Direct illumination

15-468, 15-668, 15-868 Physics-based Rendering

Course announcements

- Take-home quiz 5 due tonight.
- Take-home quiz 6 will be posted tonight.
- Programming assignment 3 posted, due Friday 3/10 at 23:59.
- How many of you have looked at/started/finished it?
- Any questions?
- Extra lecture tomorrow, $11 \mathrm{am}-12: 20 \mathrm{pm}$, at GHC 6501.

Overview of today's lecture

- Importance sampling the reflectance equation.
- BRDF importance sampling.
- Direct versus indirect illumination.
- Different forms of the reflectance equation.
- Environment lighting.
- Light sources.
- Mixture sampling.
- Multiple importance sampling.

Slide credits

Most of these slides were directly adapted from:

- Wojciech Jarosz (Dartmouth).

Reflection equation

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

Reflection equation

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

This is what we did for ambient occlusion

Uniform hemispherical sampling

Cosine-weighted importance sampling

Reflection equation

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

Importance Sampling the BRDF

Cosine-weighted
importance sampling

BRDF importance sampling

$p\left(\vec{\omega}_{i}\right) \propto f\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right)$

Importance Sampling the BRDF

Phong BRDF

Normalized exponentiated cosine lobe:

$$
\begin{aligned}
f_{r}\left(\vec{\omega}_{0}, \vec{\omega}_{i}\right) & =\frac{e+2}{2 \pi}\left(\vec{\omega}_{r} \cdot \vec{\omega}_{0}\right)^{e} \\
\vec{\omega}_{r} & =\left(2 \overrightarrow{\mathbf{n}}\left(\overrightarrow{\mathbf{n}} \cdot \vec{\omega}_{i}\right)-\vec{\omega}_{i}\right)
\end{aligned}
$$

Phong BRDF

Normalized exponentiated cosine lobe:

$$
\begin{aligned}
f_{r}\left(\vec{\omega}_{0}, \vec{\omega}_{i}\right) & =\frac{e+2}{2 \pi}\left(\vec{\omega}_{r} \cdot \vec{\omega}_{o}\right)^{e} \\
\vec{\omega}_{r} & =\left(2 \overrightarrow{\mathbf{n}}\left(\overrightarrow{\mathbf{n}} \cdot \vec{\omega}_{i}\right)-\vec{\omega}_{i}\right)
\end{aligned}
$$

Interpretation

- randomize reflection rays in a lobe about mirror direction
- perfect mirror reflection of a blurred light

Blinn-Phong BRDF

Randomize normals instead of reflection directions

$$
\begin{aligned}
f_{r}\left(\vec{\omega}_{0}, \vec{\omega}_{i}\right) & =\frac{e+2}{2 \pi}\left(\vec{\omega}_{h} \cdot \overrightarrow{\mathbf{n}}\right)^{e} \\
\vec{\omega}_{h} & =\frac{\vec{\omega}_{i}+\vec{\omega}_{0}}{\left\|\vec{\omega}_{i}+\vec{\omega}_{0}\right\|}
\end{aligned}
$$

Phong BRDF

$$
\begin{aligned}
f_{r}\left(\vec{\omega}_{0}, \vec{\omega}_{i}\right) & =\frac{e+2}{2 \pi}\left(\vec{\omega}_{r} \cdot \vec{\omega}_{o}\right)^{e} \\
\vec{\omega}_{r} & =\left(2 \overrightarrow{\mathbf{n}}\left(\overrightarrow{\mathbf{n}} \cdot \vec{\omega}_{i}\right)-\vec{\omega}_{i}\right)
\end{aligned}
$$

Importance Sampling the BRDF

Recipe:

1. Express the desired distribution in a convenient coordinate system

- requires computing the Jacobian

2. Compute marginal and conditional 1D PDFs
3. Sample 1D PDFs using the inversion method

Sampling the Blinn-Phong BRDF

$$
f_{r}\left(\vec{\omega}_{0}, \vec{\omega}_{i}\right)=\frac{e+2}{2 \pi}\left(\vec{\omega}_{h} \cdot \overrightarrow{\mathbf{n}}\right)^{e}
$$

Mirror reflection from random micro-normal
General recipe:

