Monte Carlo integration

http://graphics.cs.cmu.edu/courses/15-468

15-468, 15-668, 15-868 Physics-based Rendering Spring 2023, Lecture 8

Course announcements

- Programming assignment 2 posted, due Friday 2/24 at 23:59. - How many of you have looked at/started/finished it? - Any questions?
- Take-home quiz 3 due tonight. •
- Take-home quiz 4 will be posted tonight.

Overview of today's lecture

- Leftover from BRDFs. \bullet
- Monte Carlo integration. \bullet
- Sampling techniques.
- Importance sampling. \bullet
- Ambient occlusion. \bullet

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

Numerical Integration - Motivation

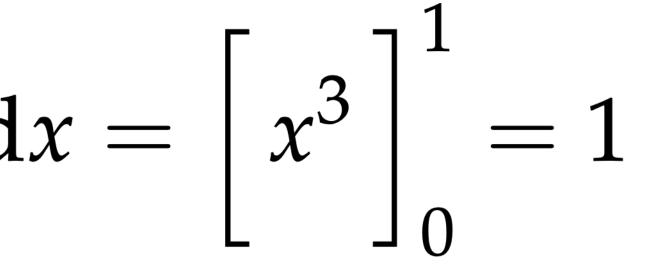
analytically

$$\int_0^1 \frac{1}{3} x^2 dx$$

But ours are a bit more complicated:

$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x},\mathbf{x}) f_r(\mathbf{x},\mathbf{x},\mathbf{x})$$

For very, very simple integrals, we can compute the solution

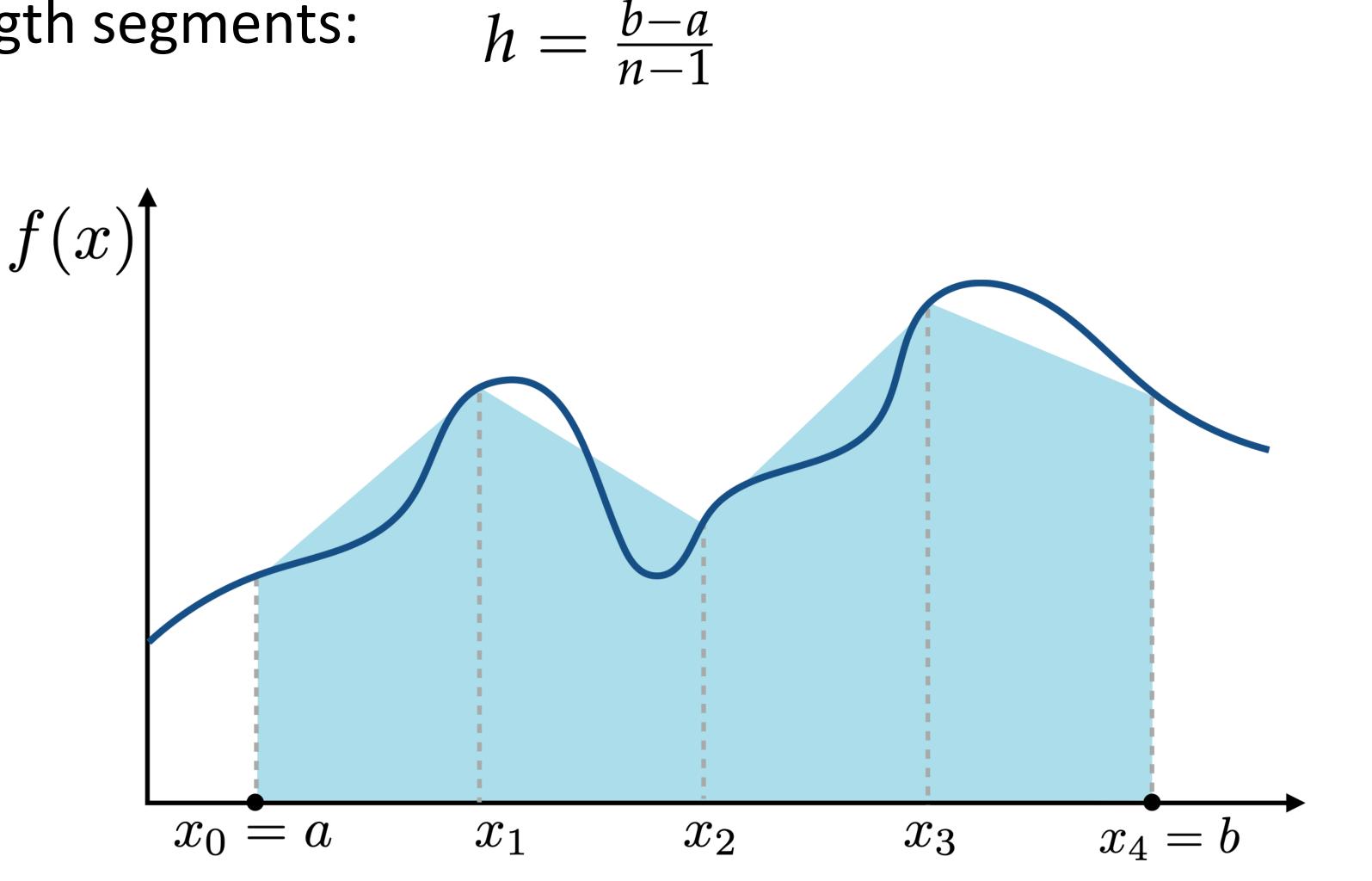


- $, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d} \vec{\omega}_i$

Typical quadrature: Trapezoid rule

<u>Approximate</u> integral of f(x) by assuming function is piecewise linear

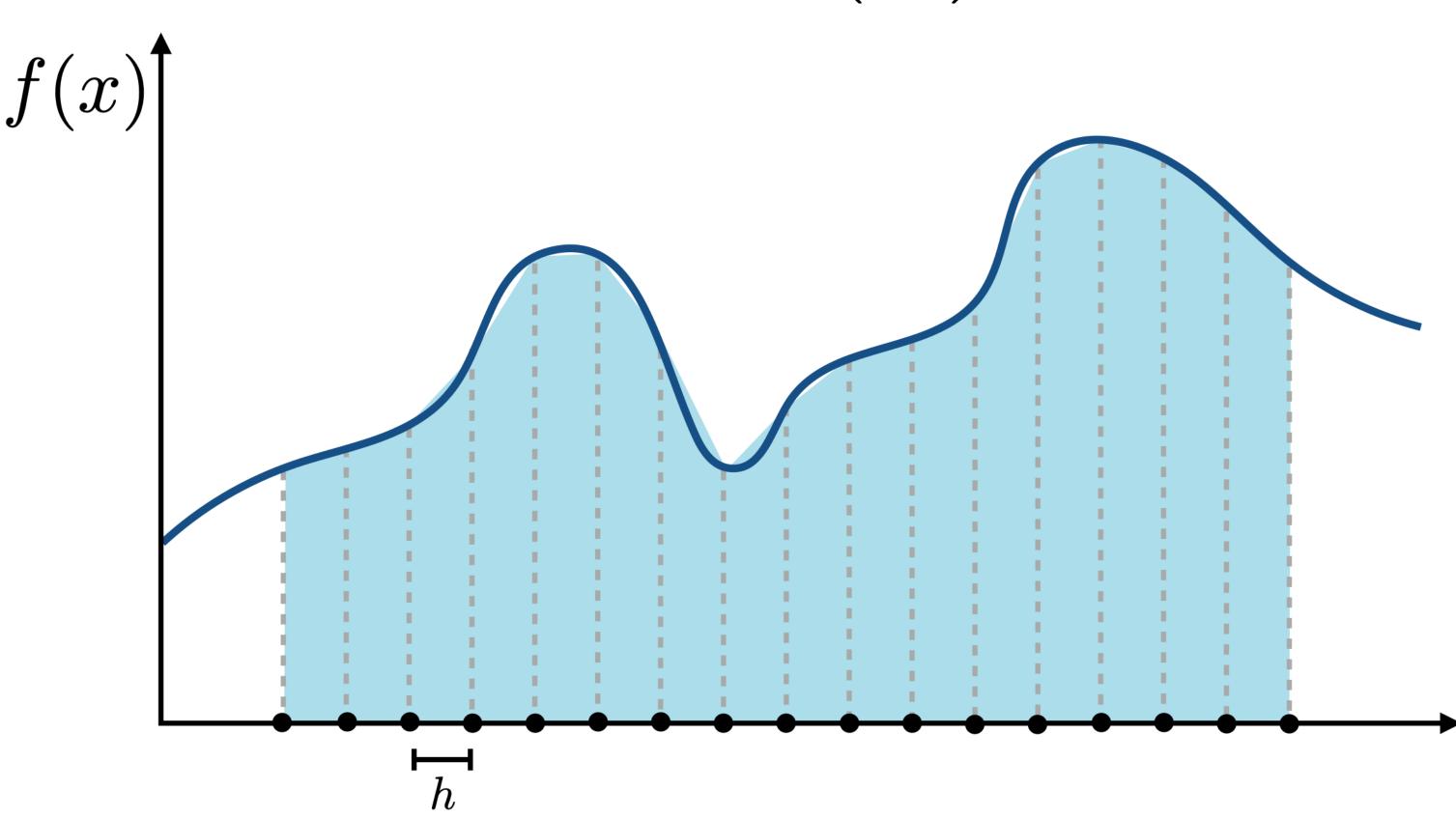
For equal length segments:



Typical quadrature: Trapezoid rule

Consider cost and accuracy as $n \to \infty$ (or $h \to 0$) Work: O(n)

Error can be shown to be:



 $O(h^2) = O\left(\frac{1}{n^2}\right)$ (for f(x) with continuous second derivative)

What about a 2D function?

f(x,y)

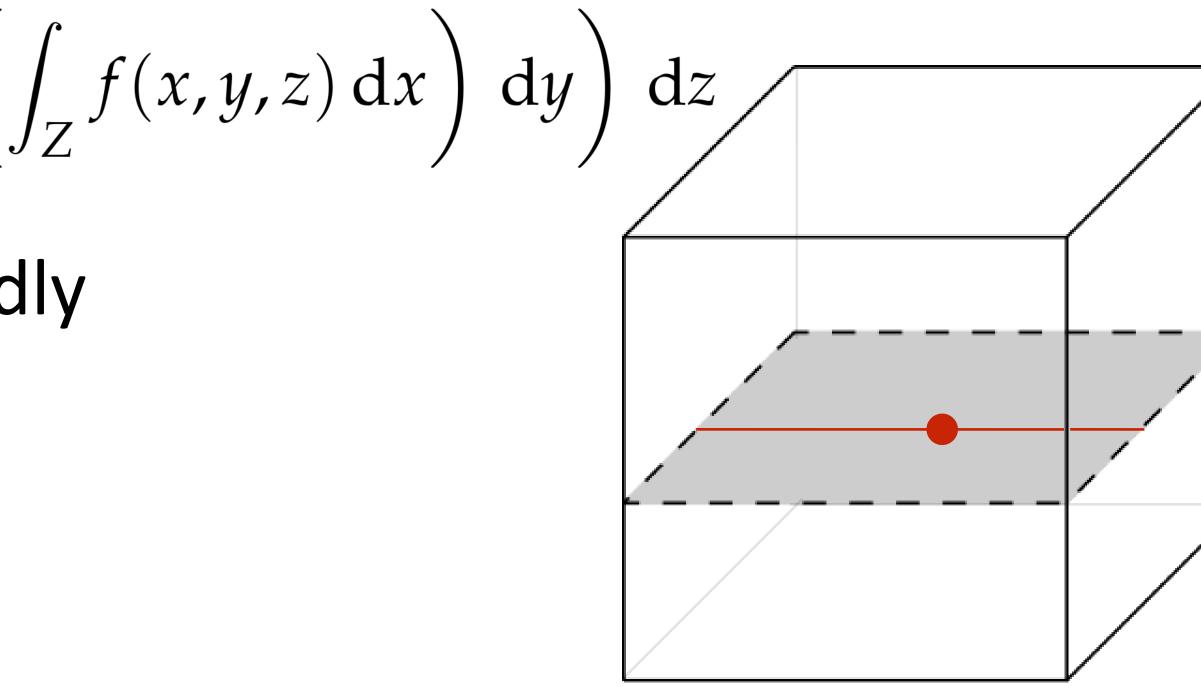
How should we approximate the area (volume) underneath?

Re

Multidimensional integrals & Fubini's theorem

 $\int_{X \times Y \times Z} f(x, y, z) d(x, y, z) = \int_X \left(\int_Y \left(\int_Z f(x, y, z) \, dx \right) \, dy \right) \, dz$

Apply the trapezoid rule repeatedly

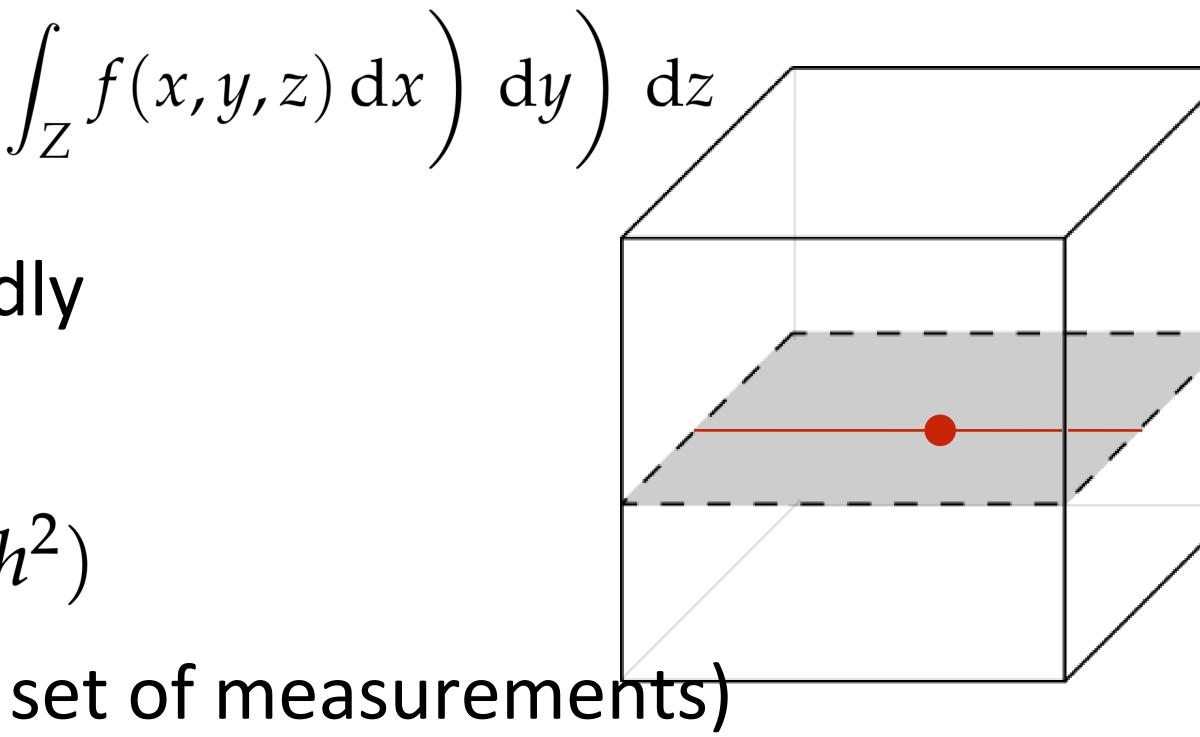


Multidimensional integrals & Fubini's theorem

 $\int_{X \times Y \times Z} f(x, y, z) d(x, y, z) = \int_X \left(\int_Y \left(\int_Z f(x, y, z) dx \right) dy \right) dz$

Apply the trapezoid rule repeatedly Can show that:

