Improved sampling and quasi-Monte Carlo

Course announcements

- Programming assignment 2 posted, due Friday 2/24 at 23:59.
- How many of you have looked at/started/finished it?
- Any questions?
- Take-home quiz 4 posted, due tonight.
- Take-home quiz 5 will be posted tonight, will be due next Tuesday.

Overview of today's lecture

- Stratified sampling.
- Uncorrelated jitter.
- N-rooks.
- Multi-jittered sampling.
- Poisson disk sampling.
- Discrepancy.
- Quasi-Monte Carlo.
- Low-discrepancy sequences.

Slide credits

Most of these slides were directly adapted from:

- Wojciech Jarosz (Dartmouth).

Strategies for Reducing Variance

$$
\sigma\left[\left\langle F^{N}\right\rangle\right]=\frac{1}{\sqrt{N}} \sigma[Y] \leftarrow \text { remember, this assumed uncorrelated samples }
$$

Reduce the variance of Y

- Importance sampling

Relax assumption of uncorrelated samples

Independent Random Sampling

for (int k = 0; k < num; k++)
\{

$$
\begin{aligned}
& \text { samples }(k) \cdot x=\operatorname{randf}() ; \\
& \text { samples }(k) \cdot y=\operatorname{randf}() ;
\end{aligned}
$$

\}
\checkmark Trivially extends to higher dimensions
\checkmark Trivially progressive and memory-less
X Big gaps
X Clumping

Regular Sampling

for (uint i = 0; i < numX; i++) for (uint j = 0; j < numY; j++) \{
samples(i,j).x = (i + 0.5)/numX; samples(i,j).y = (j + 0.5)/numY; \}
\checkmark Extends to higher dimensions, but... X Curse of dimensionality
X Aliasing

Jittered/Stratified Sampling

for (uint i = 0; i < numX; i++)
for (uint $j=0 ; j<n u m Y ; ~ j++)$
\{

$$
\text { samples }(i, j) \cdot x=(i+r a n d f()) / n u m x ;
$$

$$
\text { samples }(\mathrm{i}, \mathrm{j}) \cdot \mathrm{y}=(\mathrm{j}+\operatorname{randf}()) / \text { num } ;
$$ \}

\checkmark Provably cannot increase variance \checkmark Extends to higher dimensions, but... X Curse of dimensionality
X Not progressive

Monte Carlo (16 random samples)

Monte Carlo (16 jittered samples)

Stratifying in Higher Dimensions

Stratification requires $\mathrm{O}\left(\mathrm{N}^{d}\right)$ samples

- e.g. pixel (2D) + lens (2D) + time (1D) = 5D
- splitting 2 times in $5 \mathrm{D}=2^{5}=32$ samples
- splitting 3 times in 5D $=3^{5}=243$ samples!

Inconvenient for large d

- cannot select sample count with fine granularity

"Padding" 2D points (Uncorrelated Jitter)

DD
DD

4D

$$
\begin{aligned}
& \left(x_{1}, y_{1}, u_{3}, v_{3}\right) \\
& \left(x_{2}, y_{2}, u_{1}, v_{1}\right) \\
& \left(x_{3}, y_{3}, u_{4}, v_{4}\right) \\
& \left(x_{4}, y_{4}, u_{2}, v_{2}\right)
\end{aligned}
$$

Depth of Field (4D)

Reference

Random Sampling

Uncorrelated Jitter

Uncorrelated Jitter \rightarrow Latin Hypercube

Like uncorrelated jitter, but using 1D point sets

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

Uncorrelated Jitter \rightarrow Latin Hypercube

Like uncorrelated jitter, but using 1D point sets

- for 5D: 5 separate 1D jittered point sets
- combine dimensions in random order

Shuffle order

N-Rooks = 2D Latin Hypercube [Shirley 91]

Like uncorrelated jitter, but using 1D point sets

- for 2D: $\mathbf{2}$ separate 1D jittered point sets
- combine dimensions in random order

Latin Hypercube (N-Rooks) Sampling

[Shirley 91]