- randomly generate a ω_{h}, with PDF proportional to $\cos ^{e}$
- reflect incident direction ω_{i} about ω_{h} to obtain ω_{o}
- convert $\operatorname{PDF}\left(\omega_{h}\right)$ to $\operatorname{PDF}\left(\omega_{o}\right)$ (change-of-variable)

Read PBRTv3 14.1

Half-direction transform

2D:

$$
\theta_{h}:=\frac{\theta_{i}+\theta_{0}}{2}
$$

$$
\frac{\mathrm{d} \theta_{h}}{\mathrm{~d} \theta_{o}}=?
$$

$$
\boldsymbol{\omega}_{h}:=\frac{\boldsymbol{\omega}_{i}+\boldsymbol{\omega}_{o}}{\left\|\boldsymbol{\omega}_{i}+\boldsymbol{\omega}_{o}\right\|}
$$

$\frac{\mathrm{d} \omega_{h}}{\mathrm{~d} \omega_{o}}=$

Reflection equation

What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

Direct vs. Indirect illumination

Direct vs. Indirect Illumination

$\begin{aligned} & \text { Where does } L_{i} \\ & \text { "come from"? }\end{aligned} \quad L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}$

Direct vs. Indirect Illumination

$\begin{aligned} & \text { Where does } L_{i} \\ & \text { "come from"? }\end{aligned} \quad L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}$

Direct vs. Indirect Illumination

Direct illumination

Indirect illumination

Direct + indirect illumination

Direct vs. Indirect Illumination

Direct illumination only

Direct + Indirect illumination

Images courtesy of PDI/DreamWorks

Importance Sampling Incident Radiance

Generally impossible, but...

Importance Sampling Incident Radiance

Generally impossible, but possible if we assume only direct illumination

Direct Illumination

The incident radiance L_{i} at \mathbf{x} from direction ω equals the emitted radiance L_{e} at the end of the ray from \mathbf{x} towards ω :

$$
L_{i}(\mathbf{x}, \vec{\omega})=L_{e}(r(\mathbf{x}, \vec{\omega}),-\vec{\omega})
$$

Direct Illumination

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i}\right),-\vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

How can we estimate the integral?

$$
\left\langle L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)^{N}\right\rangle=\frac{1}{N} \sum_{k=1}^{N} \frac{f_{r}\left(\mathbf{x}, \vec{\omega}_{i, k}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i, k}\right),-\vec{\omega}_{i, k}\right) \cos \theta_{i, k}}{p_{\Omega}\left(\vec{\omega}_{i, k}\right)}
$$

Direct Illumination

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{\mathrm{H}^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i}\right),-\vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

Direct Illumination

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{\mathrm{H}^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i}\right),-\vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

Direct Illumination

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{\mathrm{H}^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i}\right),-\vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

Direct Illumination

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i}\right),-\vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

For direct illumination, it would be better to explicitly sample emissive surfaces

Forms of Reflection Equation

Hemispherical
integration

2
$L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}$

Surface Area integration

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{i}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) d A(\mathbf{y})
$$

Forms of Reflection Equation

Change in notation:

$$
\begin{aligned}
L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) & =L_{i}(\mathbf{x}, \mathbf{y}) \\
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right) & =L_{r}(\mathbf{x}, \mathbf{z}) \\
f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) & =f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z})
\end{aligned}
$$

Transform integral over directions into integral over surface area.

Jacobian determinant of the trans.:

$$
d \vec{\omega}_{i}=\frac{\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A
$$

Forms of Reflection Equation

$$
\begin{aligned}
L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) & =L_{i}(\mathbf{x}, \mathbf{y}) \\
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right) & =L_{r}(\mathbf{x}, \mathbf{z}) \\
f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) & =f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\
d \vec{\omega}_{i} & =\frac{\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A
\end{aligned}
$$

Hemispherical form:

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

Surface area form:

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{i}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) d A(\mathbf{y})
$$

Area Form of the Reflection Eq.

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{i}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) d A(\mathbf{y})
$$

Geometry term:

$$
G(\mathbf{x}, \mathbf{y})=V(\mathbf{x}, \mathbf{y}) \frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}}
$$

Visibility term:

$$
V(\mathbf{x}, \mathbf{y})= \begin{cases}1: & \text { visible } \\ 0: & \text { not visible }\end{cases}
$$

Area Form of the Reflection Eq.

