\times p(\mathbf{x}_3 | \mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2)$$

$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$$

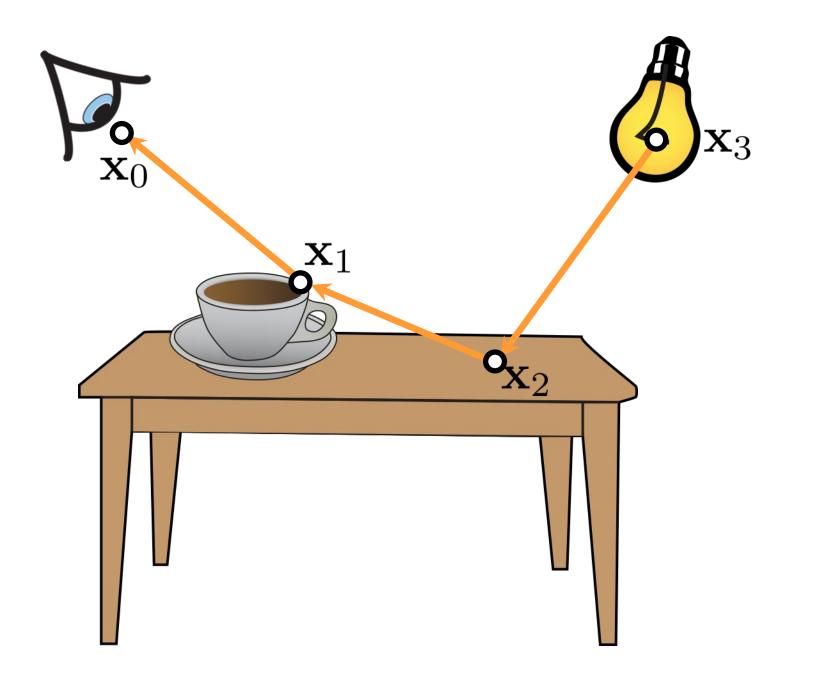
Path tracing with NEE



$$p(ar{\mathbf{x}}) = p(\mathbf{x}_0)$$
 $imes p(\mathbf{x}_1 | \mathbf{x}_0)$
 $imes p(\mathbf{x}_2 | \mathbf{x}_0 \mathbf{x}_1)$
 $imes p(\mathbf{x}_3)$
 $imes assuming uniform area sampling$

$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$$

Light tracing



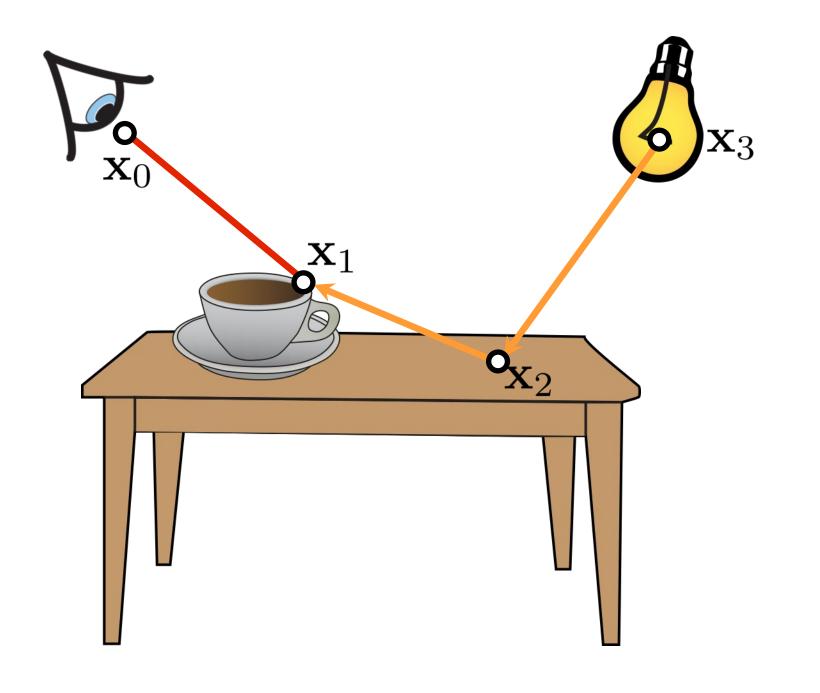
$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0 | \mathbf{x}_3 \mathbf{x}_2 \mathbf{x}_1)$$