- Errors add, so error still: $O(h^2)$



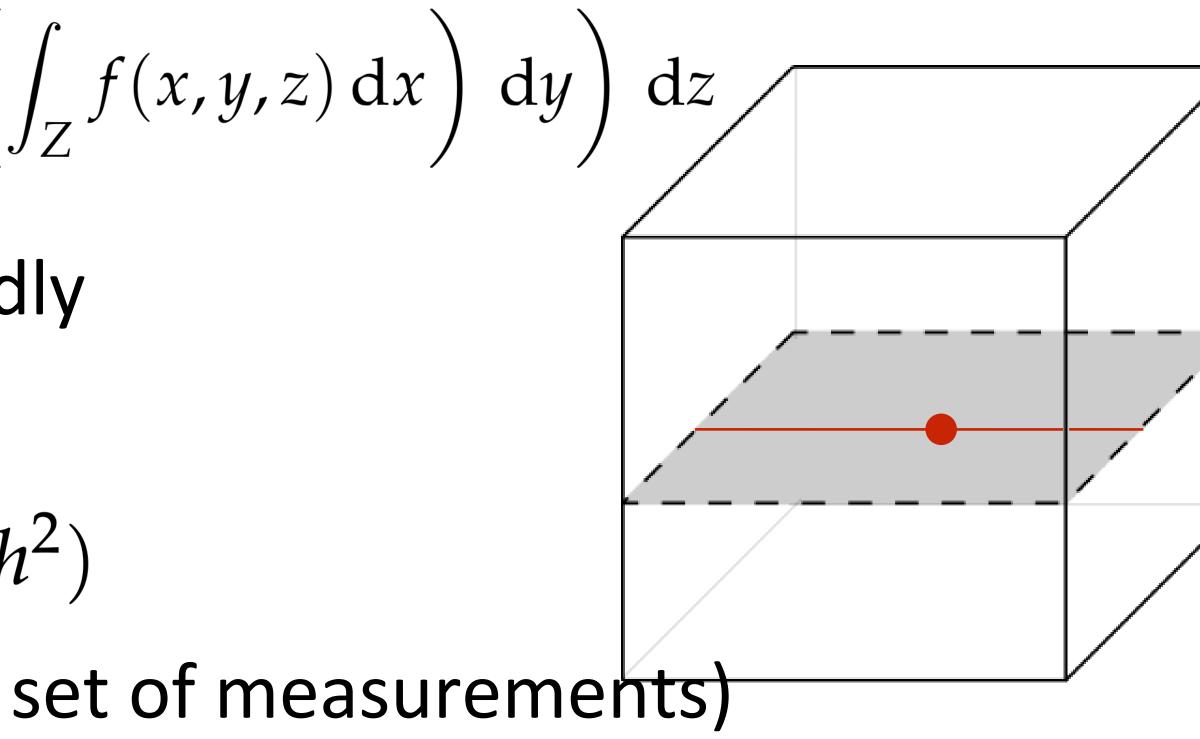
Multidimensional integrals & Fubini's theorem

 $\int_{X \times Y \times Z} f(x, y, z) d(x, y, z) = \int_X \left(\int_Y \left(\int_Z f(x, y, z) dx \right) dy \right) dz$

Apply the trapezoid rule repeatedly Can show that:

- Errors add, so error still: $O(h^2)$

Must perform much more work in 2D to get same error bound!

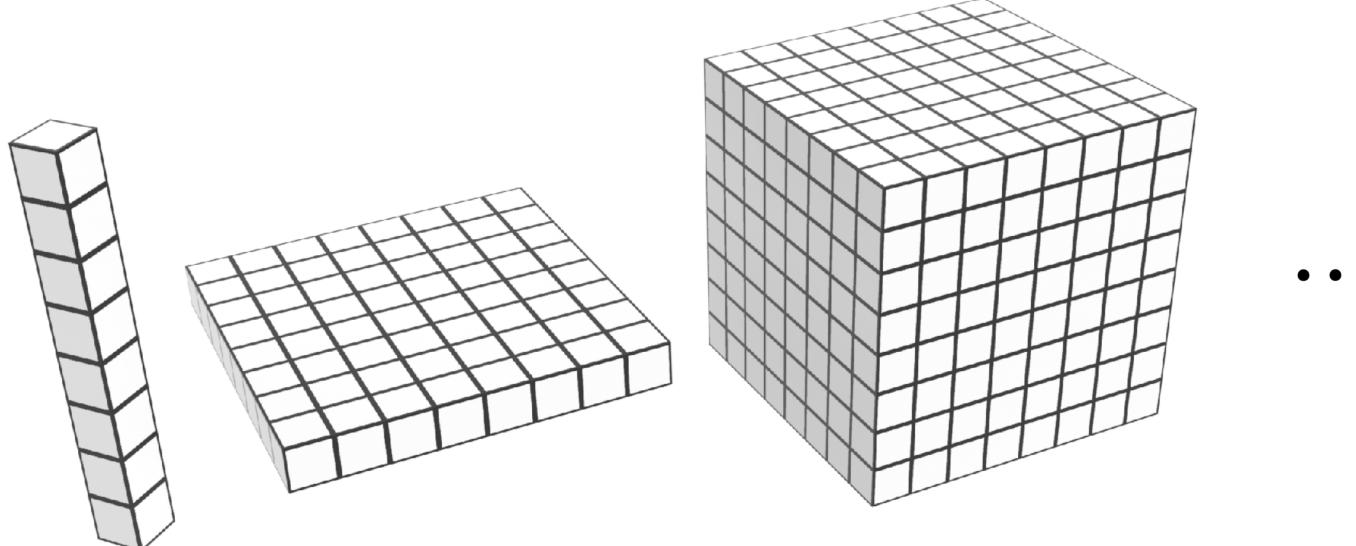


Curse of Dimensionality

How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D: O(n)
- 2D: $O(n^2)$
- **kD**: $O(n^k)$

. . .

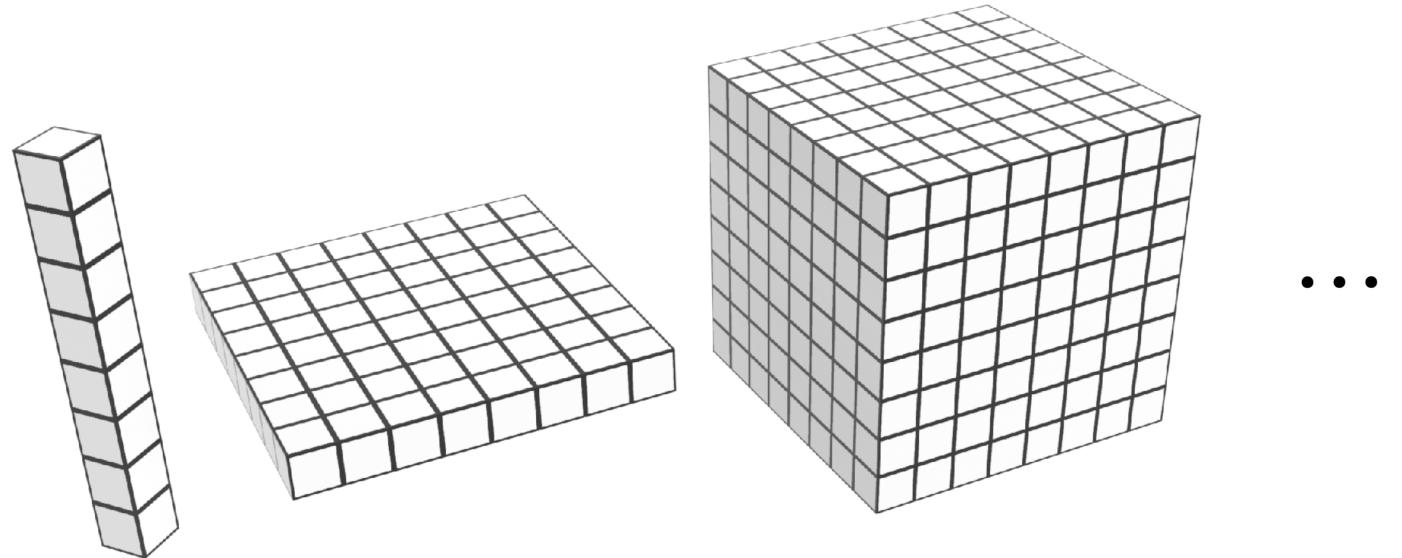


12

Curse of Dimensionality

How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D: O(n)
- 2D: $O(n^2)$



Deterministic quadrature does not scale to higher dimensions! Need a fundamentally different approach...

Monte Carlo Integration

Monte Carlo vs

Random variation creeps into the results

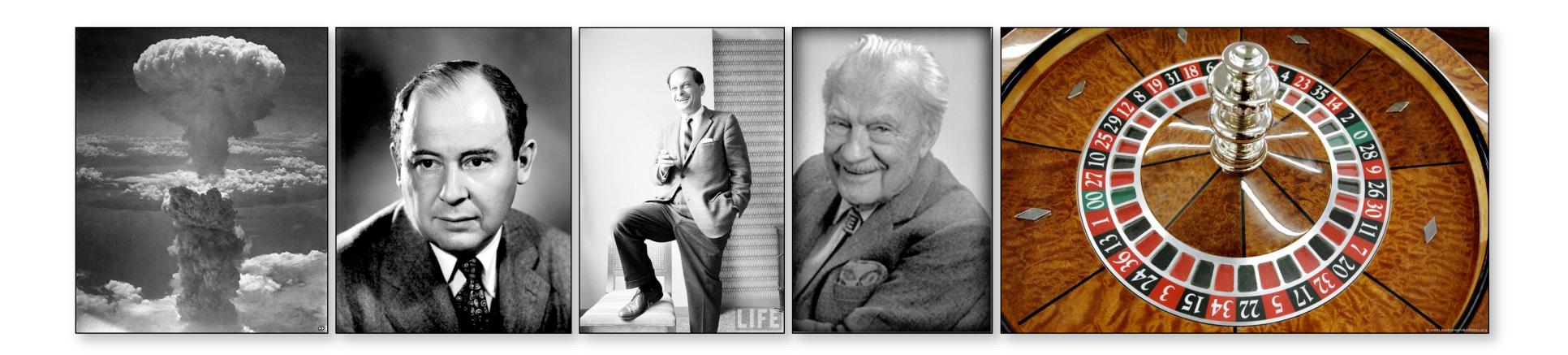
vs Las Vegas

Always gives the correct answer, e.g., a randomized sorting algorithm

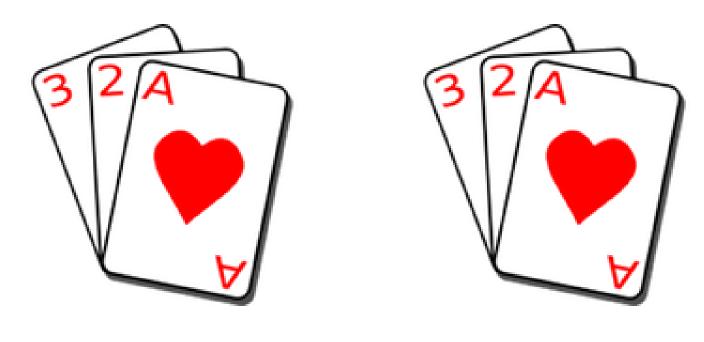
Monte Carlo History

Use random numbers to solve numerical problems

- Early use during development of atomic bomb
- Von Neumann, Ulam, Metropolis
- Named after the casino in Monte Carlo

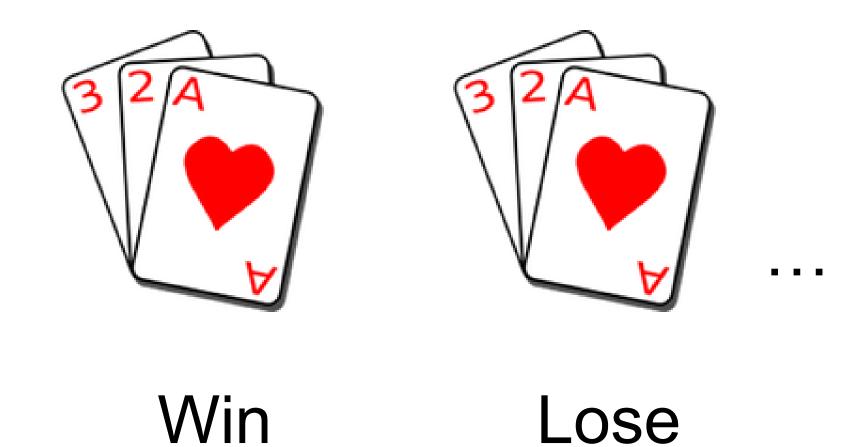


Playing Solitaire





What's the chance of winning with a properly shuffled deck?



17

Playing Solitaire

 $P_n = \frac{1}{n} \sum_{i=1}^n \begin{cases} 1, & \text{game } i \text{ is won,} \\ 0, & \text{game } i \text{ is lost} \end{cases}$

 $P = \lim_{n \to \infty} P_n$

Monte Carlo Integration

Estimate value of integral using *random* sampling of function

- Value of estimate depends on random samples used
- But algorithm gives the correct value "on average"

Monte Carlo Integration Advantages

Only requires function to be evaluated at random points on its domain

- impossible to integrate directly
- Error is independent of dimensionality of integral!
- $O(n^{-0.5})$

- Applicable to functions with discontinuities, functions that are

Review: random variables

X: random variable. Represents a distribution of potential outcomes. Assigns a value of each outcome.

Two types: discrete vs. continuous

Discrete Random Variables

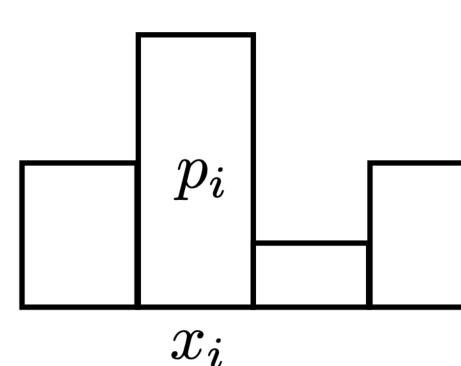
Discrete Random Variable: countable set of outcomes

Discrete Random Variables

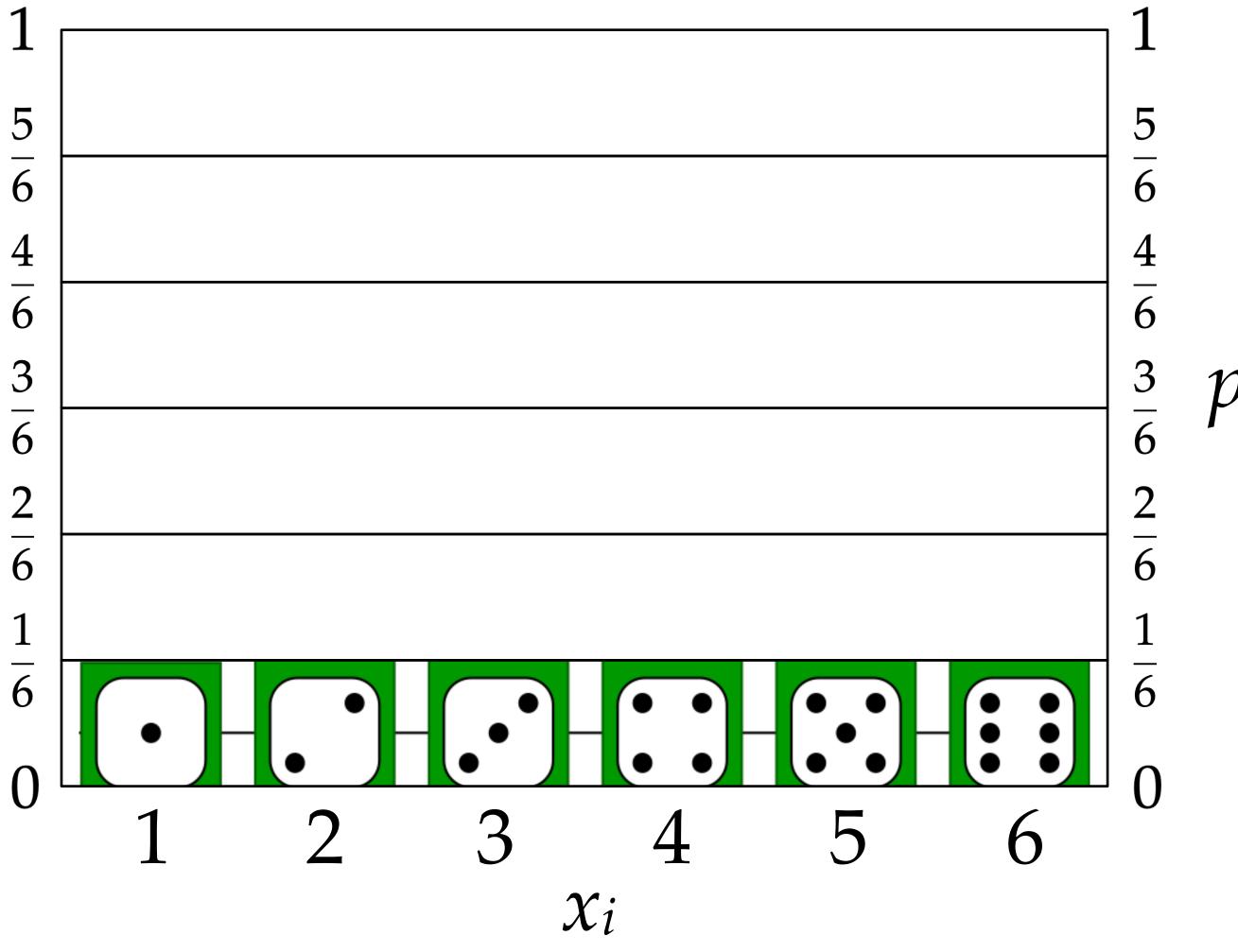
Discrete Random Variable: countable set of outcomes