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{i}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) d A(\mathbf{y})
$$

Original foreshortening term
Geometry term:

$$
G(\mathbf{x}, \mathbf{y})=V(\mathbf{x}, \mathbf{y}) \frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{0}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}}
$$

Jacobian determinant
of the transform

Visibility term:

$$
V(\mathbf{x}, \mathbf{y})= \begin{cases}1: & \text { visible } \\ 0: & \text { not visible }\end{cases}
$$

$$
d \vec{\omega}_{i}=\frac{\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A
$$

Area Form of the Reflection Eq.

Interpreting

$$
\frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}}
$$

The chance that a photon emitted from a differential patch will hit another diff. patch decreases as:

- the patches face away from each other (numerator)
- the patches move away from each other (denominator)

Area Form of the Reflection Eq.

Interpreting

$$
\frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}}
$$

Direct Illumination

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i}\right),-\vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

Direct Illumination

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{e}(\mathbf{y}, \mathbf{x}) V(\mathbf{x}, \mathbf{y}) \frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A(\mathbf{y})
$$

Direct Illumination

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A_{e}} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{e}(\mathbf{y}, \mathbf{x}) V(\mathbf{x}, \mathbf{y}) \frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A(\mathbf{y})
$$

Direct Illumination

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A_{e}} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{e}(\mathbf{y}, \mathbf{x}) V(\mathbf{x}, \mathbf{y}) \frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A(\mathbf{y})
$$

Direct Illumination

$$
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A_{e}} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{e}(\mathbf{y}, \mathbf{x}) V(\mathbf{x}, \mathbf{y}) \frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A(\mathbf{y})
$$

Direct Illumination

Sampling the hemisphere

Direct Illumination

Sampling the area of the light

Forms of Reflection Equation

Hemispherical
integration

Surface Area integration

$L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}$
$L_{r}(\mathbf{x}, \mathbf{z})=\int_{A} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{i}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) d A(\mathbf{y})$
How do we decide which one to use for sampling direct illumination?

- The answer depends on the types of light sources in the scene.

Light Sources

Environment Lighting

Environment Lighting

Environment Lighting

The image "wraps" around the virtual scene, serving as a distant source of illumination

Convenient to express using the hemispherical form of the reflectance equation

$$
\begin{aligned}
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right) & =\int_{\Omega} f_{r}\left(\vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i} \\
& =\int_{\Omega} f_{r}\left(\vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{\mathrm{env}}\left(\vec{\omega}_{i}\right) V\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
\end{aligned}
$$

Environment Lighting

Environment Lighting

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{\Omega} f_{r}\left(\vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{\mathrm{env}}\left(\vec{\omega}_{i}\right) V\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

Importance Sampling Lenv

Sample using the hemispherical form of the reflectance equation and pdf

$$
p\left(\vec{\omega}_{i}\right) \propto L_{\mathrm{env}}\left(\vec{\omega}_{i}\right)
$$

Importance Sampling Lenv

$$
p\left(\vec{\omega}_{i}\right) \propto L_{\mathrm{env}}\left(\vec{\omega}_{i}\right)
$$

Several strategies exist
We'll discuss:

- Marginal/Conditional CDF method
- Hierarchical warping method

Importance Sampling

Recipe:

1. Express the desired distribution in a convenient coordinate system

- requires computing the Jacobian

2. Compute marginal and conditional 1D PDFs
3. Sample 1D PDFs using the inversion method

Marginal/Conditional CDF

Assume the lat/long parameterization
Draw samples from joint $\quad p(\theta, \phi) \propto L_{\text {env }}(\theta, \phi) \sin \theta$

Why the Sine?