$$\times p(\mathbf{x}_1 | \mathbf{x}_3 \mathbf{x}_2)$$

$$\times p(\mathbf{x}_2 | \mathbf{x}_3)$$

$$\times p(\mathbf{x}_3)$$

$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$$

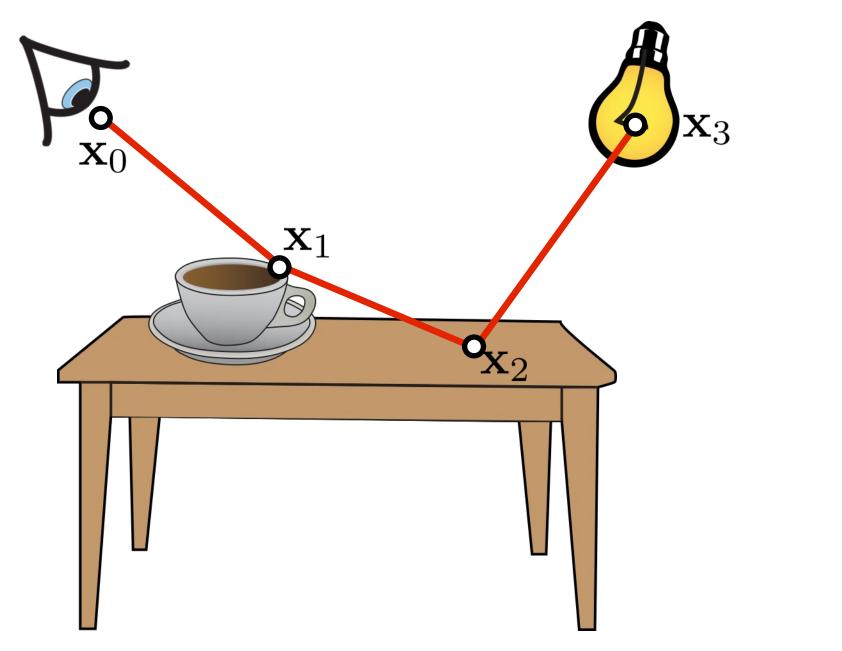


assuming uniform aperture sampling
$$p(ar{\mathbf{x}}) = p(\mathbf{x}_0)$$
 $imes p(\mathbf{x}_1 | \mathbf{x}_3 \mathbf{x}_2)$ $imes p(\mathbf{x}_2 | \mathbf{x}_3)$ $imes p(\mathbf{x}_3)$

$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$$

Independent sampling of path vertices

(not very practical though)