Latin Hypercube (N-Rooks) Sampling

// initialize the diagonal
for (uint $d=0 ; d<n u m D i m e n s i o n s ; ~ d++$) for (uint $i=0 ; i<n u m S ; i++$) samples $(d, i)=(i+\operatorname{randf}()) / n u m S ;$
shuffle each dimension independently
for (uint $d=0 ; d$ < numDimensions; $d++$) shuffle (samples (d,:));

0													
	0												
			\bullet										

Latin Hypercube (N-Rooks) Sampling

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < nums; i++) samples(d,i) = (i + randf())/numS;
// shuffle each dimension independently for (uint $d=9$; d < numDimensions; d++) shuffle(samples(d,:));

-															
		-													
			-												
					-										
						\bigcirc									
								-	,						
									-						
										-					
												-			
															\bigcirc
						Shu	ffi	fle r	row						
															19

Latin Hypercube (N-Rooks) Sampling

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;
// shuffle each dimension independently for (uint d = 0, d < numDimensions; d++) shuffle(samples(d,:));

							\bullet							
									\bullet					
			\bullet											
		\bullet												
							\bullet							
								\bullet						
			Shuffle rows											

Latin Hypercube (N-Rooks) Sampling

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < nums; i++) samples(d,i) = (i + randf())/numS;
// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++) shuffle(samples(d,:));

Latin Hypercube (N-Rooks) Sampling

// initialize the diagonal
for (uint d = 0; d < numDimensions; d++) for (uint i = 0; i < numS; i++) samples(d,i) = (i + randf())/numS;
// shuffle each dimension independently for (uint d = 0; d < numDimensions; d++) shuffle(samples(d,:));

												0		
		\bullet												
			\bullet											
				0		0								
					\bullet									
													0	
								0						
									0					

Latin Hypercube (N-Rooks) Sampling

Latin Hypercube (N-Rooks) Sampling

		-			
				-	
			-		

Latin Hypercube (N-Rooks) Sampling

Unevenly distributed in n-dimensions

Evenly distributed in each individual dimension

Multi-Jittered Sampling

Kenneth Chiu, Peter Shirley, and Changyaw Wang. "Multijittered sampling." In Graphics Gems IV, pp. 370-374. Academic Press, May 1994.

- combine N -Rooks and Jittered stratification constraints

Multi-Jittered Sampling

Multi-Jittered Sampling

```
// initialize
float cellSize = 1.0 / (resX*resY);
for (uint i = 0; i < resX; i++)
    for (uint j = 0; j < resY; j++)
    {
        samples(i,j).x = i/resX + (j+randf()) / (resX*resY);
        samples(i,j).y = j/resY + (i+randf()) / (resX*resY);
    }
// shuffle x coordinates within each column of cells
for (uint i = 0; i < resX; i++)
    for (uint j = resY-1; j >= 1; j--)
        swap(samples(i, j).x, samples(i, randi(0, j)).x);
// shuffle y coordinates within each row of cells
for (unsigned j = 0; j < resY; j++)
    for (unsigned i = resX-1; i >= 1; i--)
        swap(samples(i, j).y, samples(randi(0, i), j).y);
```


Multi-Jittered Sampling

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Projections)

Multi-Jittered Sampling (Sudoku)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
9	10	1	12	1	2	3	4	13	14	15	16	5	6	7	8
5	6	7	8	13	14	15	16	1	2	3	4	9	0	11	12
13	14	15	16	9	10	1	12	5	6	7	8	1	2	3	4
3	1	4	2	7	5	8	6	1	9	14	10	15	12	16	
1	9	14	10	3	1	4	2	15	12	16	13	7	5	8	
7	5	8	6	15	12	16	13	3	1	4	2		9	14	
15	12	16	13	1	9	14	10	7	5	8	6	3	1	4	2
2	4	1	3	6	8	5	7	10	15	9	11	12	16	,	
1	15	9	1	2	4	1	3	12	16	13	14	6	8	5	
6	8	5	7	12	16	13	14	2		1	3		15	9	
12	16	13	14	1	15	9	1	6	8	5	7	2	4	1	3
4	3	2	1	8	7	6	5	1	1		9	16	13	12	
1	1	10	9	4	3	2	1	16	13	12	15	8	7	6	5
8	7	6	5	16	13	12	15	4	3	2	1	14	11	10	9
16	13	12	15	14	11	10	9	8	7	6	5	4	3	2	1