General case of integrating some $f(\vec{\omega})$ over S^{2}
If we set $\quad d \vec{\omega}=\sin \theta d \theta d \phi \quad$ we want to cancel out the sine.
$>_{\text {Comes from the Jacobian }}$

$$
\begin{aligned}
& \int_{S^{2}} f(\vec{\omega}) d \vec{\omega}=\int_{0}^{2 \pi} \int_{0}^{\pi} f(\theta, \phi) \sin \theta d \theta d \phi \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(\theta_{i}, \phi_{i}\right) \sin \theta_{i}}{p\left(\theta_{i}, \phi_{i}\right)} \\
& p(\theta, \phi) \propto f(\theta, \phi) \sin \theta
\end{aligned}
$$

Marginal/Conditional CDF

Assume the lat/long parameterization

Draw samples from joint $\quad p(\theta, \phi) \propto L_{\mathrm{env}}(\theta, \phi) \sin \theta$

- Step 1: create scalar version $L^{\prime}(\theta, \phi)$ of $L_{\mathrm{env}}(\theta, \phi) \sin \theta$
- Step 2: compute marginal PDF

$$
p(\theta)=\int_{0}^{2 \pi} L^{\prime}(\theta, \phi) d \phi
$$

- Step 3: compute conditional PDF

$$
p(\phi \mid \theta)=\frac{p(\theta, \phi)}{p(\theta)}
$$

- Step 4: draw samples $\theta_{i} \sim p(\theta)$ and $\phi_{i}=p(\phi \mid \theta)$

Step 1: Scalar Importance Func.

Original environment map

Step 1: Scalar Importance Func.

Scalar version
(average, max, or luminance of RGB channels)

ϕ

Step 1: Scalar Importance Func.

Multiplied by $\sin \theta$

Step 2: Marginalization

Step 3: Conditional PDFs

Once normalized, each row can serve as the conditional PDF

Step 4: Sampling

Step 4: Sampling

Sampling Discrete 1D PDFs

Sampling Discrete 1D PDFs

Given a uniform random value ξ
Find x_{i} and x_{i+1} using binary search
Linearly interpolate to find x

C++ details

Don't need to implement binary search yourself!

- Given sorted list, use std::lower_bound(...)
- See implementation in PBRT

Resulting Sample Distribution

Light Sources

Light Sources

Point Light

Omnidirectional emission from a single point
Typically defined using a point \mathbf{p} and emitted power Φ

- delta function with respect to which form of the reflection equation?

Point Light

Omnidirectional emission from a single point
Typically defined using a point \mathbf{p} and emitted power Φ

- delta function with respect to surface integral form of the reflection equation

$$
\begin{gathered}
L_{r}(\mathbf{x}, \mathbf{z})=\int_{A_{e}} f_{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}) L_{e}(\mathbf{y}, \mathbf{x}) V(\mathbf{x}, \mathbf{y}) \frac{\left|\cos \theta_{i}\right|\left|\cos \theta_{o}\right|}{\|\mathbf{x}-\mathbf{y}\|^{2}} d A(\mathbf{y}) \\
L_{e}(\mathbf{y}, \mathbf{x})=\frac{\Phi}{4 \pi} \delta(\mathbf{y}-\mathbf{p}) \\
L_{r}(\mathbf{x}, \mathbf{z})=\frac{\Phi}{4 \pi} f_{r}(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{\left|\cos \theta_{i}\right|}{\|\mathbf{x}-\mathbf{p}\|^{2}}
\end{gathered}
$$

Point Light

Omnidirectional emission from a single point
Typically defined using a point \mathbf{p} and emitted power Φ

- delta function with respect to surface integral form of the reflection equation

$$
L_{r}(\mathbf{x}, \mathbf{z})=\frac{\Phi}{4 \pi} f_{r}(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{\left|\cos \theta_{i}\right|}{\|\mathbf{x}-\mathbf{p}\|^{2}}
$$

Spot Light?

Directionally dependent emission from a single point Typically defined using a point \mathbf{p} and ...

$$
L_{r}(\mathbf{x}, \mathbf{z})=\frac{\Phi}{4 \pi} f_{r}(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{\left|\cos \theta_{i}\right|}{\|\mathbf{x}-\mathbf{p}\|^{2}}
$$

Spot Light

Directionally dependent emission from a single point
Typically defined using a point \mathbf{p} and a directionally dependent radiant intensity function I

$$
L_{r}(\mathbf{x}, \mathbf{z})=I(\mathbf{p}, \mathbf{x}), f_{r}(\mathbf{x}, \mathbf{p}, \mathbf{z}) V(\mathbf{x}, \mathbf{p}) \frac{\left|\cos \theta_{i}\right|}{\|\mathbf{x}-\mathbf{p}\|^{2}}
$$

The intensity can be defined using IES profiles:

Directional Light

Far-away emission from single direction (delta environment map)
Typically defined using a direction $\vec{\omega}_{d}$ and radiance L_{d}

- delta function with respect to which form of the reflection equation?