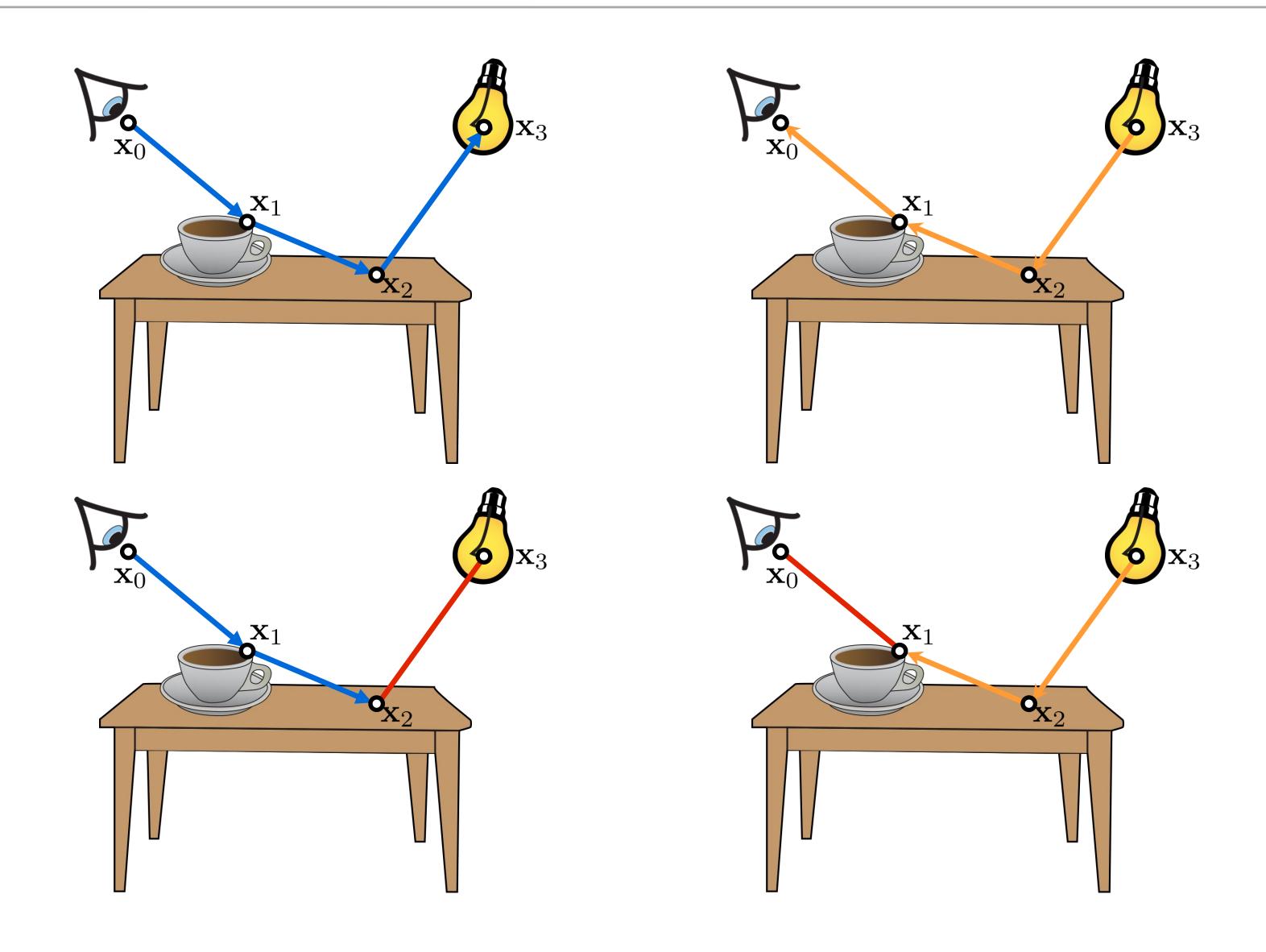
$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0)$$