- **Probability mass function** (pmf) of X:
- $p_X(x_i) = P(X = x_i)$, or simply $p_i = p(x_i) = P(X = x_i)$
- $p(x_i) \geq 0$

- Sums to one: $\sum p(a) = 1$

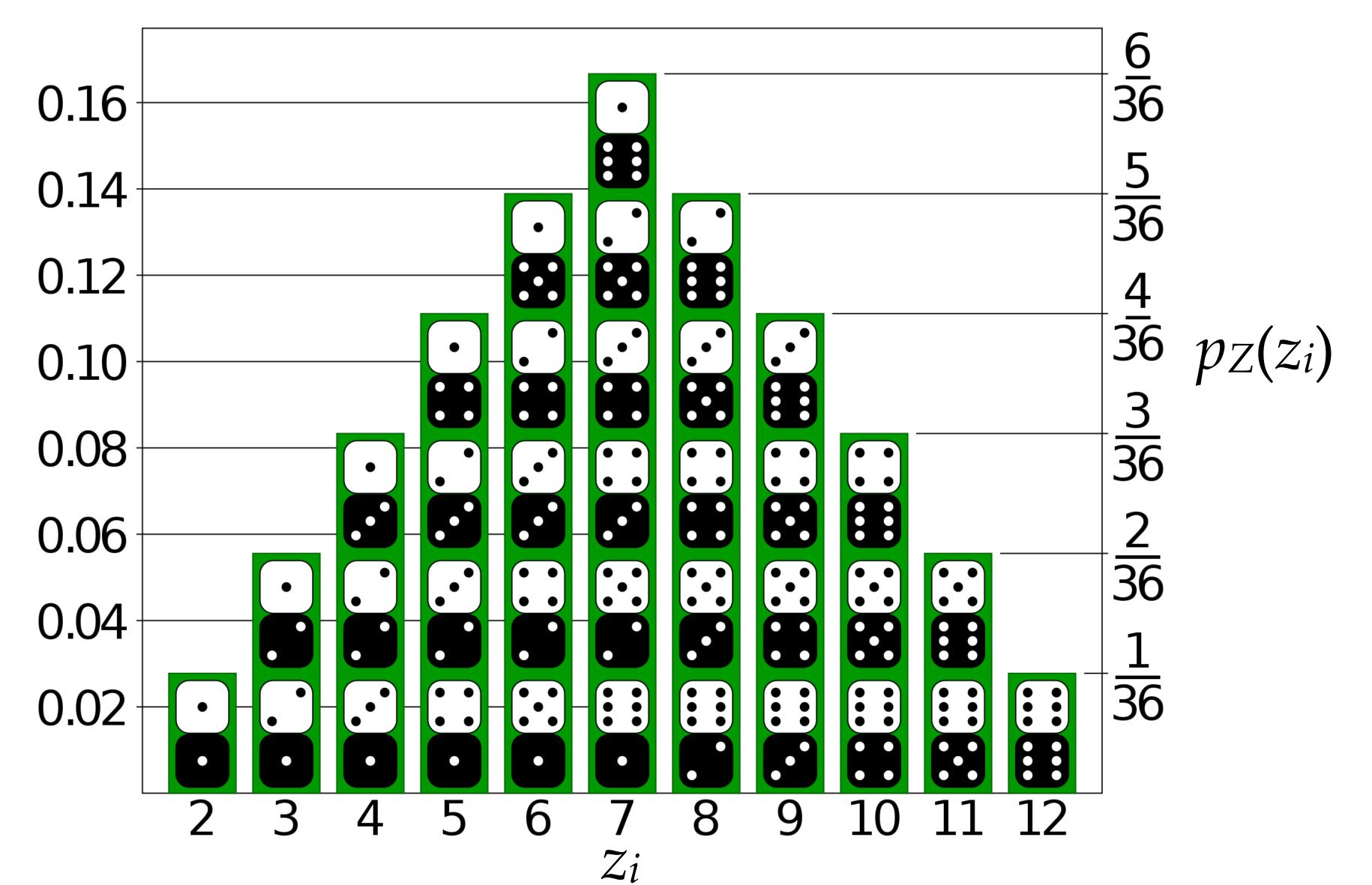


Probability mass function



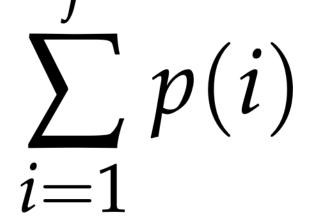
 $p_X(x_i)$

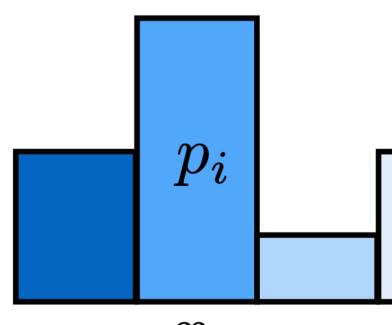
Probability mass function

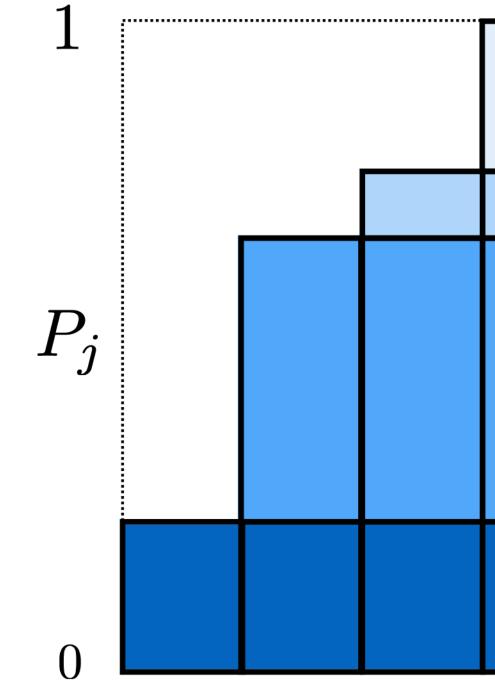


Cumulative distribution function (CDF)

Cumulative pmf: $P(j) = \sum p(i)$ where: $0 \leq P(i) \leq 1$ $P_n = 1$



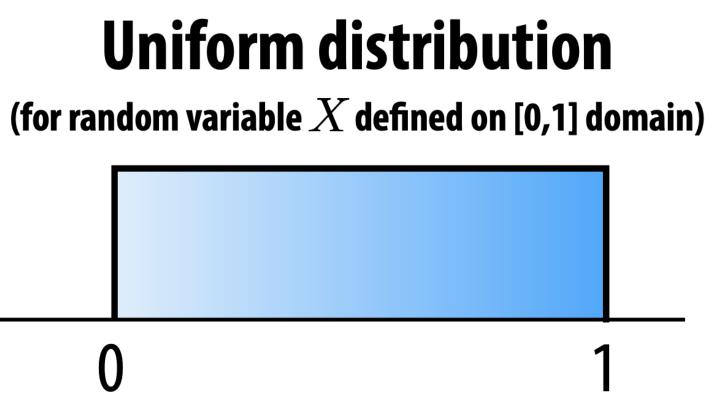




Continuous Random Variables

Probability density function (pdf) of X: p(x)

- $p(x) \ge 0$
- No restriction that p(x) < 1 (Not a probability!)



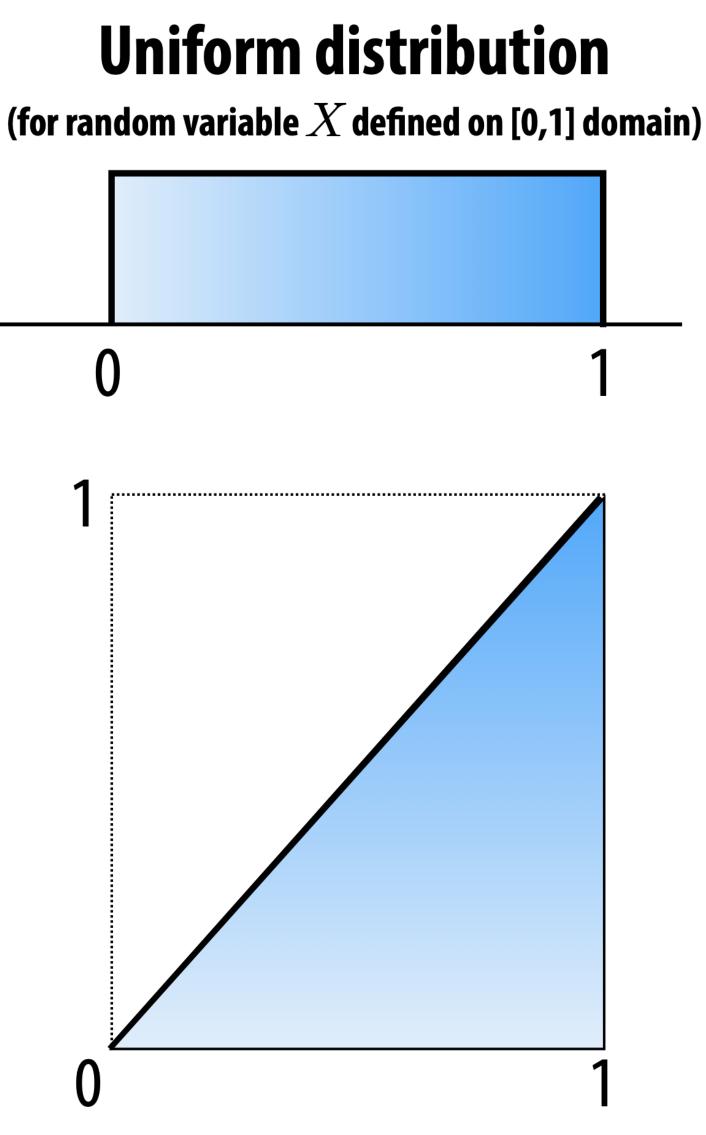
Continuous Random Variables

Probability density function (pdf) of X: p(x) $- p(x) \ge 0$

- No restriction that p(x) < 1 (Not a probability!)

Cumulative distribution function (cdf): P(x)

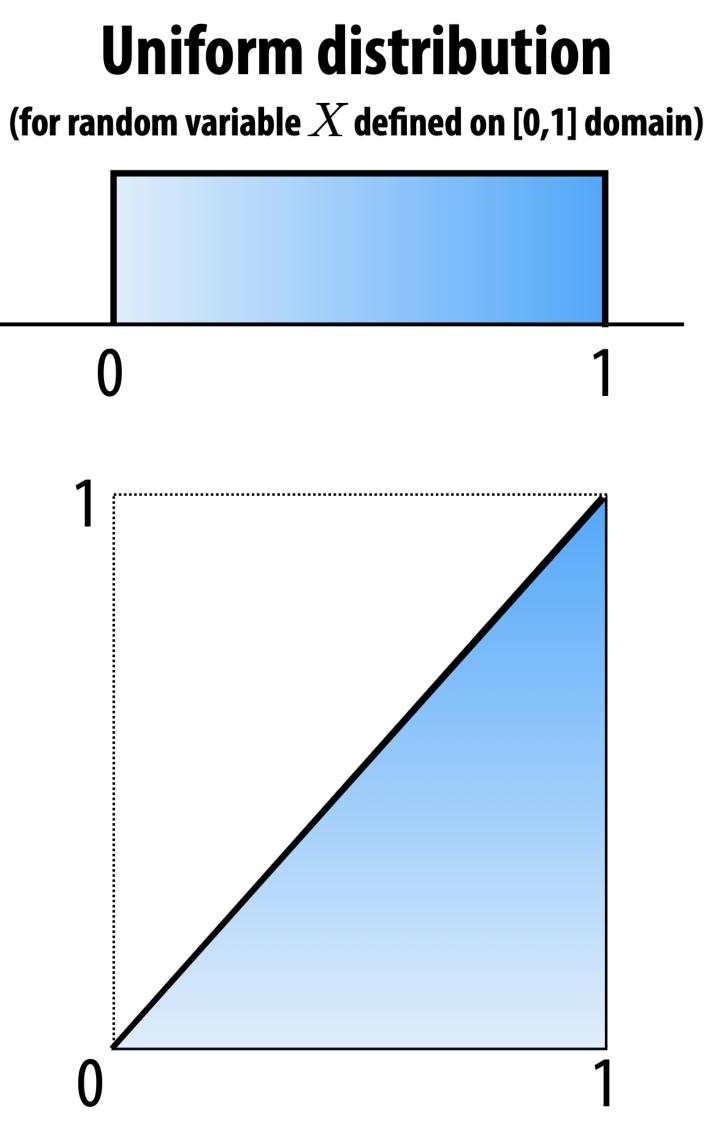
$$P(x) = \int_0^x p(x') \, dx'$$
$$P(x) = \Pr(X < x)$$
$$\Pr(a \le X \le b) = \int_a^b p(x') \, dx'$$
$$= P(b) - P(a)$$



Continuous Random Variables

Canonical uniform random variable

$$p(x) = \begin{cases} 1 & x \in [0, 1], \\ 0 & \text{otherwise.} \end{cases}$$



Ingredient: Uniform variates

Need: realizations of a uniformly distributed variable on the interval [0.0, 1.0]

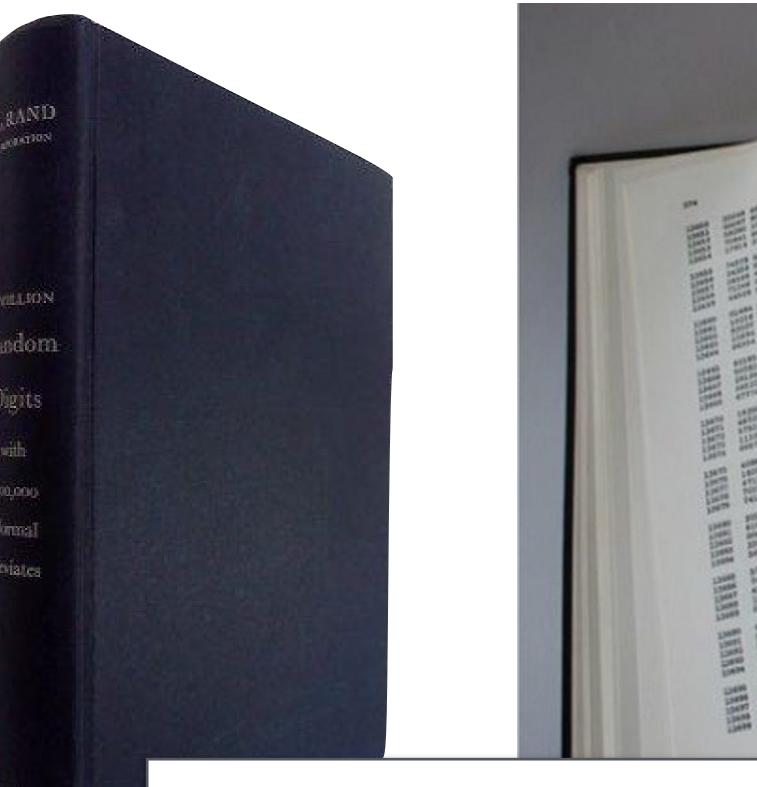
Desired properties:

- sequence should pass statistical tests of randomness
- sequence should have a long period
- efficient to compute, requires only little storage
- repeatability: always produce the same sequence (different compilers, operating systems, processors)

Sources of randomness

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086 **35587640247496473263914199272**604269922796782354781636009341721641219 **58858692699569092721079750930295**532116534498720275596023648066549911988 **175746728909777727938000816470600**161452491921732172147723501414419735685 **3323**90739**414**333454776**2416**862518983569485562099219222184272550254256887671 **784**3838279**679**766814541**0095**388378636095068006422512520511739298489608412848 **42**78622039**194**945047123**7137**869609563643719172874677646575739624138908658326 **259**57098258**2262**0522489407726719478268482601476990902640136394437 **509**37221696**4615**1570985838741059788595977297549893016175392846813 **2524**68084598**7273**6446958486538367362226260991246080512438843904512 **9486**85558484**0635**3422072225828488648158456028506016842739452267467 **4886**230577456**4980**3559363456817432411251507606947945109659609402522 **1792**868092087**4760**9178249385890097149096759852613655497818931297848 **59027**9934403742**00731**057853**90**6219838744780847848968332144571386875194 **2781911**9793995206**1419663428754**4406437451237181921799983910159195618146 **809514**655022523160**38819301420**93762137855956638937787083039069792077346 **026054**1466592520149**74428507**3251866600213243408819071048633173464965145 **840**52571459102897064**1401**109712062804390397595156771577004203378699360

A Million Random Digits



Top positive review See all 468 positive reviews >

1,842 people found this helpful ★★★★☆ almost perfect

By a curious reader on October 26, 2006

Such a terrific reference work! But with so many terrific random digits, it's a shame they didn't sort them, to make it easier to find the one you're looking for.

a aller and aller aller there are and aller are and a	ALARA LINES FORME TALAS BALAN STORE DOLLAR LINES GALAN LINES ATTAN	

Top critical review

See all 191 critical reviews >

849 people found this helpful

★★★☆☆ Wait for the audiobook version

By R. Rosini on October 19, 2006

While the printed version is good, I would have expected the publisher to have an audiobook version as well. A perfect companion for one's lpod.