Directional Light

Far-away emission from single direction (delta environment map)
Typically defined using a direction $\vec{\omega}_{d}$ and radiance L_{d}

- delta function with respect to hemispherical integral form of the reflection equation

$$
\begin{gathered}
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{e}\left(r\left(\mathbf{x}, \vec{\omega}_{i}\right),-\vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i} \\
L_{e}(\mathbf{y}, \vec{\omega})=V\left(\mathbf{y}, \vec{\omega}_{d}\right) L_{d} \delta\left(\vec{\omega}_{d}-\vec{\omega}\right) \\
L\left(\mathbf{x}, \vec{\omega}_{r}\right)=f_{r}\left(\mathbf{x}, \vec{\omega}_{d}, \vec{\omega}_{r}\right) V\left(\mathbf{x}, \vec{\omega}_{d}\right) L_{d} \cos \theta_{d}
\end{gathered}
$$

Quad Light

Has finite area... creates soft shadows

Quad Light

Point light

Quad light

Sphere Light

Typically defined using a center \mathbf{p}, radius r, and emitted power Φ (or emitted radiance L_{e})
Has finite surface area $4 \pi r^{2}$

Sphere Light

How to sample points on the sphere light?
Approach 1: uniformly sample sphere area

Sphere Light

How to sample points on the sphere light?
Approach 1: uniformly sample sphere area

Sphere Light

How to sample points on the sphere light?
Approach 2 (better): uniformly sample area of the visible spherical cap

Sphere Light

How to sample points on the sphere light?
Approach 2 (better): uniformly sample area of the visible spherical cap

Uniform area-density is not ideal as emitted radiance is weighted by the cosine term (recall the form factor in the G term)

Sphere Light

How to sample points on the sphere light?
Approach 3 (even better): uniformly sample solid angle subtended by the sphere

Sphere Light

How to sample points on the sphere light?
Approach 3 (even better): uniformly sample solid angle subtended by the sphere

Sphere Light

How to sample points on the sphere light?

Caution!

- Approaches use PDFs defined wrt different measures
- Make sure to convert the PDF into the measure of the integral!

$$
\begin{aligned}
& p_{A}(\mathbf{x})=\frac{\cos \theta}{d^{2}} p_{\Omega}(\vec{\omega}) \\
& p_{\Omega}(\vec{\omega})=\frac{d^{2}}{\cos \theta} p_{A}(\mathbf{x})
\end{aligned}
$$

Sphere Light

How to sample points on the sphere light?

Caution!

- Approaches use PDFs defined wrt different measures
- Make sure to convert the PDF into the measure of the integral!
- Example: using approach 1 for MC integration of the hemispherical formulation of the reflection eq.

$$
\begin{array}{rr}
\therefore \ddots & \left\langle L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)\right\rangle=\frac{1}{N} \sum_{k=1}^{N} \frac{f_{r}\left(\mathbf{x}, \vec{\omega}_{i, k}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i, k}\right) \cos \theta_{i, k}}{p_{\Omega}\left(\vec{\omega}_{i, k}\right)} \\
\therefore \therefore \cdot & \\
\vdots & p_{A}(\mathbf{y})=\frac{1}{4 \pi r^{2}}
\end{array} p_{\Omega}\left(\vec{\omega}_{i}\right)=\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{\left|-\omega_{i} \cdot \mathbf{n}_{\mathbf{y}}\right| 4 \pi r^{2}}
$$

Sphere Light

Validation: irradiance is independent of radius (assuming it emits always the same power \& no occluders)

A sphere light A smaller sphere light A point light

Identical irradiance profiles

Mesh Light

An emissive mesh where every surface point emits given radiance L_{e}

Total area: $\sum A(k)$

Mesh Light

How to importance sample?