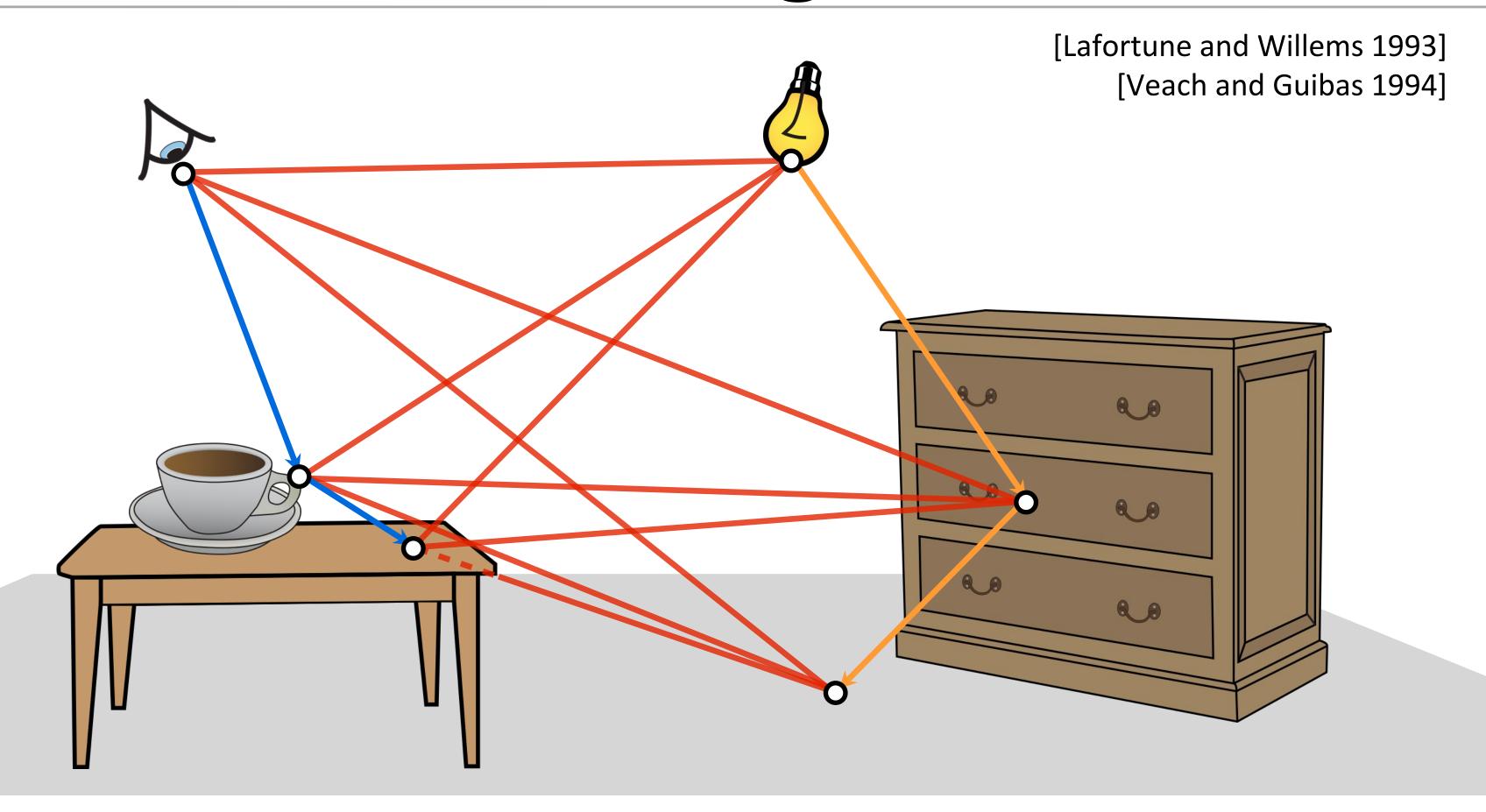
$$\times p(\mathbf{x}_1)$$

$$\times p(\mathbf{x}_2)$$

$$\times p(\mathbf{x}_3)$$

Can we combine them?