A modern example: PCG32

struct pcg32_random_t { uint64_t state; uint64_t inc; };

uint32_t pcg32_random_r(pcg32_random_t* rng) { uint64_t oldstate = rng->state; rng->state = oldstate * 6364136223846793005ULL + (rng->inc | 1); uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u; uint32_t rot = oldstate >> 59u; return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));</pre> }

[http://www.pcg-random.org/]

Expected value

Intuition: what value does the random variable take, on average?

Expected value

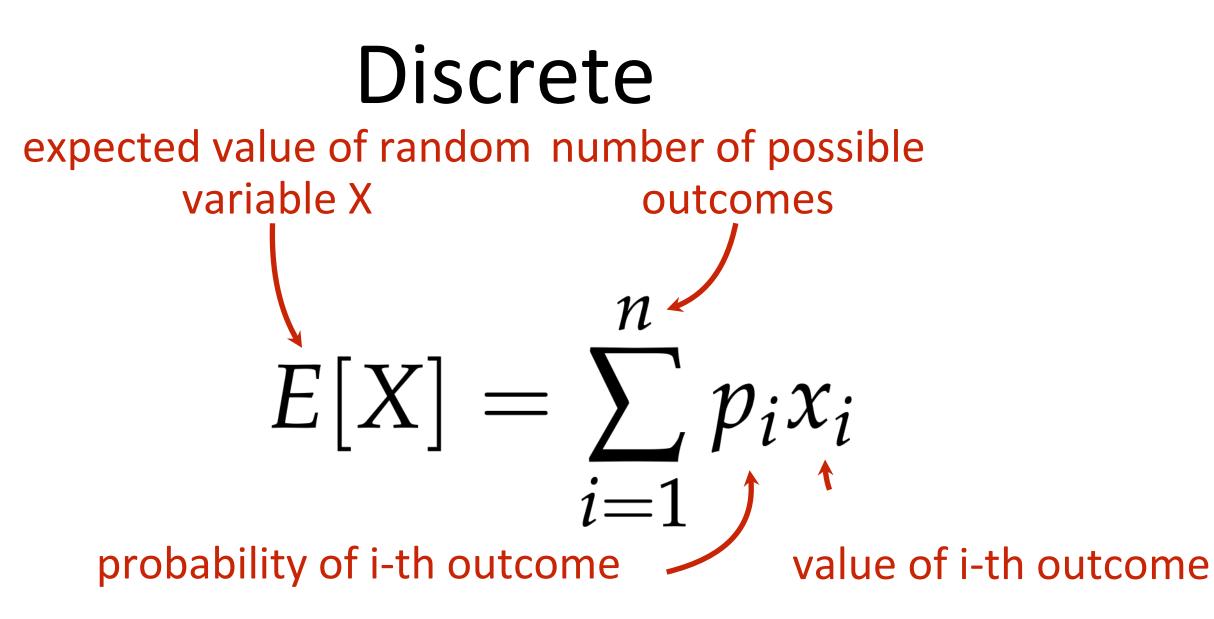
Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$

Expected value

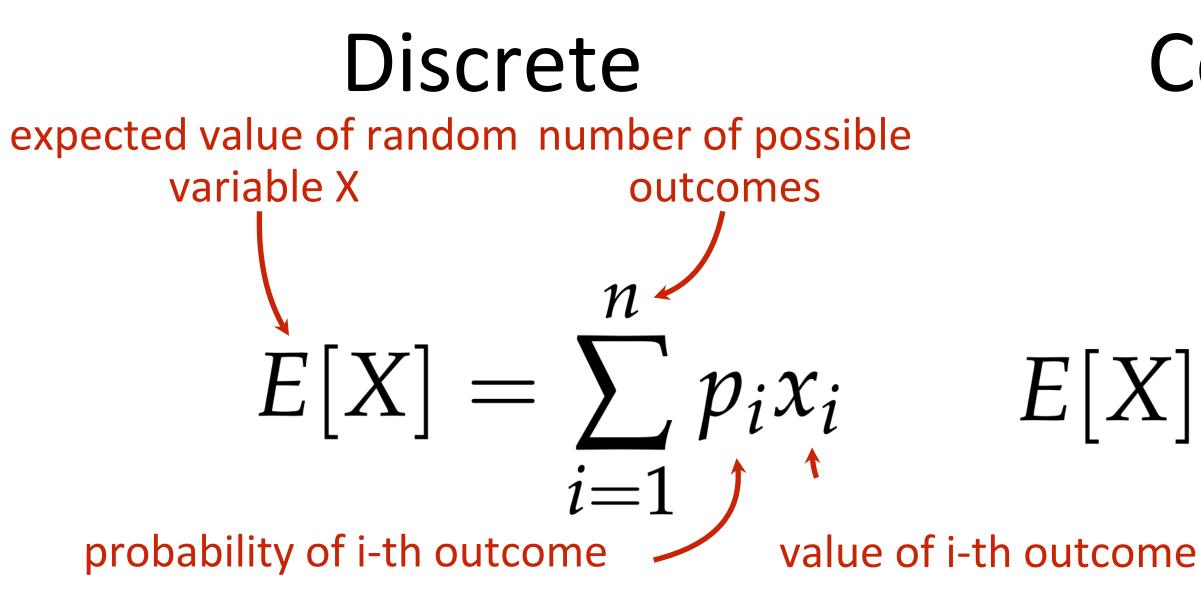
Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$



Expected value

- Intuition: what value does the random variable take, on average? - e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$



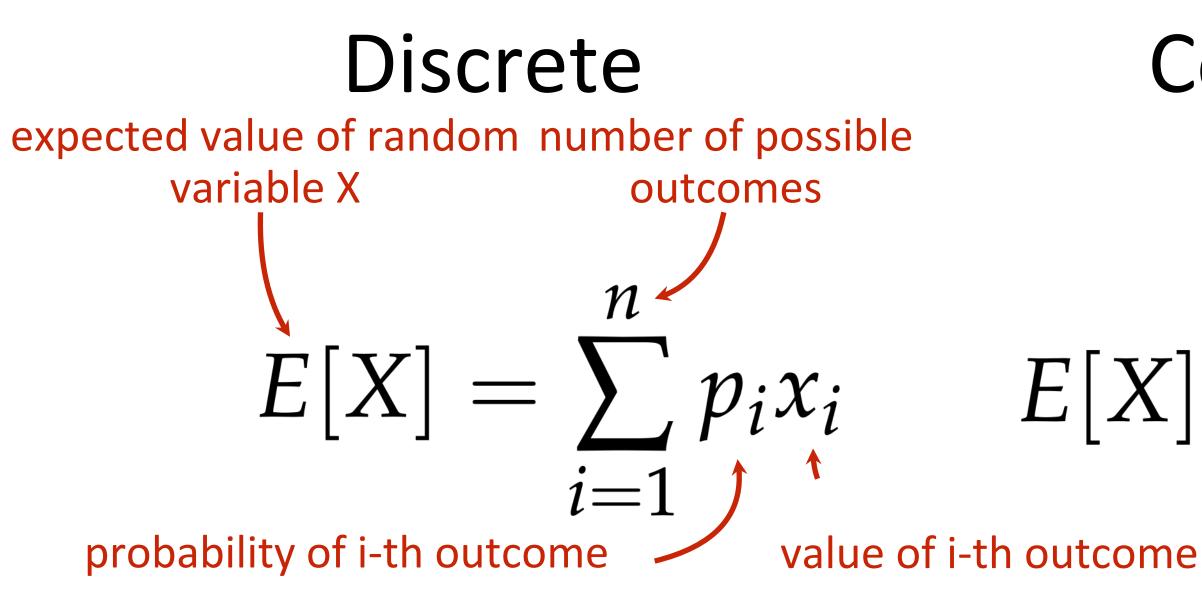
Continuous

 $E[X] = \int_{\mathbb{T}} p(x) x \, \mathrm{d}x$

Expected value

Intuition: what value does the random variable take, on average?

- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$



Continuous

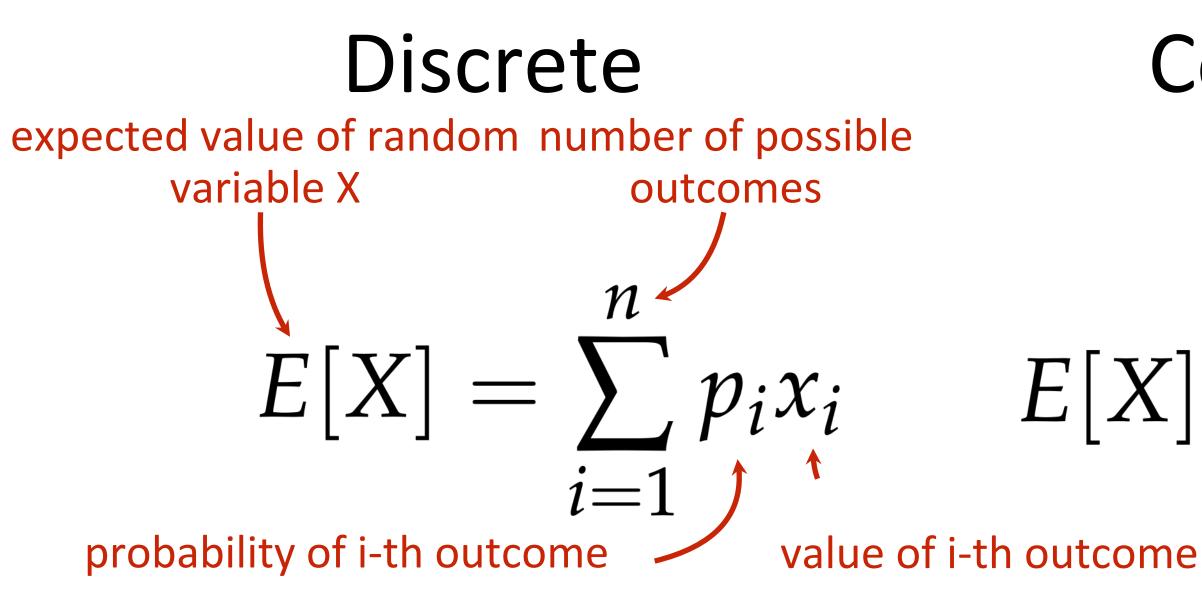
Properties $E[X_1 + X_2] = E[aX] =$

$$= \int_{\mathbb{R}} p(x) x \, \mathrm{d} x$$

Expected value

Intuition: what value does the random variable take, on average?

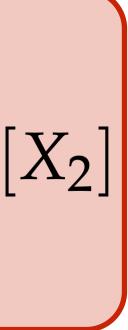
- e.g., consider a fair coin where heads = 1, tails = 0
- Equal probability (1/2 both)
- Expected value is then $(1/2) \times 1 + (1/2) \times 0 = 1/2$



Continuous

Properties $E[X_1 + X_2] = E[X_1] + E[X_2]$ E[aX] = aE[X]

$$= \int_{\mathbb{R}} p(x) x \, \mathrm{d}x$$



Monte Carlo Integration Motivation: want to compute the integral $F = \int_{D} f(x) \, \mathrm{d}x$ Could we approximate F by averaging a number of realizations x_i of a random process?

 $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$



47

 $E\left|\frac{1}{N}\sum_{i=1}^{N}f(X_{i})\right| = \frac{1}{N}\sum_{i=1}^{N}E[f(X_{i})]$ $= E[f(X_i)]$ $= \int_D f(x) p_{X_i}(x) dx$ (oops, that's not what we wanted!)

Monte Carlo Integration Motivation: want to compute the integral $F = \int_{D} f(x) \, \mathrm{d}x$

Solution: Approximate F by averaging realizations of a random variable X, and explicitly accounting for its PDF:

$$F \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

Monte Carlo integration is correct on average.

- This assumes that $p(X_i) \neq 0$ when $f(X_i) \neq 0$.
- This property is called unbiasedness.

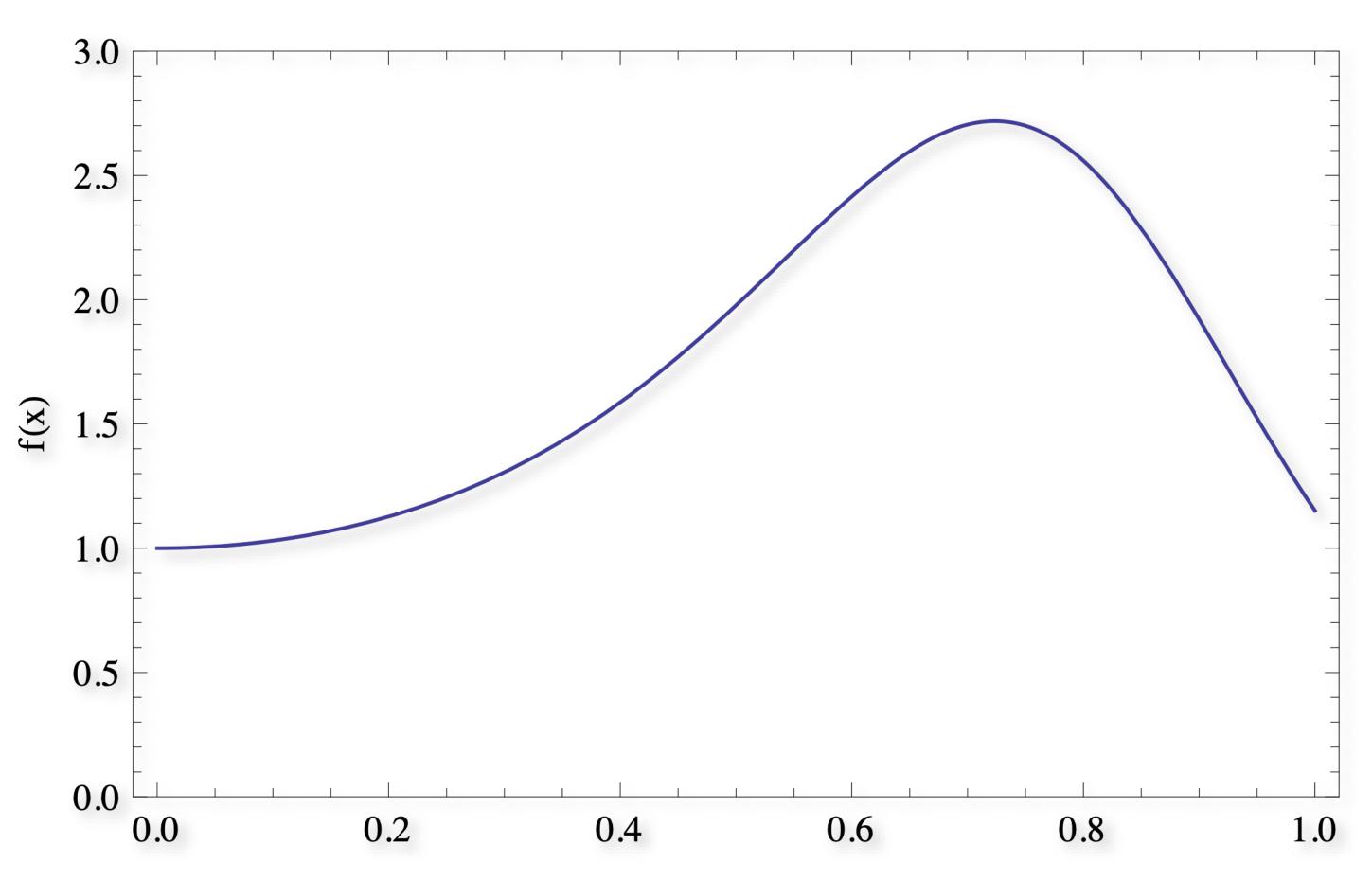
 $E\left|\frac{1}{N}\sum_{i=1}^{N}\frac{f(X_i)}{p(X_i)}\right| = \frac{1}{N}\sum_{i=1}^{N}E\left[\frac{f(X_i)}{p(X_i)}\right]$ $= E \left| \frac{f(X_i)}{p(X_i)} \right|$ $= \int_{\Sigma} \frac{f(X_i)}{n(X_i)} p(X_i) dx$ $\int f(X_i) \mathrm{d}x = F$

Requirement (why?)

