Improved sampling and quasi-Monte Carlo

15-468, 15-668, 15-868 Physics-based Rendering Spring 2023, Lecture 9

http://graphics.cs.cmu.edu/courses/15-468

Course announcements

- Programming assignment 2 posted, due Friday 2/24 at 23:59.
 - How many of you have looked at/started/finished it?
 - Any questions?
- Take-home quiz 4 posted, due tonight.
- Take-home quiz 5 will be posted tonight, will be due next Tuesday.

Overview of today's lecture

- Stratified sampling.
- Uncorrelated jitter.
- N-rooks.
- Multi-jittered sampling.
- Poisson disk sampling.
- Discrepancy.
- Quasi-Monte Carlo.
- Low-discrepancy sequences.

Slide credits

Most of these slides were directly adapted from:

Wojciech Jarosz (Dartmouth).

Strategies for Reducing Variance

$$\sigma\left[\left\langle F^{N}
ight
angle
ight]=rac{1}{\sqrt{N}}\sigma\left[Y
ight]$$
 —remember, this assumed uncorrelated samples

Reduce the variance of Y

- Importance sampling

Relax assumption of uncorrelated samples

Independent Random Sampling

```
for (int k = 0; k < num; k++)
{
    samples(k).x = randf();
    samples(k).y = randf();
}</pre>
```

- √ Trivially extends to higher dimensions
- √ Trivially progressive and memory-less
- X Big gaps
- X Clumping

Regular Sampling

```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + 0.5)/numX;
        samples(i,j).y = (j + 0.5)/numY;
    }</pre>
```


- ✓ Extends to higher dimensions, but...
- X Curse of dimensionality
- **X** Aliasing

Jittered/Stratified Sampling

```
for (uint i = 0; i < numX; i++)
    for (uint j = 0; j < numY; j++)
    {
        samples(i,j).x = (i + randf())/numX;
        samples(i,j).y = (j + randf())/numY;
}</pre>
```

- ✓ Provably cannot increase variance
- ✓ Extends to higher dimensions, but...
- X Curse of dimensionality
- X Not progressive

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Stratifying in Higher Dimensions

Stratification requires $O(N^d)$ samples

- e.g. pixel (2D) + lens (2D) + time (1D) = 5D
 - splitting 2 times in $5D = 2^5 = 32$ samples
 - splitting 3 times in 5D = 3^5 = 243 samples!

Inconvenient for large d

- cannot select sample count with fine granularity

"Padding" 2D points (Uncorrelated Jitter)

Depth of Field (4D)

Reference Random Sampling **Uncorrelated Jitter**

Uncorrelated Jitter -> Latin Hypercube

Like uncorrelated jitter, but using 1D point sets

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

Uncorrelated Jitter -> Latin Hypercube

Like uncorrelated jitter, but using 1D point sets

- for 5D: 5 separate 1D jittered point sets

N-Rooks = 2D Latin Hypercube [Shirley 91]

Like uncorrelated jitter, but using 1D point sets

- for 2D: 2 separate 1D jittered point sets
- combine dimensions in random order

[Shirley 91]


```
// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
  for (uint i = 0; i < numS; i++)
    samples(d,i) = (i + randf())/numS;</pre>
```

```
// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
    shuffle(samples(d,:));</pre>
```



```
// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
    for (uint i = 0; i < numS; i++)
        samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
    shuffle(samples(d,:));</pre>
```



```
// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
    for (uint i = 0; i < numS; i++)
        samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0) d < numDimensions; d++)
    shuffle(samples(d,:));</pre>
```



```
// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
    for (uint i = 0; i < numS; i++)
        samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
    shuffle(samples(d,:));</pre>
```



```
// initialize the diagonal
for (uint d = 0; d < numDimensions; d++)
    for (uint i = 0; i < numS; i++)
        samples(d,i) = (i + randf())/numS;

// shuffle each dimension independently
for (uint d = 0; d < numDimensions; d++)
    shuffle(samples(d,:));</pre>
```