Poisson-Disk/Blue-Noise Sampling

Enforce a minimum distance between points
Poisson-Disk Sampling:

- Mark A. Z. Dippé and Erling Henry Wold. "Antialiasing through stochastic sampling." ACM SIGGRAPH, 1985.
- Robert L. Cook. "Stochastic sampling in computer graphics." ACM Transactions on Graphics, 1986.
- Ares Lagae and Philip Dutré. "A comparison of methods for generating Poisson disk distributions." Computer Graphics Forum, 2008.

Random Dart Throwing

Random Dart Throwing

Random Dart Throwing

Stratified Sampling

"Best Candidate" Dart Throwing

Blue-Noise Sampling (Relaxation-based)

1. Initialize sample positions (e.g. random)
2. Use an iterative relaxation to move samples away from each other.

Discrepancy

Previous stratified approaches try to minimize "clumping"
"Discrepancy" is another possible formal definition of clumping:
$D^{*}\left(x_{1}, \ldots, x_{n}\right)$

- for every possible subregion compute the maximum absolute difference between:
- fraction of points in the subregion
- volume of containing subregion

Discrepancy

Discrepancy

Discrepancy

Discrepancy

Discrepancy

Koksma-Hlawka inequality

$$
\left|\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\int f(u) \mathrm{d} u\right| \leq V(f) D^{*}\left(x_{1}, \ldots, x_{n}\right)
$$

Low-Discrepancy Sampling

Deterministic sets of points specially crafted to be evenly distributed (have low discrepancy).
Entire field of study called Quasi-Monte Carlo (QMC)

The Radical Inverse

A positive integer value n can be expressed in a base b with a sequence of digits $d_{m} \ldots d_{2} d_{1}$
The radical inverse function Φ_{b} in base b converts a nonnegative integer n to a floating-point value in $[0,1)$ by reflecting these digits about the decimal point:

$$
\Phi_{b}(n)=0 . d_{1} d_{2} \ldots d_{m}
$$

Subsequent points "fall into biggest holes"

The Van der Corput Sequence

Radical Inverse Φ_{b} in base 2
Subsequent points "fall into biggest holes"

k	Base 2	Φ_{b}
1	1	$.1=1 / 2$
2	10	$.01=1 / 4$
3	11	$.11=3 / 4$
4	100	$.001=1 / 8$
5	101	$.101=5 / 8$
6	110	$.011=3 / 8$
7	111	$.111=7 / 8$
\ldots		

The Radical Inverse

float radicalInverse(int n, int base, float inv) \{
float v = 0.0f;
for (float $\mathrm{p}=\mathrm{inv} ; \mathrm{n}$!= 0; p *= inv, $\mathrm{n} /=$ base) v += (n \% base) * p;
return v;
\}
float radicalInverse(int n, int base)
\{
return radicalInverse(n, base, 1.0f / base);
\}
More efficient version available for base 2

The Radical Inverse (Base 2)

float vanDerCorputRIU(uint n)
\{
$\mathrm{n}=(\mathrm{n} \ll 16)$ | ($\mathrm{n} \gg 16$);
$\mathrm{n}=((\mathrm{n} \& 0 x 00 f f 00 f f)$ << 8) | ((n \& 0xff00ff00) >>
8) ;
$n=((n \& 0 x 0 f 0 f 0 f 0 f) \ll 4) \mid((n \& 0 x f 0 f 0 f 0 f 0) \gg$
4) ;
$\mathrm{n}=((\mathrm{n} \& 0 \times 33333333) \ll 2) \mid((\mathrm{n} \& 0 x c c c c c c c)) \gg$
2) ;
$\mathrm{n}=((\mathrm{n} \& 0 \times 55555555) \ll 1) \mid((\mathrm{n} \& 0 x a a a a a a a)$ >>
1);
return n / float (0x100000000LL);
\}