Domain D might be: plane, sphere, hemisphere, surface of an object

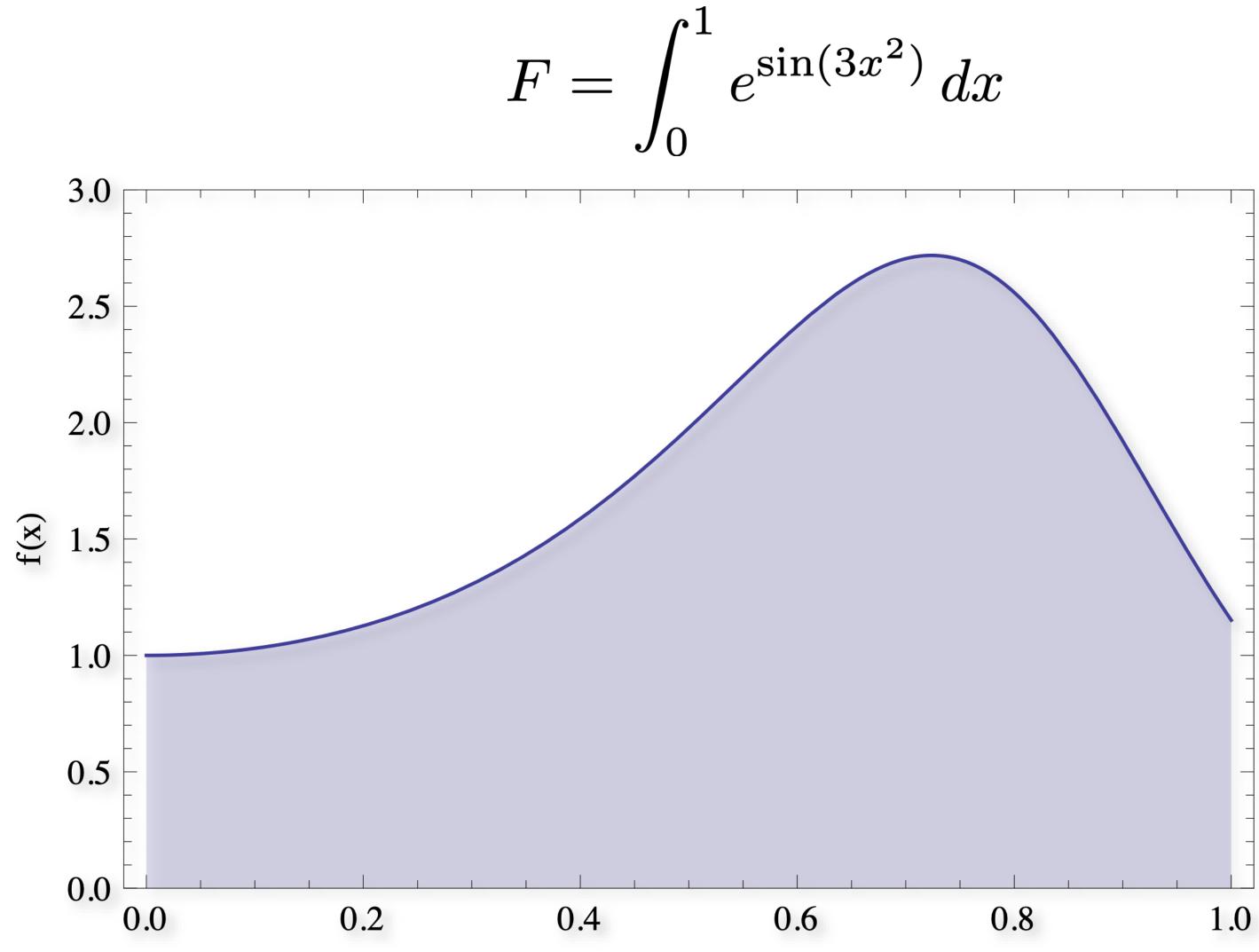
Reasonable default for p(x): uniform distribution

$f(x) \neq 0 \Rightarrow p(x) > 0$



 $f(x) = e^{\sin(3x^2)}$

Χ



$$F = \int_{0}^{1} e^{\sin(3x^{2})} dx \approx F_{N}$$

double integrate(int {

double x, sum=0.0;

for (int i = 0; i < N; ++i) {</pre>

sum += exp(sin(3*x*x));

}

return sum / double(N);

}

 $= \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} \Rightarrow \frac{1}{N} \sum_{i=1}^{N} f(x_i)$

N)

$$F = \int_{a}^{b} e^{\sin(3x^2)} dx \approx F_N$$

double integrate(int {

double x, sum=0.0;

for (int i = 0; i)

x = randf();

sum += exp(sin(3*x*x));

} return sum / double(N);

 $=\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_i)}{p(x_i)}$

$$F = \int_{a}^{b} e^{\sin(3x^{2})} dx \approx F_{N}$$

{

double x, sum=0.0;

for (int i = 0; i < N; ++i) {</pre>

x = a + randf() * (b-a);

 $sum += exp(sin(3 \times x \times x));$

} return sum / double(N);

 $=\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_i)}{p(x_i)}$

double integrate(int N, double a, double b)

 $p(x_i) = \frac{1}{h \cdot a}$

$$F = \int_{a}^{b} e^{\sin(3x^2)} dx \approx F_N$$

{

- double x, sum=0.0;
- for (int i = 0; i < N; ++i) {</pre>
 - x = a + randf()*(b-a);

- } return sum / double(N);

 $=\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_i)}{p(x_i)}$

double integrate(int N, double a, double b)

$p(x_i) = \frac{1}{b-a}$ sum += exp(sin(3*x*x)) / (1/(b-a));

Ν	F _N
1	2.75039
10	1.9893
100	1.79139
1000	1.75146
10000	1.77313
100000	1.77862

True value: 1.760977217585905...

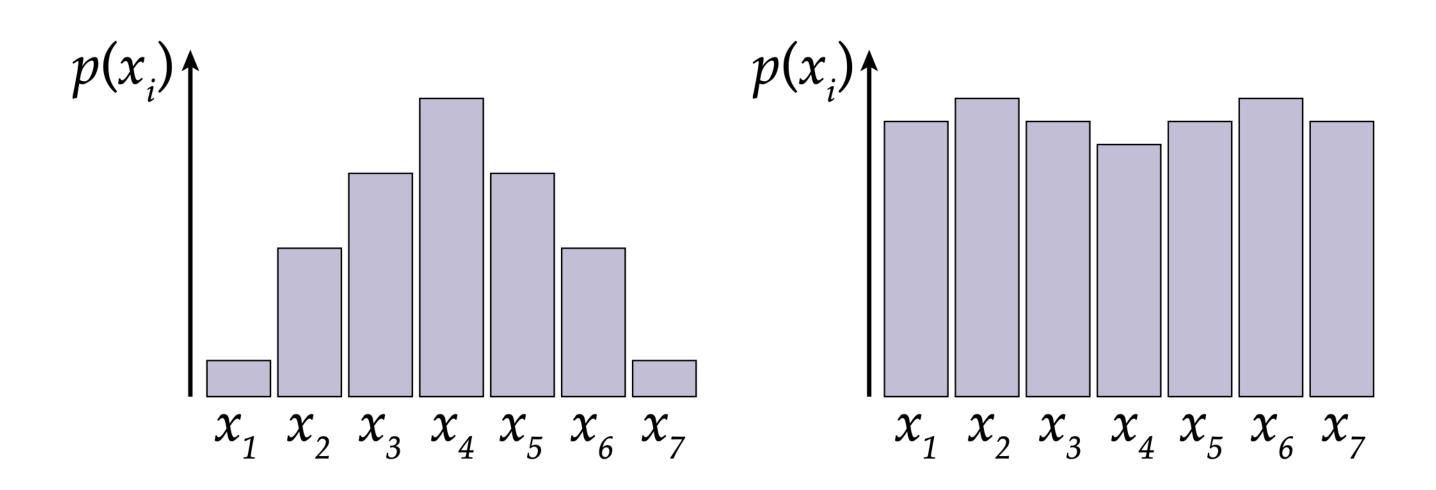
 $f(x) = e^{\sin(3x^2)}$

Intuition: how far are the samples from the average, on average?

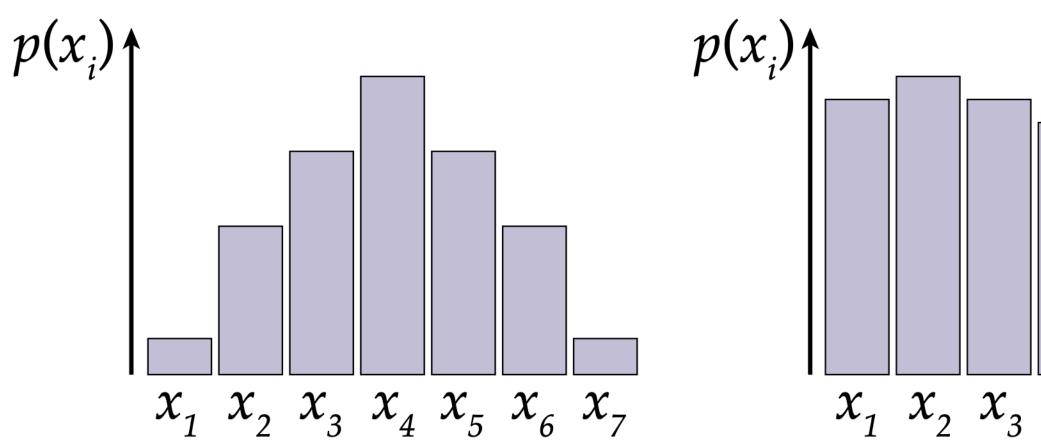
Intuition: how far are the samples from the average, on average? Definition: $V[X] = E\left[(X - E[X])^2\right]$

Intuition: how far are the samples from the average, on average? Definition: $V[X] = E\left[(X - E[X])^2\right]$

Q: Which of these has higher variance?



Intuition: how far are the samples from the average, on average? Definition: $V[X] = E\left[(X - E[X])^2\right]$ **Properties** Q: Which of these has higher variance? V[X] = $V[X_1 + X_2] = V[aX] =$ $p(x_i)$ $p(x_i)$ $x_1 \, x_2 \, x_3 \, x_4 \, x_5 \, x_6 \, x_7$ $x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7$ only if uncorrelated!



Monte Carlo Error

 $E[||F_N - F||^2] = E[F_N^2 - 2F_NF + F^2]$ $= E[F_N^2] - E[2F_NF] + E[F^2]$ $= E[F_N^2] - 2E[F_N]F + F^2$ $= E[F_N^2] - 2FF + F^2$ $= E[F_N^2] - F^2$ $= E[F_N^2] - E[F_N]^2 = V[F_N]$

For an unbiased estimator, its average error is equal to its variance!

Monte Carlo error

Variance:

 $V\left[\left\langle F^N\right\rangle\right] = V$

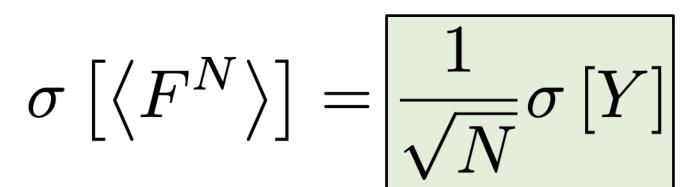
$$V\left[\frac{1}{N}\sum_{i=0}^{N-1}\frac{f(X_i)}{\mathrm{pdf}(X_i)}\right] \text{ assume uncorrelated samples}$$
$$\frac{1}{N^2}\sum_{i=0}^{N-1}V\left[\frac{f(X_i)}{\mathrm{pdf}(X_i)}\right]$$
$$\frac{1}{N^2}\sum_{i=0}^{N-1}V\left[Y_i\right]$$
$$\frac{1}{N}V\left[Y\right]$$

Monte Carlo error

Variance:

 $V\left[\left\langle F^N\right\rangle\right] = V$

Std. deviation:



$$V\left[\frac{1}{N}\sum_{i=0}^{N-1}\frac{f(X_i)}{\mathrm{pdf}(X_i)}\right] \sim \text{assume uncorrelated samples}$$

$$\frac{1}{N^2}\sum_{i=0}^{N-1}V\left[\frac{f(X_i)}{\mathrm{pdf}(X_i)}\right]$$

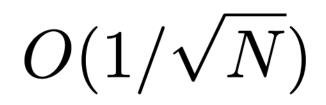
$$\frac{1}{N^2}\sum_{i=0}^{N-1}V[Y_i]$$

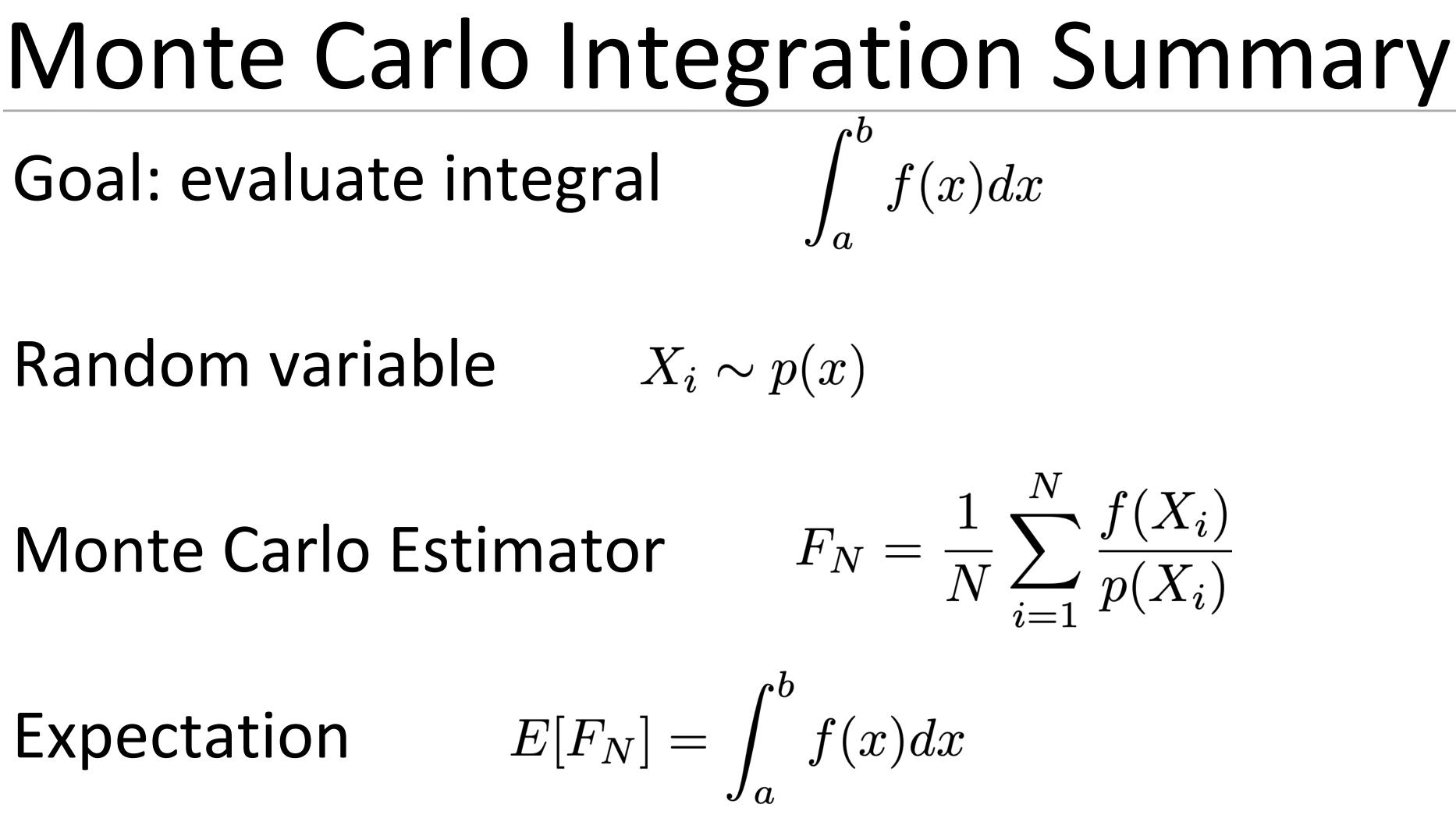
$$\frac{1}{N}V[Y]$$

Monte Carlo Methods

Pros

- Flexible
- Easy to implement
- Easily handles complex integrands
- Efficient for high dimensional integrands
- Unbiased estimator
- Cons
- Variance (noise)
- Slow convergence*