Preprocess:

- build a discrete PDF, p_{Δ}, for choosing polygons (triangles) proportional to their area:

Run-time:

$$
p_{\Delta}(i)=\frac{A(i)}{\sum_{k} A(k)}
$$

- sample a polygon i and a point \mathbf{X} on i
- compute the PDF of choosing the point:

$$
p_{A}(\mathbf{x})=p_{\Delta}(i) p_{A}(\mathbf{x} \mid i)=\frac{1}{\sum A(k)}
$$

Light Sources

Light Sources

- sample using surface integral form
- sample using hemispherical integral form

typically, but not always

Reflection Equation

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
$$

What terms can we importance sample?

- BRDF
- incident radiance
- cosine term

What terms should we importance sample?

- depends on the context, hard to make a general statement

Multiple Strategies

Cosine-weighted hemisphere

Uniform surface area

Combining Multiple Strategies

Cosine-weighted hemisphere

$$
p_{1}(\vec{\omega})=\frac{\cos \theta}{\pi}
$$

Uniform surface area

$$
p_{2}(\mathbf{x})=\frac{1}{A}
$$

Combining Multiple Strategies

Cosine-weighted hemisphere

$$
p_{1}(\vec{\omega})=\frac{\cos \theta}{\pi}
$$

Uniform surface area

$$
p_{2}(\mathrm{x})=\frac{1}{A} \quad p_{2}(\vec{\omega})=\frac{1}{A} \frac{d^{2}}{\cos \theta}
$$

Fireflies

In MC integration, variance is high when the PDF is not proportional to the integrand

Worst case: rare samples with huge contributions

"fireflies"

Motivation

In MC integration, variance is high when the PDF is not proportional to the integrand

Worst case: rare samples with huge contributions

$$
\left\langle F^{N}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \text { large value } \text { small value }
$$

We often have multiple sampling strategies
If at least one covers each part of the integrand well, then combining them should reduce fireflies

Multiple Importance Sampling (MIS) and mixture sampling

Combining Multiple Strategies

Could just average two different estimators:

$$
\frac{0.5}{N_{1}} \sum_{i=1}^{N_{1}} \frac{f\left(x_{i}\right)}{p_{1}\left(x_{i}\right)}+\frac{0.5}{N_{2}} \sum_{i=1}^{N_{2}} \frac{f\left(x_{i}\right)}{p_{2}\left(x_{i}\right)}
$$

- doesn't really help if weights independent of sample: variance is additive

Multiple Importance Sampling

Combination of 2 strategies using sample-dependent weights:

$$
\left\langle F^{\mathrm{MIS}}\right\rangle=w_{1}\left(x_{1}\right) \frac{f\left(x_{1}\right)}{p_{1}\left(x_{1}\right)}+w_{2}\left(x_{2}\right) \frac{f\left(x_{2}\right)}{p_{2}\left(x_{2}\right)}
$$

- where:

$$
w_{1}(x)+w_{2}(x)=1
$$

Multiple Importance Sampling

Combination of M strategies with sample-dependent weights:

$$
\left\langle F^{\sum N_{s}}\right\rangle=\sum_{s=1}^{M} \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} w_{s}\left(x_{i}\right) \frac{f\left(x_{i}\right)}{p_{s}\left(x_{i}\right)}
$$

- where:

$$
\sum_{s=1}^{M} w_{s}(x)=1
$$

How to choose the weights?

Multiple Importance Sampling

Balance heuristic (provably good):

$$
w_{s}(x)=\frac{p_{s}(x)}{\sum_{j} p_{j}(x)}
$$

Power heuristic (more aggressive, can be better):

Other heuristics exist

$$
w_{s}(x)=\frac{p_{s}(x)^{\beta}}{\sum_{j} p_{j}(x)^{\beta}}
$$

- e.g. cutoff heuristic, maximum heuristic, ...