t - # vertices on camera subpath

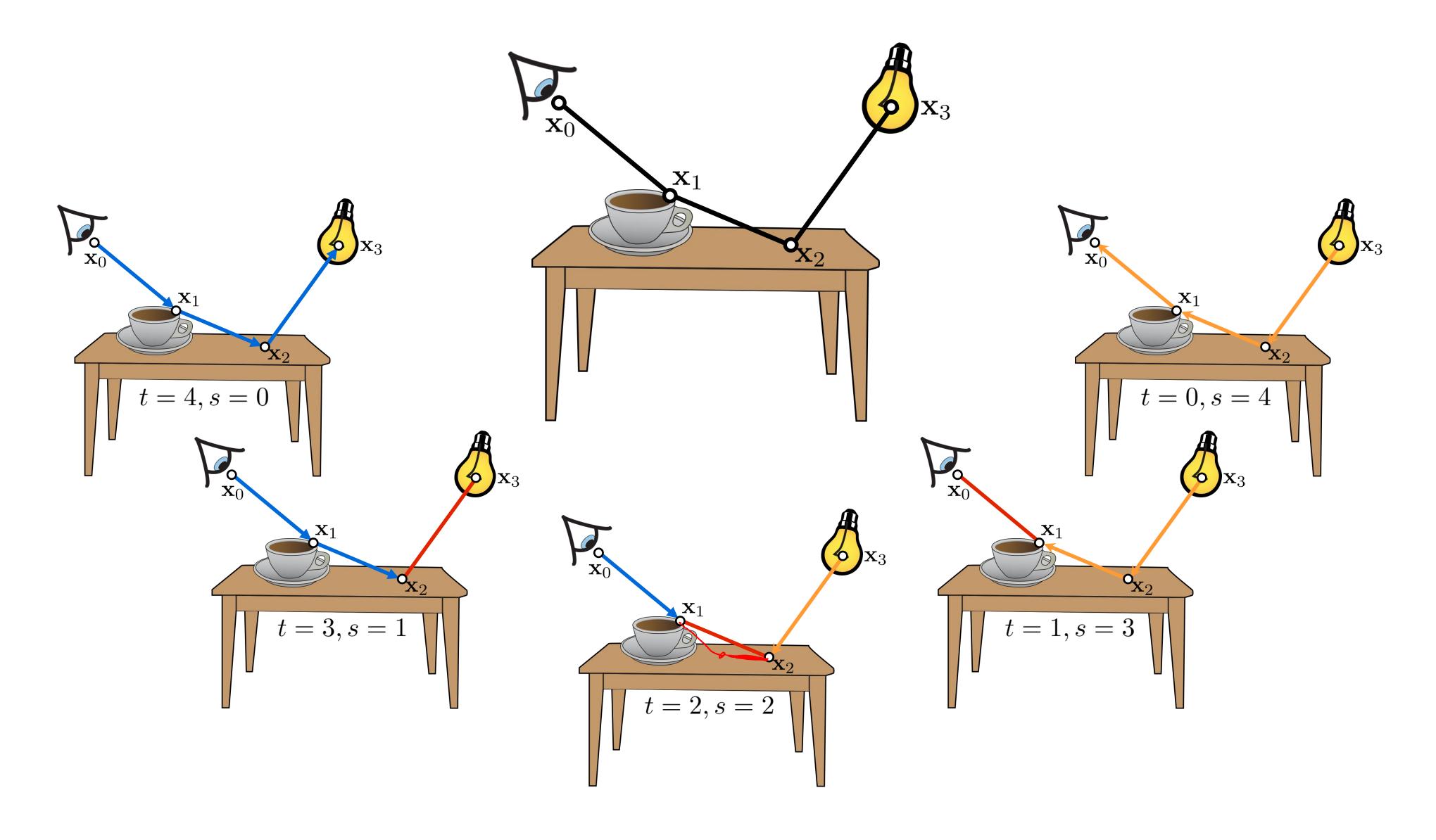
S- # vertices on light subpath

ts - # connections

```
color estimate (point x)
  lp = sample light subpath
  cp = sample camera subpath for image point x
  for each vertex s in 1 p
     for each vertex t in cp
        full Path = join(cp[0..s], lp[0..t])
        splat (full Path. screenPos,
ful l Path. contrib)
```

Key observations:

- Every path (formed by connecting camera sub-path to light sub-path) with k vertices can be constructed using $k\!+\!1$ strategies
- For a particular path length, all strategies estimate the same integral
- Each strategy has a different PDF, i.e., each strategy has different strengths and weaknesses
- Let's combine them using MIS!