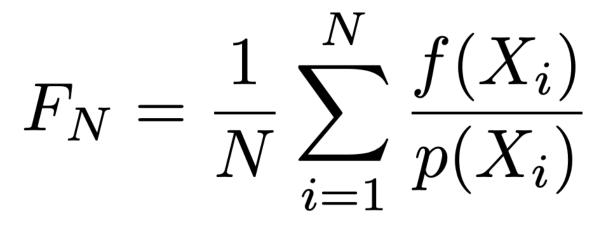


Remaining Agenda

Main practical issues:

- How to choose p(x)
- How to generate x_i according to p(x)**Ambient Occlusion**

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_r)$$



 $\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

Sampling Random Variables

Sampling the function domain:

- Uniform unit interval (0,1)
- Uniform interval (a,b)
- Circle?
- Sphere?
- Hemisphere?
- More complex domains?

Example: uniformly sampling a disk

Uniform probability density on a unit disk

 $p(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 < 1\\ 0 & \text{otherwise} \end{cases}$

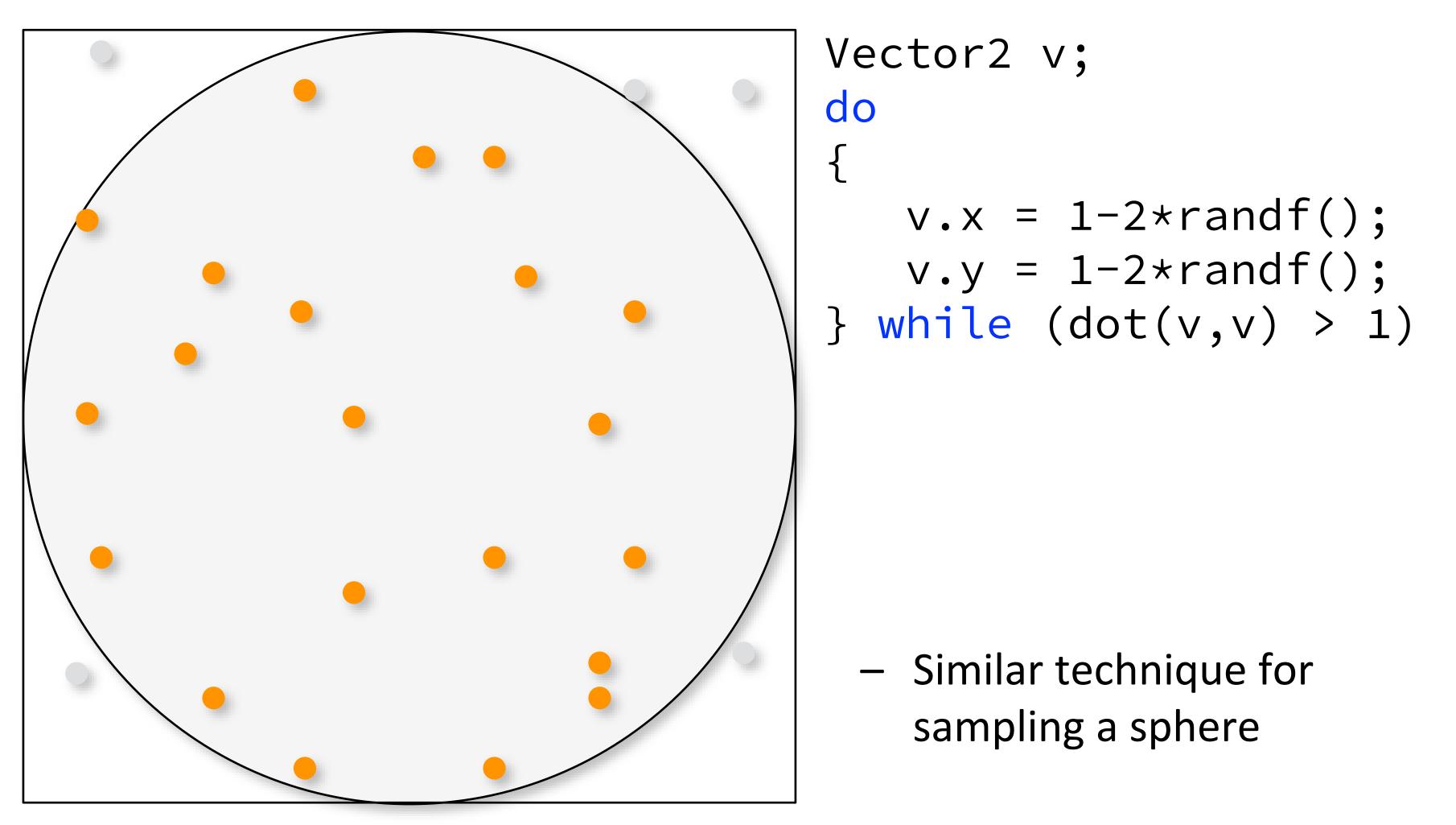
- Goal: draw samples X_i , Y_i that are distributed as: (X_i, Y_i)
- draw samples from a canonical uniform distribution

$$\frac{1}{\pi} \quad x^2 + y^2 < 1$$

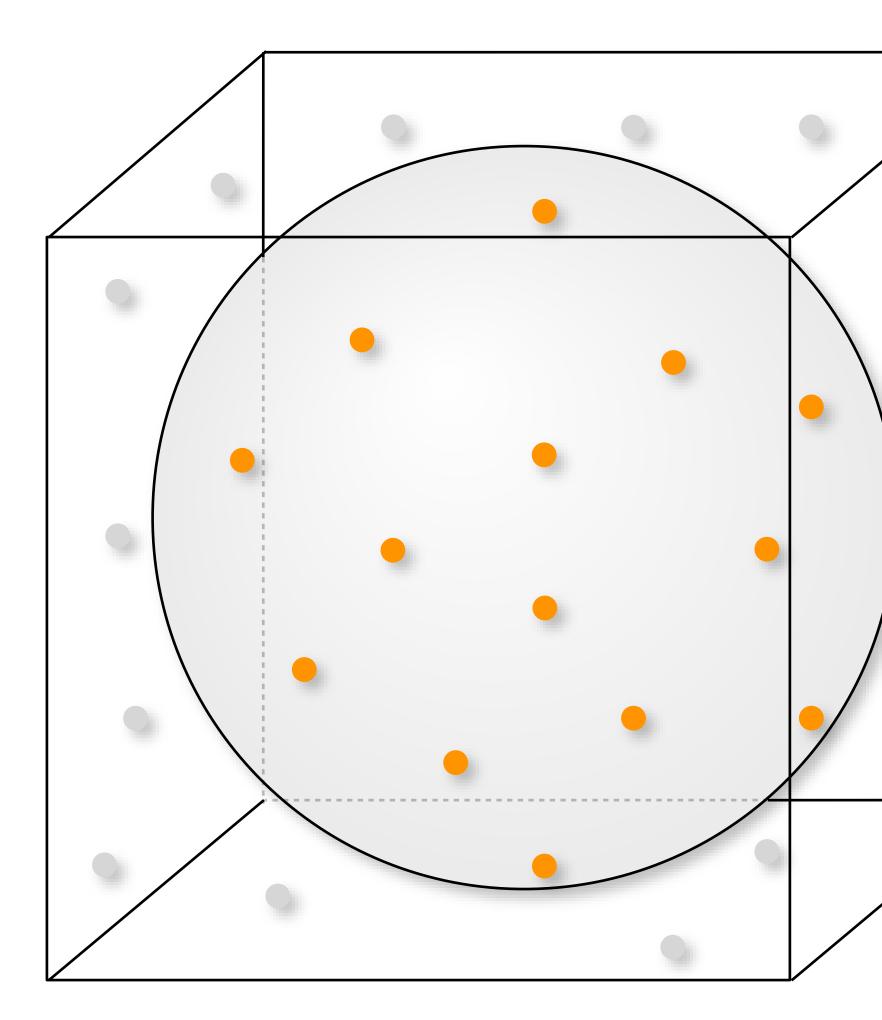
$$f_i) \sim p(x, y)$$

Problem: pseudo-random number generator only allows us to

Rejection Sampling in a Disk

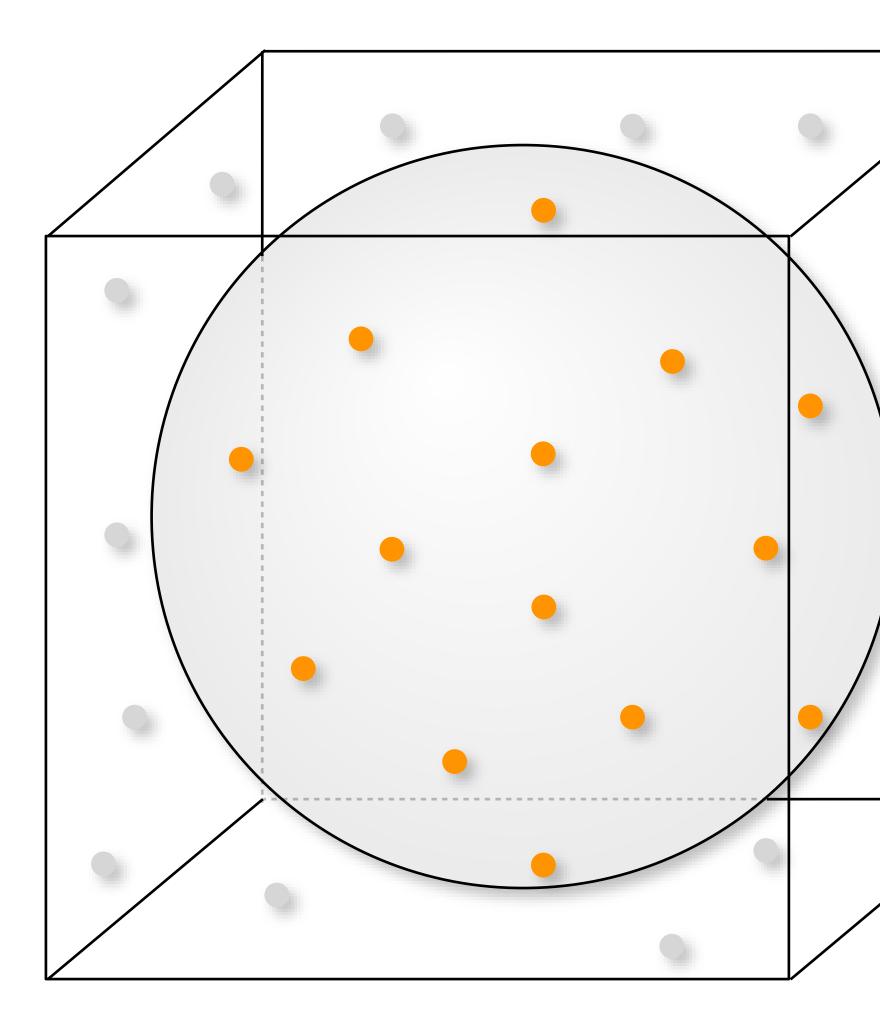


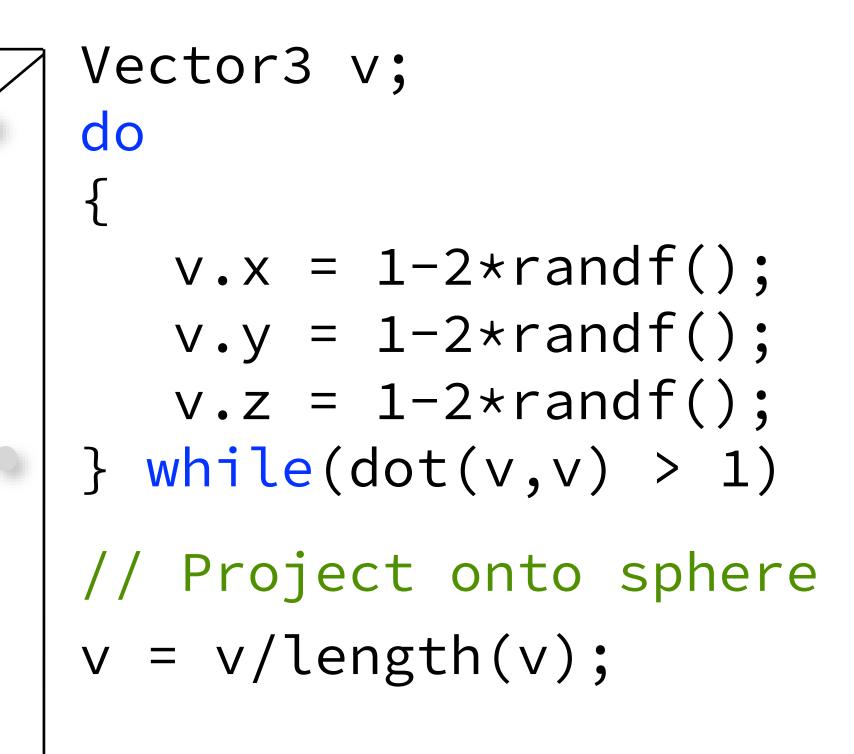
Rejection Sampling in a Sphere

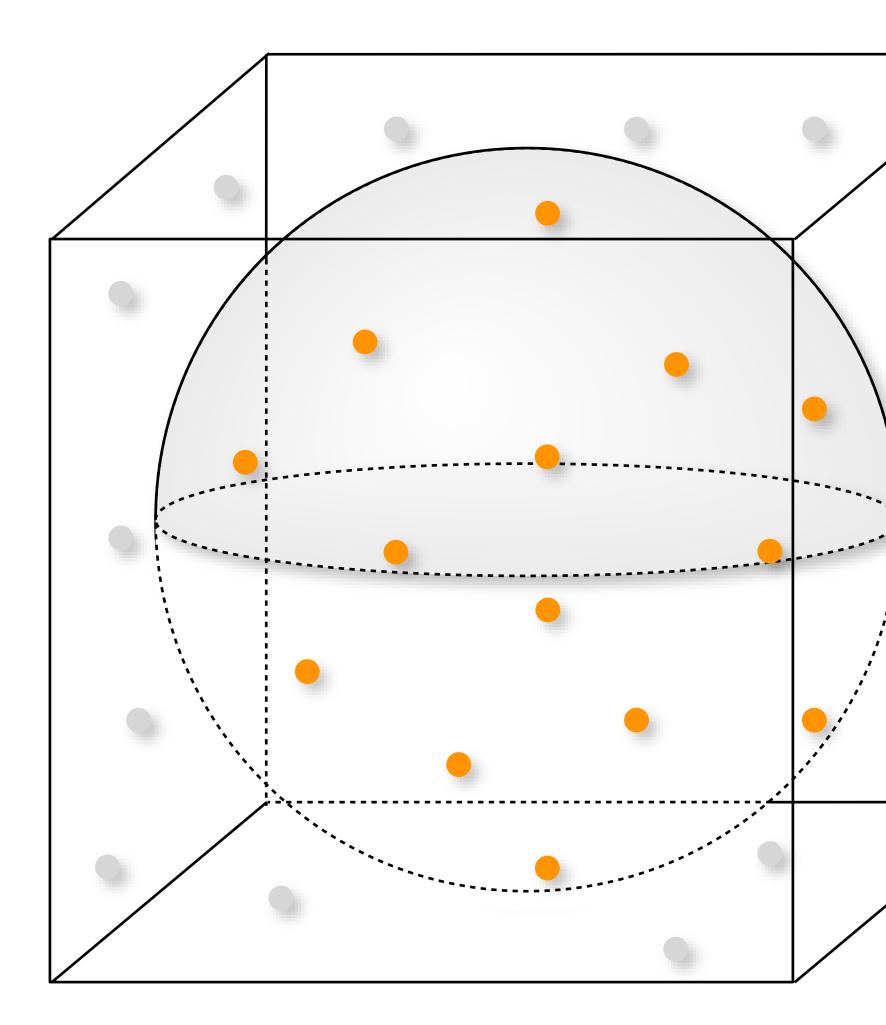


```
Vector3 v;
do
{
     v.x = 1-2*randf();
     v.y = 1-2*randf();
     v.z = 1-2*randf();
} while(dot(v,v) > 1)
```