Multiple Importance Sampling

Multi-sample model: deterministically allocate N_{s} samples to s-th strategy

$$
\left\langle F^{\sum N_{s}}\right\rangle=\sum_{s=1}^{M} \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} w_{s}\left(x_{i}\right) \frac{f\left(x_{i}\right)}{p_{s}\left(x_{i}\right)}
$$

What if we want to draw just one sample?
One-sample model: randomly select to use s-th strategy

$$
\left\langle F^{1}\right\rangle=w_{s}(x) \frac{f(x)}{q_{s} p_{s}(x)}
$$

where q_{s} is the probability of using strategy s, and

$$
\sum_{s=1}^{N} q_{s}=1
$$

Interpreting the Balance Heuristic

Balance heuristic for the one-sample model:

$$
w_{s}(x)=\frac{q_{s} p_{s}(x)}{\sum_{j} q_{j} p_{j}(x)}
$$

Plugged into the one-sample model:

$$
\left\langle F^{1}\right\rangle=w_{s}(x) \frac{f(x)}{q_{s} p_{s}(x)}=\frac{q_{s} p_{s}(x)}{\sum_{j} q_{j} p_{j}(x)} \frac{f(x)}{q_{s} p_{s}(x)}=\frac{f(x)}{\sum_{j} q_{j} p_{j}(x)}
$$

One-sample model with balance heuristic samples from average PDF (mixture sampling)

Mixture sampling

Instead of averaging multiple estimators

$$
\frac{0.5}{N_{1}} \sum_{i=1}^{N_{1}} w_{1}\left(x_{i}\right) \frac{f\left(x_{i}\right)}{p_{1}\left(x_{i}\right)}+\frac{0.5}{N_{2}} \sum_{i=1}^{N_{2}} w_{2}\left(x_{i}\right) \frac{f\left(x_{i}\right)}{p_{2}\left(x_{i}\right)}, \quad N_{1}+N_{2}=N
$$

sample from the average PDF

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{0.5\left(p_{1}\left(x_{i}\right)+p_{2}\left(x_{i}\right)\right)}
$$

Sample from Average PDF (mixture sampling)

You are given two sampling functions and their corresponding pdfs:

```
float sample1(float rnd); float pdf1(float x);
float sample2(float rnd); float pdf2(float x);
```

Create a new function:
float sampleAvg(float rnd);
which has the corresponding pdf:

```
float pdfAvg(float x)
{
    return 0.5 * (pdf1(x) + pdf2(x));
}
```


Sample from Average PDF (mixture sampling)

```
float sampleAvg(float rnd)
{
float Prob1 = 0.5;
if (rand.nextFloat() < Prob1)
return sample1(rnd);
else
return sample2(rnd);
}
```


Sample from Average PDF (mixture sampling)

```
float sampleAvg(float rnd)
{
float Prob1 = 0.5;
if (rnd < Prob1)
return sample1(rnd);
else
return sample2(rnd);
}
```


Sample from Average PDF (mixture sampling)

Sample from Average PDF (mixture sampling)

Sample from Average PDF (mixture sampling)

```
float sampleAvg(float rnd)
{
float Prob1 = 0.5;
if (rnd < Prob1)
return sample1(rnd/Prob1);
else
return sample2((rnd-Prob1)/(1-Prob1));
}
01
\(\square\) 01
```


Sample from Weighted Average

```
float sampleWeightedAvg(float rnd)
{
float Prob1 = 0.25;
if (rnd < Prob1)
return sample1(rnd/ Prob1);
else
return sample2((rnd-Prob1)/(1-Prob1));
}
float pdfWeightedAvg(float x)
{
    return 0.25 * pdf1(x) + 0.75 * pdf2(x);
}
```


Why Does it Work?

Using a single strategy:

$$
\left\langle F^{N}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \text { - large value } \text { small value }
$$

Combining multiple strategies using balance heuristic (MIS or mixture sampling):

$$
\left\langle F^{N}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{\sum_{j} q_{j} p_{j}\left(x_{i}\right)} \text { - relatively large value }
$$

(as long as at least one PDF is large)

Cosine-weighted sampling

Uniform surface area sampling

Cosine-weirhted sampling ($\times 4$)

Uniform surface area (×4)

Cosine-weighted sampling (/ 2)

Uniform surface area (/ 2)

Mixture sampling (/ 2)

BSDF sampling

Light sampling

Mixture sampling

Sampling the Light

Sampling the BRDF

Multiple Importance Sampling

Multiple Importance Sampling

See PBRe3 13.10.1 for more details