Halton and Hammersley Points

Halton: Radical inverse with different base for each dimension:

$$
\vec{x}_{k}=\left(\Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \ldots, \Phi_{p_{n}}(k)\right)
$$

- The bases should all be relatively prime.
- Incremental/progressive generation of samples

Hammersley: Same as Halton, but first dimension is k / N :

$$
\vec{x}_{k}=\left(k / N, \Phi_{2}(k), \Phi_{3}(k), \Phi_{5}(k), \ldots, \Phi_{p_{n}}(k)\right)
$$

- Not incremental, need to know sample count, N, in advance

The Hammersley Sequence

The Hammersley Sequence

1 sample in each "elementary interval"

The Hammersley Sequence

The Hammersley Sequence

1 sample in each "elementary interval"

The Hammersley Sequence

1 sample in each "elementary interval"

The Hammersley Sequence

1 sample in each "elementary interval"

(0,2)-Sequences

(0,2)-Sequences

1 sample in each "elementary interval"

(0,2)-Sequences

(0,2)-Sequences

1 sample in each "elementary interval"

(0,2)-Sequences

1 sample in each "elementary interval"
(0,2)-Sequences

1 sample in each "elementary interval"

More info on QMC in Rendering

S. Premoze, A. Keller, and M. Raab.

Advanced (Quasi-) Monte Carlo Methods for Image Synthesis. In SIGGRAPH 2012 courses.

Many more...

Sobol

Faure
Larcher-Pillichshammer
Folded Radical Inverse
(t, s)-sequences \& ($\mathrm{t}, \mathrm{m}, \mathrm{s}$)-nets
Scrambling/randomization
much more...

Challenges

LD sequence identical for multiple runs

- cannot average independent images!
- no "random" seed

Quality decreases in higher dimensions

Randomized/Scrambled Sequences

Random permutations: compute a permutation table for the order of the digits and use it when computing the radical inverse

$$
\Phi_{b}(n)=0 . \pi\left(d_{1}\right) \pi\left(d_{2}\right) \ldots \pi\left(d_{m}\right)
$$

Dimensions 32 and 33

With scrambling

Dimensions 1 and 2

Dimensions 32 and 33

Randomized/Scrambled Sequences

Random permutations: compute a permutation table for the order of the digits and use it when computing the radical inverse

- Can be done very efficiently for base 2 with XOR operation See PBRe2 Ch7 for details

Scrambled Radical Inverse (Base 2)

float vanDerCorputRIU(uint n, uint scramble $=0$)
\{
$\mathrm{n}=(\mathrm{n} \ll 16) \mid(\mathrm{n} \gg 16) ;$
$n=((n \& 0 x 00 f f 00 f f) \ll 8) \mid((n \& 0 x f f 00 f f 00) \gg$
8) ;
$n=((n \& 0 x 0 f \circ f 0 f 0 f) \ll 4) \mid((n \& 0 x f 0 f \circ f \circ f 0) \gg$
4) ;
$n=((n \& 0 x 33333333) \ll 2) \mid((n \& 0 x c c c c c c c) \gg$
2);
$n=((n \& 0 x 55555555) \ll 1) \mid((n \& 0 x a a a a a a a) \gg$
1);
$\mathrm{n}^{\wedge}=$ scramble;
return n / float (0x100000000LL);
\}

Monte Carlo (16 random samples)

Monte Carlo (16 stratified samples)

Quasi-Monte Carlo (16 Halton samples)

Scrambled Quasi-Monte Carlo

Implementation tips

Using QMC can often lead to unintuitive, difficult-to-debug problems.

- Always code up MC algorithms first, using random numbers, to ensure correctness
- Only after confirming correctness, slowly incorporate QMC into the mix

How do you add this to your renderer?

Lots of details in the book
Read about the Sampler interface

- Basic idea: replace global randf with a Sampler class that produces random (or stratified/quasi-random) numbers
- Also better for multi-threading

How can we predict error from these?

N-Rooks Sampling

Multi-Jittered Sampling

Samples
Expected power spectrum
Radial mean

Jittered Sampling

Poisson Disk Sampling

Samples

Expected power spectrum
Radial mean