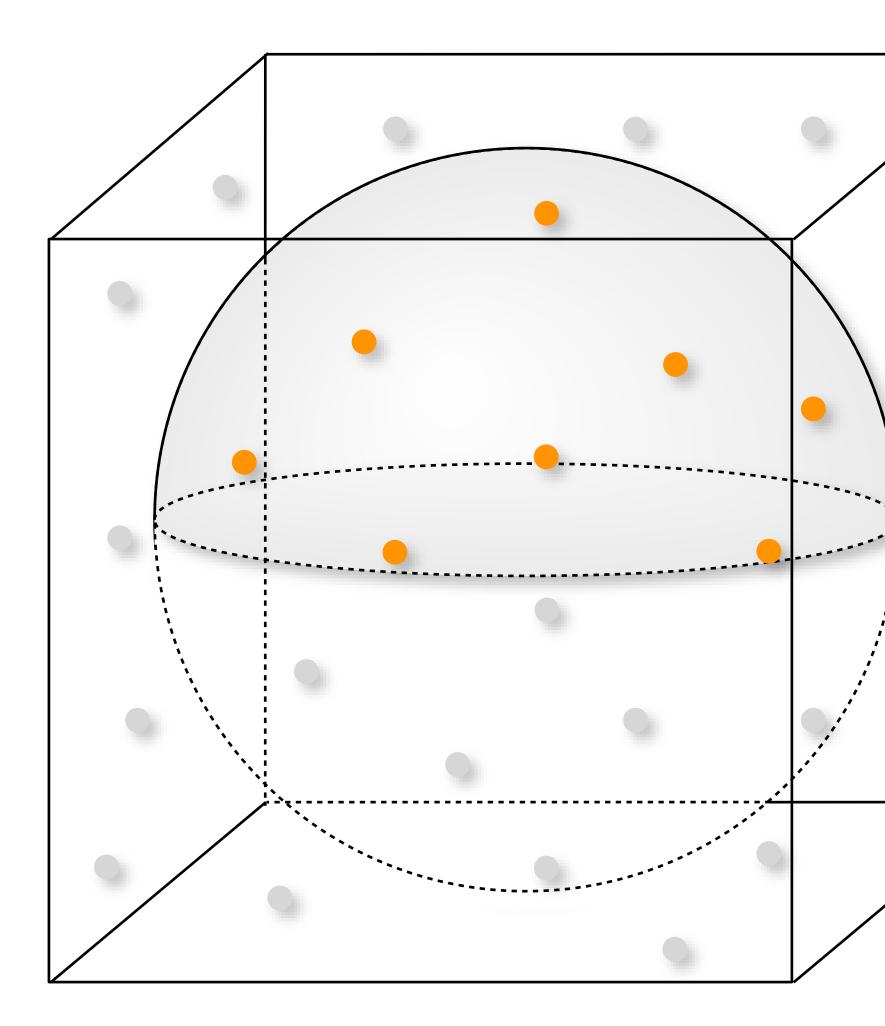

Rejection Sampling on a Sphere



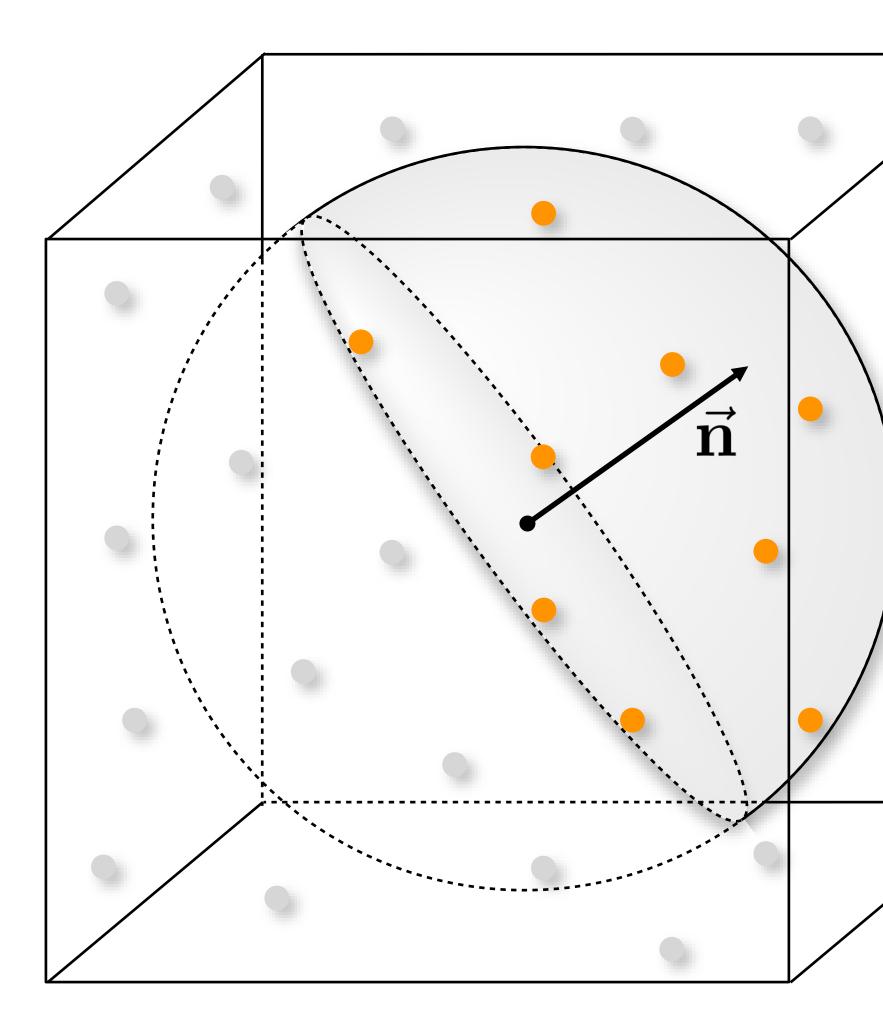




Vector3 v; do { v.x = 1-2*randf(); v.y = 1-2*randf(); v.z = 1-2*randf(); } while(dot(v,v) > 1)

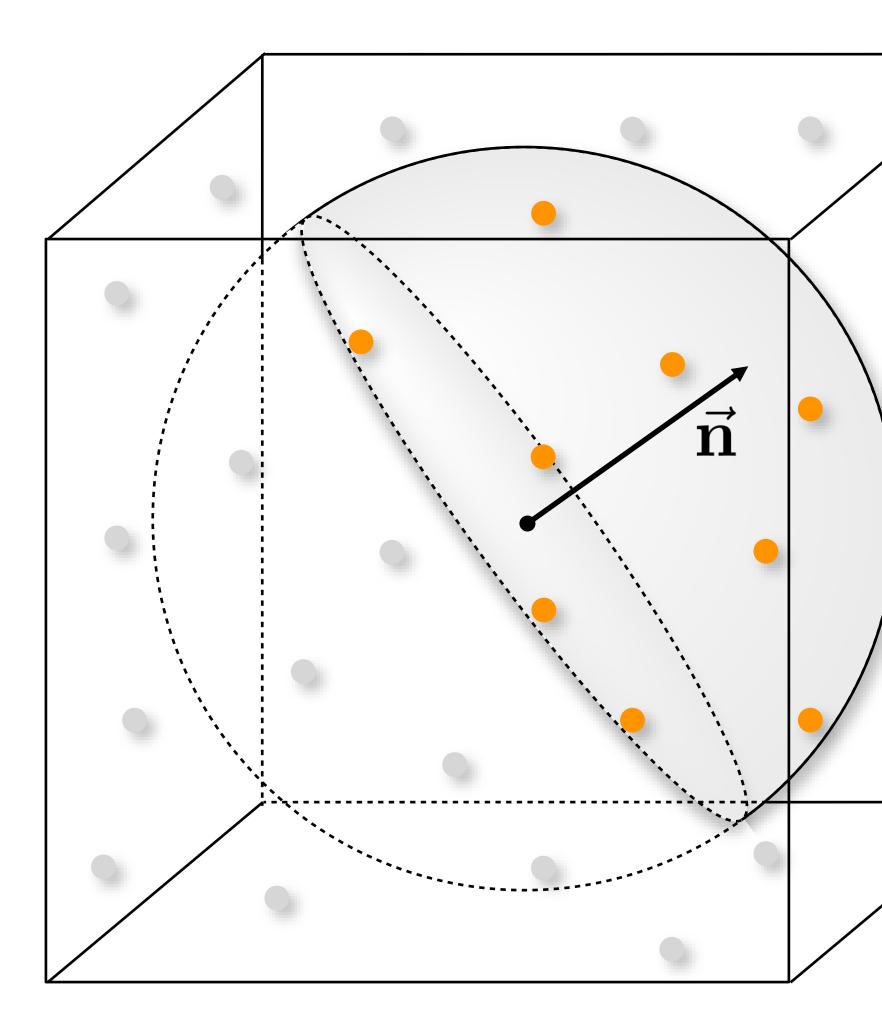


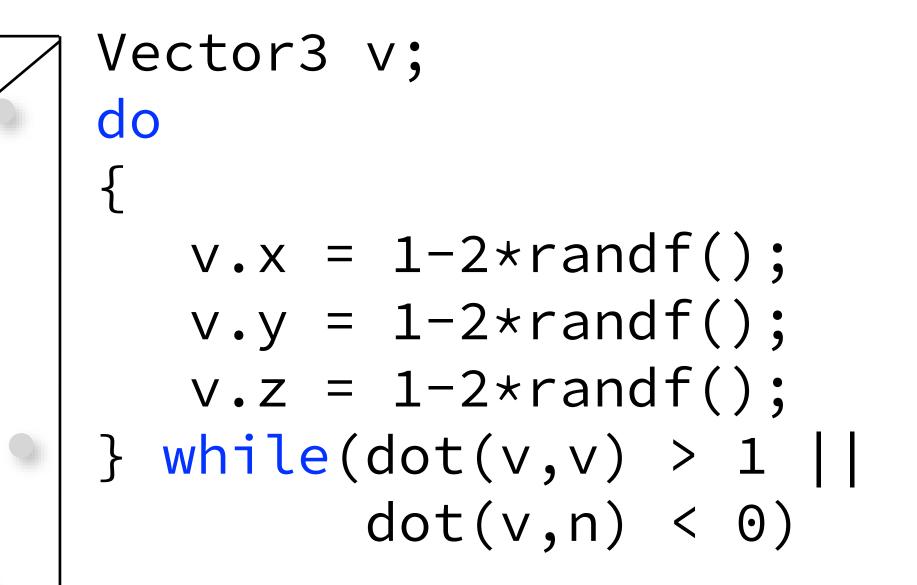
```
Vector3 v;
do
{
     v.x = 1-2*randf();
     v.y = 1-2*randf();
     v.z = 1-2*randf();
} while(dot(v,v) > 1 ||
     v.z < 0)</pre>
```

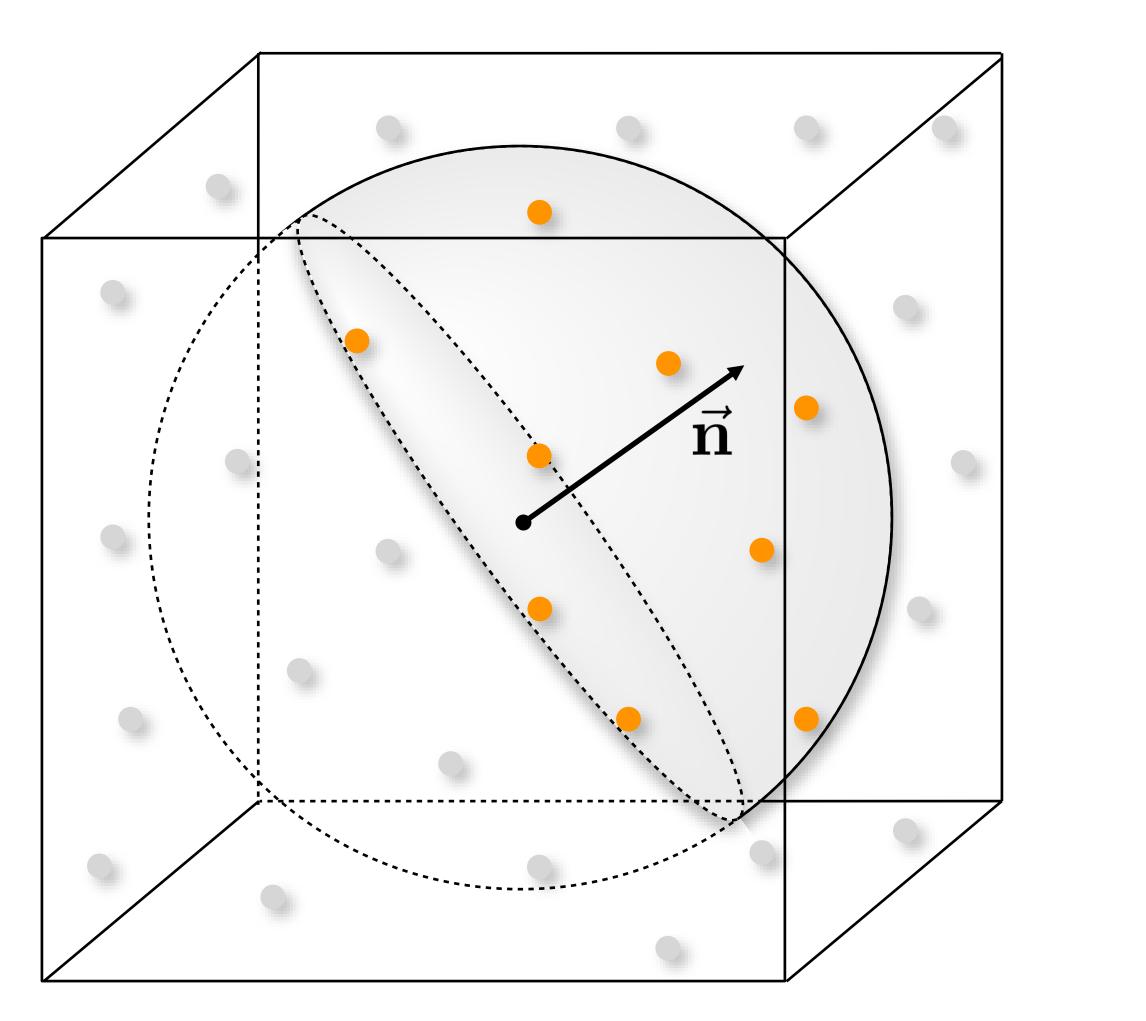
Vector3 v; do { v.x = 1-2*randf(); v.y = 1-2*randf(); v.z = 1-2*randf(); } while(dot(v,v) > 1 || v.z < 0)</pre>

Arbitrary orientation?





Arbitrary orientation?