Images courtesy of W. Jakob

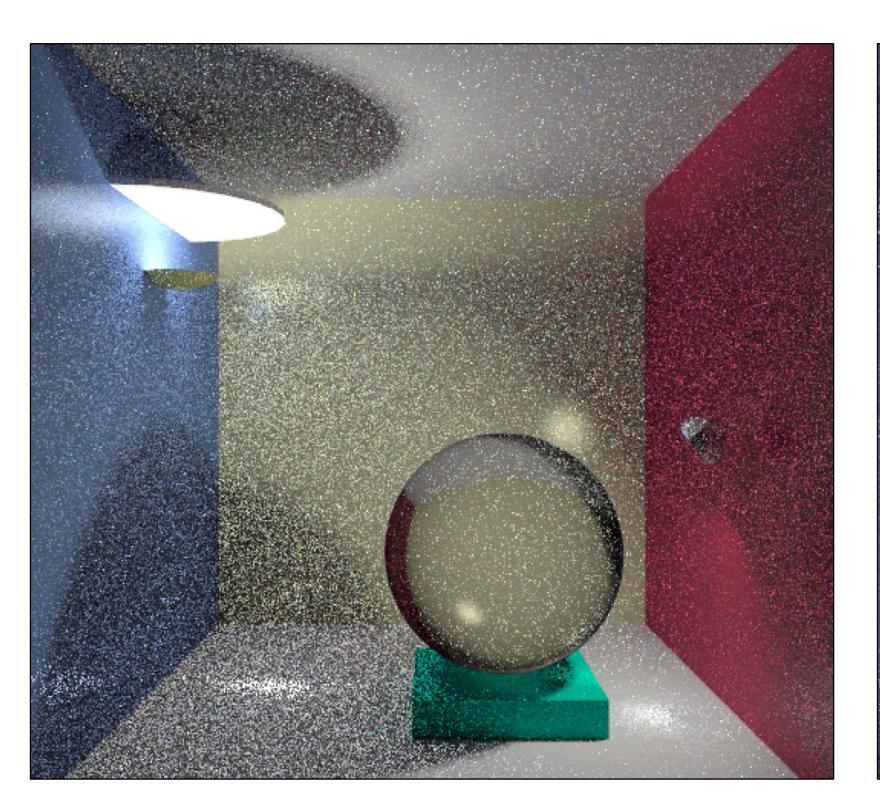
Bidirectional Path Tracing (MIS)