Kenneth Chiu, Peter Shirley, and Changyaw Wang. "Multi-jittered sampling." In *Graphics Gems IV*, pp. 370–374. Academic Press, May 1994.

combine N-Rooks and Jittered stratification constraints


```
// initialize
float cellSize = 1.0 / (resX*resY);
for (uint i = 0; i < resX; i++)
  for (uint j = 0; j < resY; j++)
     samples(i,j).x = i/resX + (j+randf()) / (resX*resY);
     samples(i,j).y = j/resY + (i+randf()) / (resX*resY);
// shuffle x coordinates within each column of cells
for (uint i = 0; i < resX; i++)
  for (uint j = resY-1; j >= 1; j--)
     swap(samples(i, j).x, samples(i, randi(0, j)).x);
// shuffle y coordinates within each row of cells
for (unsigned j = 0; j < resY; j++)
  for (unsigned i = resX-1; i >= 1; i--)
     swap(samples(i, j).y, samples(randi(0, i), j).y);
```


Multi-Jittered Sampling

Multi-Jittered Sampling (Sudoku)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
9	_		12					13						7	8
														-	
5	6	7	8	13	14	15	16	1	Z	3	4	9	10	11	12
13	14	15	16	9	10	11	12	5	6	7	8	1	2	3	4
3	1	4	2	7	5	8	6	11	9	14	10	15	12	16	13
11	9	14	10	3	1	4	2	15	12	16	13	7	5	8	6
7	5	8	6	15	12	16	13	3	1	4	2	11	9	14	10
15	12	16	13	11	9	14	10	7	5	8	6	3	1	4	2
2	4	1	3	6	8	5	7	10	15	9	11	12	16	13	14
10	15	9	11	2	4	1	3	12	16	13	14	6	8	5	7
6	8	5	7	12	16	13	14	2	4	1	3	10	15	9	11
12	16	13	14	10	15	9	11	6	8	5	7	2	4	1	3
4	3	2	1	8	7	6	5	14	11	10	9	16	13	12	15
14	11	10	9	4	3	2	1	16	13	12	15	8	7	6	5
8	7	6	5	16	13	12	15	4	3	2	1	14	11	10	9
16	13	12	15	14	11	10	9	8	7	6	5	4	3	2	1

Poisson-Disk/Blue-Noise Sampling

Enforce a minimum distance between points

Poisson-Disk Sampling:

- Mark A. Z. Dippé and Erling Henry Wold. "Antialiasing through stochastic sampling." *ACM SIGGRAPH*, 1985.
- Robert L. Cook. "Stochastic sampling in computer graphics." *ACM Transactions on Graphics*, 1986.
- Ares Lagae and Philip Dutré. "A comparison of methods for generating Poisson disk distributions." *Computer Graphics Forum*, 2008.

Random Dart Throwing

Random Dart Throwing

Random Dart Throwing

Stratified Sampling

"Best Candidate" Dart Throwing

Blue-Noise Sampling (Relaxation-based)

- 1. Initialize sample positions (e.g. random)
- 2. Use an iterative relaxation to move samples away from each other.

Previous stratified approaches try to minimize "clumping"

"Discrepancy" is another possible formal definition of clumping: $D^*(x_1,...,x_n)$

- for every possible subregion compute the maximum absolute difference between:
 - fraction of points in the subregion
 - volume of containing subregion

Koksma-Hlawka inequality

$$\left|\frac{1}{n}\sum_{i=1}^n f(x_i) - \int f(u) du\right| \le V(f)D^*(x_1, \dots, x_n)$$

Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly distributed (have low discrepancy).