Images courtesy of W. Jakob

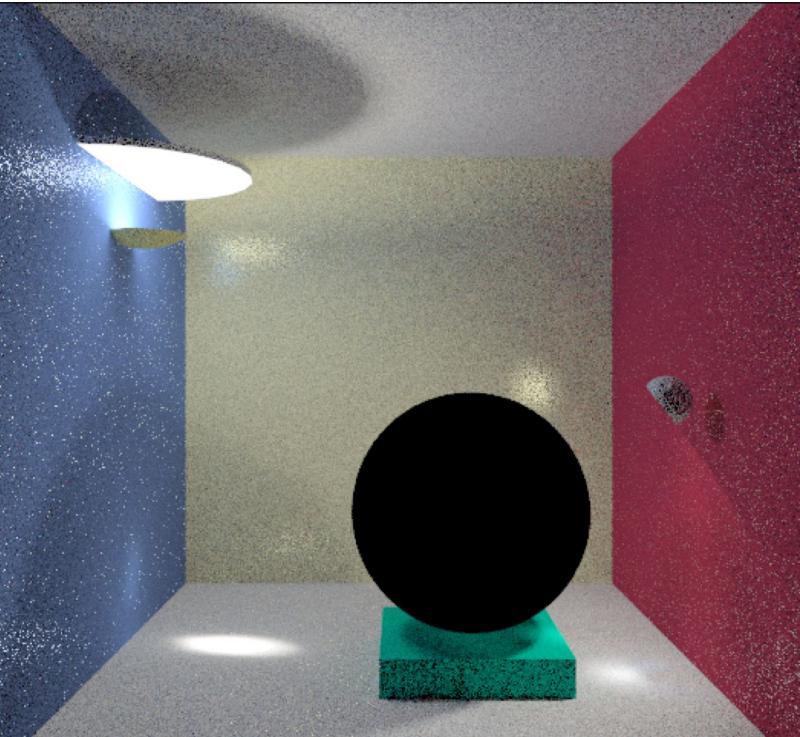
(Unidirectional) path tracing

Bidirectional path tracing

Path tracing



Light tracing



Bidirectional PT

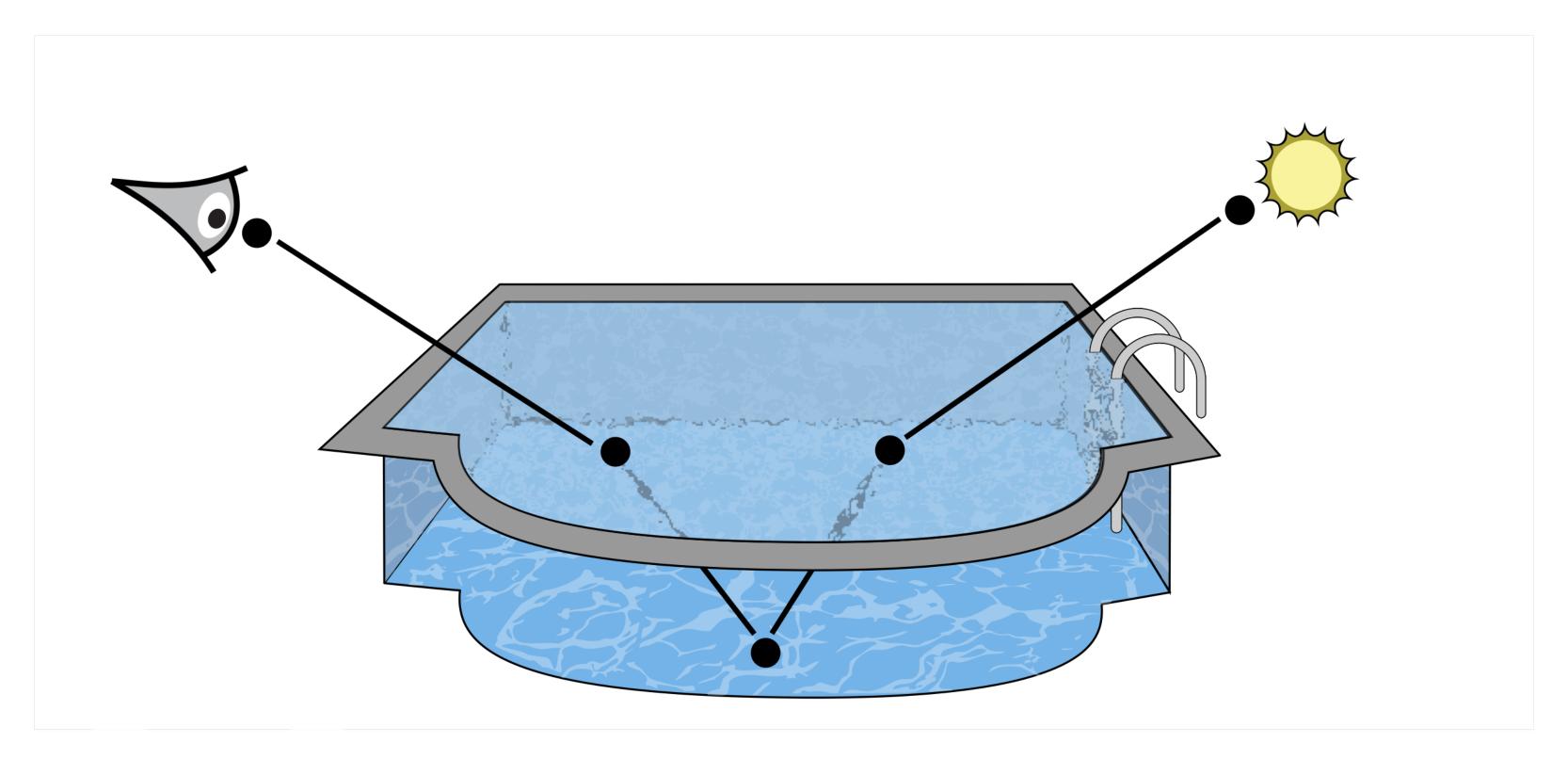
Still not robust enough...

Reference

Bidirectional PT

L(D(S) + SDS) (D1S) + C

Still not robust enough...



LSDSE paths are difficult for any unbiased method

Still not robust enough...

Extensions

- Combination with photon mapping
 - Unified Path Sampling [Hachisuka et al. 2012]
 - Vertex Connection Merging [Georgiev et al. 2012]
- Metropolis sampling (global PDF)
- Path-space regularization [Kaplanyan et al. 2013]
- Path guiding (learn global PDF)