Entire field of study called Quasi-Monte Carlo (QMC)

The Radical Inverse

A positive integer value n can be expressed in a base b with a sequence of digits $d_m...d_2d_1$

The radical inverse function Φ_b in base b converts a nonnegative integer n to a floating-point value in [0, 1) by reflecting these digits about the decimal point:

$$\Phi_b(n) = 0.d_1 d_2 \dots d_m$$

Subsequent points "fall into biggest holes"

The Van der Corput Sequence

Radical Inverse Φ_b in base 2

Subsequent points "fall into biggest holes"

k	Base 2	Φ_b
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
6	110	.011 = 3/8
7	111	.111 = 7/8

The Radical Inverse

```
float radicalInverse(int n, int base, float inv)
  float v = 0.0f;
  for (float p = inv; n != 0; p *= inv, n /= base)
    v += (n \% base) * p;
  return v;
float radicalInverse(int n, int base)
  return radicalInverse(n, base, 1.0f / base);
```

More efficient version available for base 2

The Radical Inverse (Base 2)

```
float vanDerCorputRIU(uint n)
 n = (n << 16) | (n >> 16);
 n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >>
8);
 n = ((n \& 0x0f0f0f0f) << 4) | ((n \& 0xf0f0f0f0) >>
4);
  n = ((n \& 0x33333333) << 2) | ((n \& 0xcccccc) >>
2);
 n = ((n \& 0x5555555555) << 1) | ((n \& 0xaaaaaaa) >>
1);
  return n / float (0x100000000LL);
```

Halton and Hammersley Points

Halton: Radical inverse with different base for each dimension:

$$\vec{x}_k = (\Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

- The bases should all be relatively prime.
- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k/N:

$$\vec{x}_k = (k/N, \Phi_2(k), \Phi_3(k), \Phi_5(k), \dots, \Phi_{p_n}(k))$$

- Not incremental, need to know sample count, N, in advance

1 sample in each "elementary interval"

1 sample in each "elementary interval"

1 sample in each "elementary interval"

1 sample in each "elementary interval"

1 sample in each "elementary interval"

1 sample in each "elementary interval"

(0,2)-Sequences

1 sample in each "elementary interval"

(0,2)-Sequences

1 sample in each "elementary interval"

More info on QMC in Rendering

S. Premoze, A. Keller, and M. Raab. Advanced (Quasi-) Monte Carlo Methods for Image Synthesis. In SIGGRAPH 2012 courses.

Many more...

Sobol

Faure

Larcher-Pillichshammer

Folded Radical Inverse

(t,s)-sequences & (t,m,s)-nets

Scrambling/randomization

much more...

Challenges

LD sequence identical for multiple runs

- cannot average independent images!
- no "random" seed

Quality decreases in higher dimensions

Randomized/Scrambled Sequences

Random permutations: compute a permutation table for the order of the digits and use it when computing the radical inverse

$$\Phi_b(n) = 0.\pi(d_1)\pi(d_2)...\pi(d_m)$$

Randomized/Scrambled Sequences

Random permutations: compute a permutation table for the order of the digits and use it when computing the radical inverse

- Can be done very efficiently for base 2 with XOR operation

See PBRe2 Ch7 for details

Scrambled Radical Inverse (Base 2)

```
float vanDerCorputRIU(uint n, uint scramble = 0)
  n = (n << 16) | (n >> 16);
  n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >>
8);
  n = ((n \& 0x0f0f0f0f) << 4) | ((n \& 0xf0f0f0f0) >>
4);
  n = ((n \& 0x33333333) << 2) | ((n \& 0xcccccc) >>
2);
  n = ((n \& 0x555555555) << 1) | ((n \& 0xaaaaaaa) >>
1);
   ^= scramble;
  return n / float (0x1000000000LL);
```

Monte Carlo (16 random samples)

Monte Carlo (16 stratified samples)

Quasi-Monte Carlo (16 Halton samples)

Scrambled Quasi-Monte Carlo

Implementation tips

Using QMC can often lead to unintuitive, difficult-to-debug problems.

- Always code up MC algorithms first, using random numbers, to ensure correctness
- Only after confirming correctness, slowly incorporate QMC into the mix

How do you add this to your renderer?

Lots of details in the book

Read about the Sampler interface

- Basic idea: replace global randf with a Sampler class that produces random (or stratified/quasi-random) numbers
- Also better for multi-threading

How can we predict error from these?

N-Rooks Sampling

Multi-Jittered Sampling

Jittered Sampling

Poisson Disk Sampling