• Or, just generate in canonical orientation, and then rotate

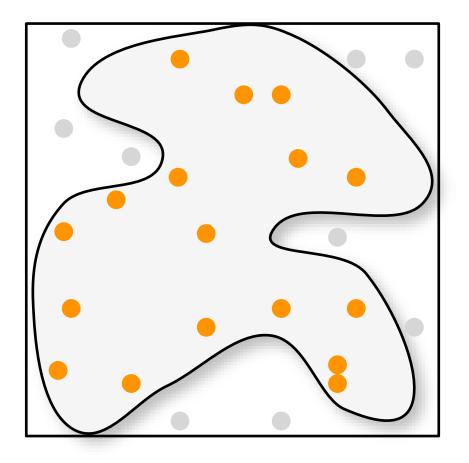
Rejection Sampling

More complex shapes

- Pros:
- Flexible
- Cons:



- Inefficient
- Difficult/impossible to combin Carlo

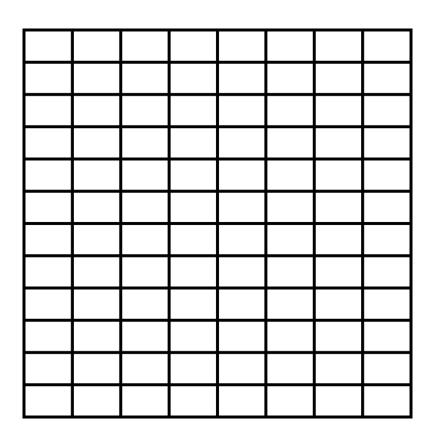


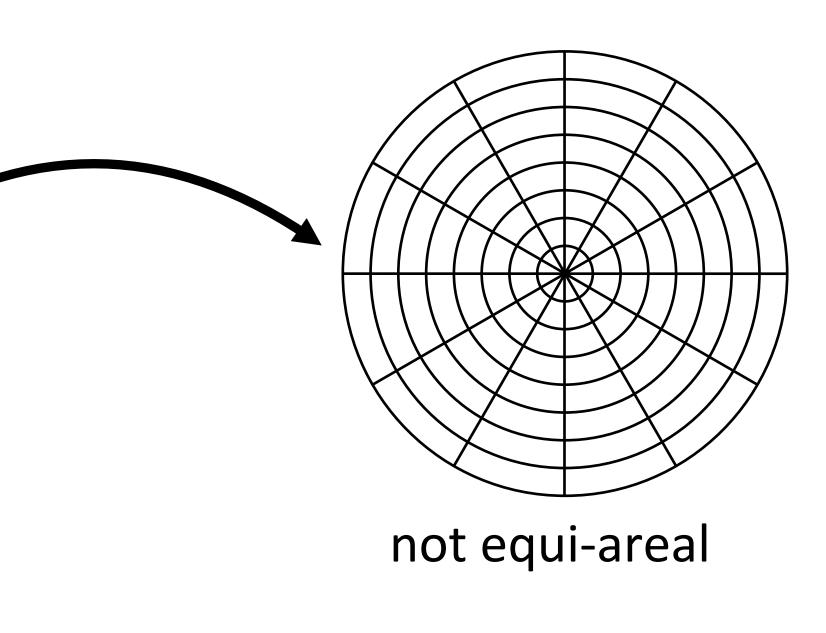
- Difficult/impossible to combine with stratification or quasi-Monte

Directly sampling a disk?

Idea: transform samples to polar coordinates:

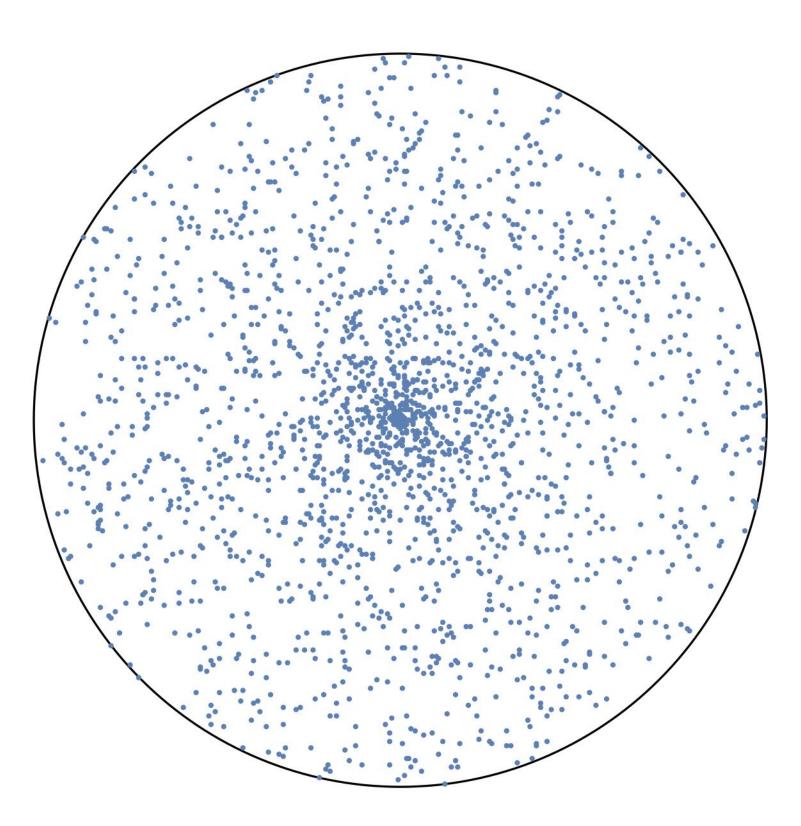
- pick two uniform random variables ξ_1, ξ_2
- select point at (r, ϕ) with $r = \xi_1$ and $\phi = 2\pi\xi_2$
- This algorithm **does not** produce the desired uniform sampling of the disk. — Why?





Wrong!

Samples are uniform in (θ, r) , but non-uniform in (x,y)!

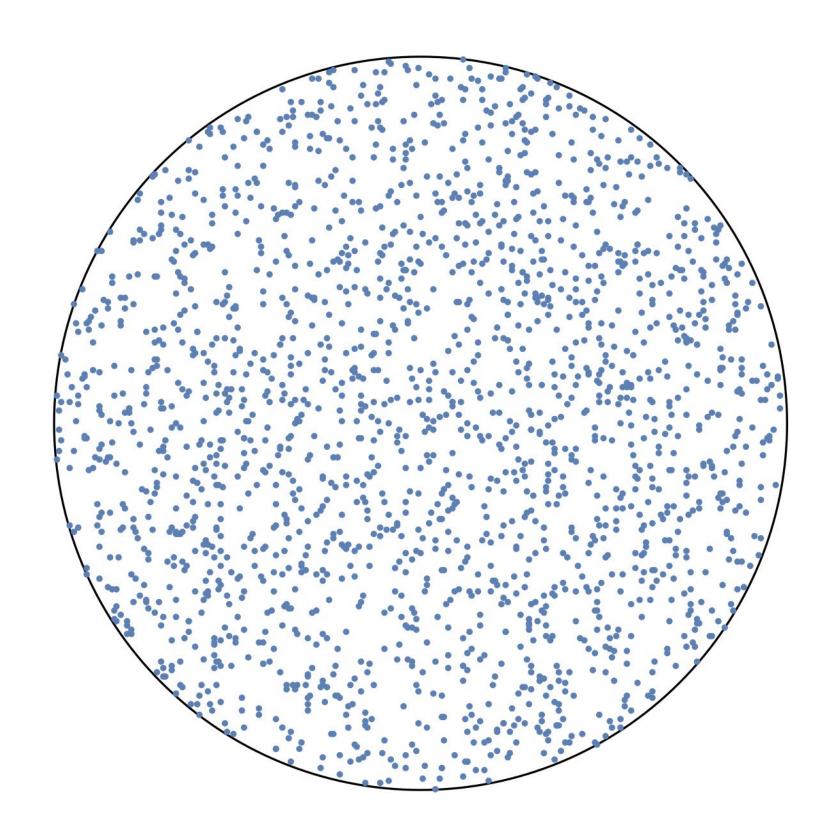


This can be corrected by choosing *r* nonuniformly!

 $\theta = 2\pi\xi_1$

 $r = \xi_2$

Right! Samples are non-uniform in (θ, r) , but uniform in (x,y)!



 $\theta = 2\pi\xi_1$

 $r = \sqrt{\xi_2}$

Transforming Between Distributions

Given a random variable $X_i \sim p(x)$

- $Y_i = T(X_i)$ is also a random variable
- but what is its probability density?

$$p_y(y) = p_y(y)$$

- where $|J_T(x)|$ is the absolute value of the determinant of the Jacobian of T

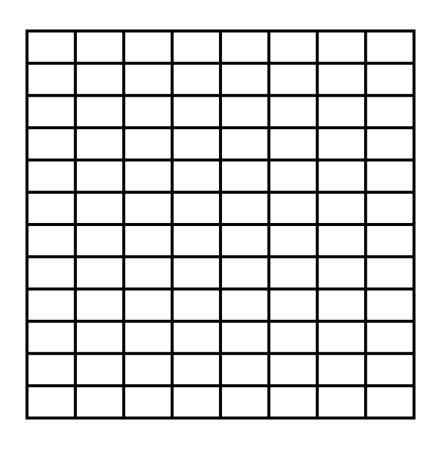
$(T(x)) = \frac{p_x(x)}{|I_T(x)|}$

Polar coordinate parameterization

 $T(r,\phi) \mapsto$

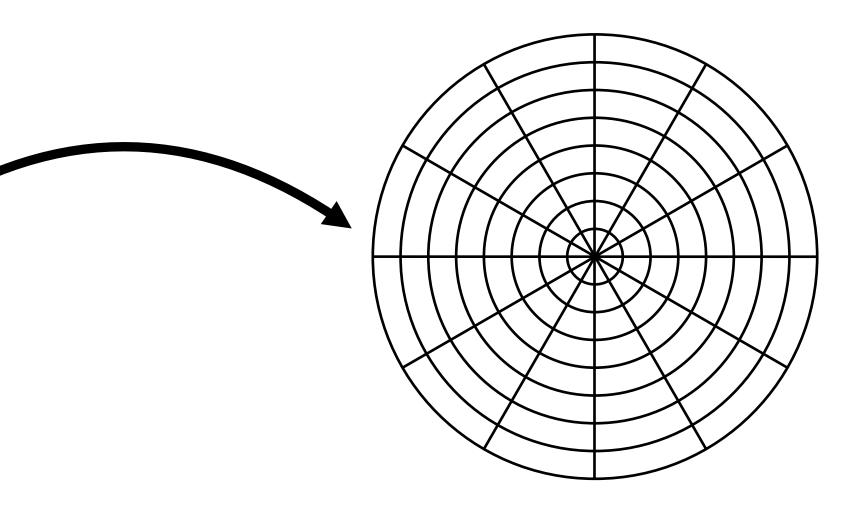
$$J_T(r,\phi) = \begin{bmatrix} \frac{\partial T_x}{\partial r} & \frac{\partial T_x}{\partial \phi} \\ \frac{\partial T_y}{\partial r} & \frac{\partial T_y}{\partial \phi} \end{bmatrix} = \begin{bmatrix} \cos\phi & -r\sin\phi \\ \sin\phi & r\cos\phi \end{bmatrix}$$

det



$$\left[\begin{array}{c} r\cos\phi\\ r\sin\phi \end{array} \right]$$

$$|J_T(r,\phi)| = r$$



Account for parameterization

Desired distribution on target domain

- $p(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 < 1\\ 0, & \text{otherwise} \end{cases}$
- If we sample in spherical coordinates:

target domain

Thus, need this distribution on source domain:

 $p(r,\phi) = p(T(r,\phi))$ $= 1/\pi$

sampling domain

- $\overbrace{p(x,y)}^{\text{rget domain}} = p(T(r,\phi)) = \frac{\overbrace{p(r,\phi)}^{\text{rget domain}}}{|\det J_T(r,\phi)|}$

$$(p)) \cdot |\det J_T(r,\phi)| = \frac{r}{\pi}$$
$$= r$$

Sampling 2D Distributions

Draw samples (X, Y) from a 2D distribution p(x, y)

- If p(x, y) is separable, i.e., p(x, y) = p(x) p(y), we can independently sample p(x), and p(y)
- Otherwise, compute the marginal density function:
 - p(x) =
- and, the conditional density:
 - $p(\boldsymbol{y} \mid \boldsymbol{x})$
- Procedure: first sample $X_i \sim p(x)$

$$\int p(x,y) \, dy$$

$$= \frac{p(x,y)}{p(x)}$$

), then $Y_i \sim p(y | X_i)$

Account for parameterization

Thus: need this distribution on source domain

$$p(r,\phi) = \underbrace{p(T(r,\phi))}_{= 1/\pi} \cdot \underbrace{|\det J_T(r,\phi)|}_{= r} = \frac{r}{\pi}$$

Step 1: generate φ proportional to

Step 2: generate r proportional to

$$p_2(r) \propto r =$$

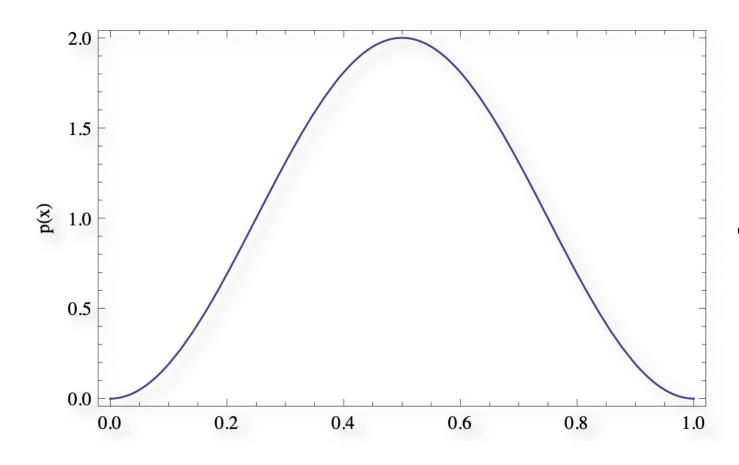
- $p_1(\phi) = \frac{1}{2\pi} \quad (\phi \in [0, 2\pi])$

 - $2r \quad (r \in [0,1])$
- Constant PDF in φ , linearly increasing PDF in r

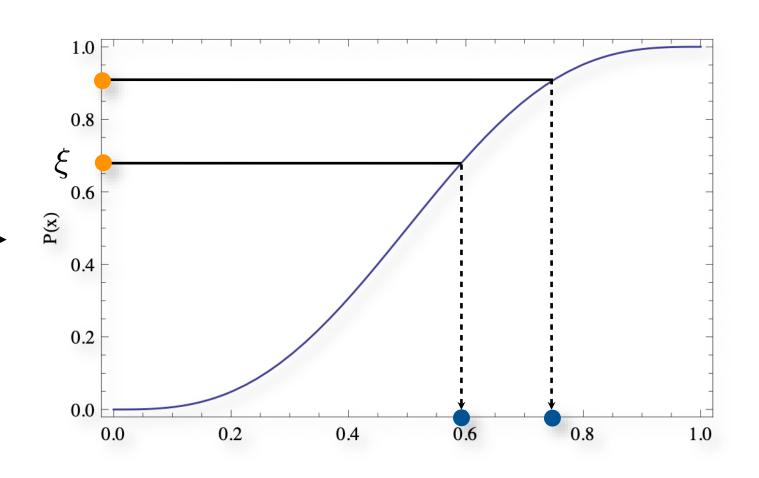
Sampling arbitrary distributions

The inversion method:

- 3. Obtain a uniformly distributed random number ξ
- 4. Compute $X_i = P^{-1}(\xi)$



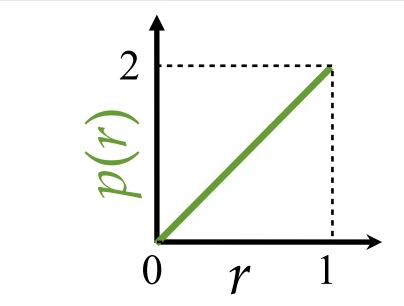
1. Compute the CDF $P(x) = \int_0^x p(x') dx'$ 2. Compute its inverse $P^{-1}(y)$



Sampling a linear ramp

Goal: sample with PDF: p(r) = 2r

Step 1: $P(r) = r^2$ **Step 2:** $P^{-1}(y) = \sqrt{y}$ Step 3: $r_i = \sqrt{\xi}$

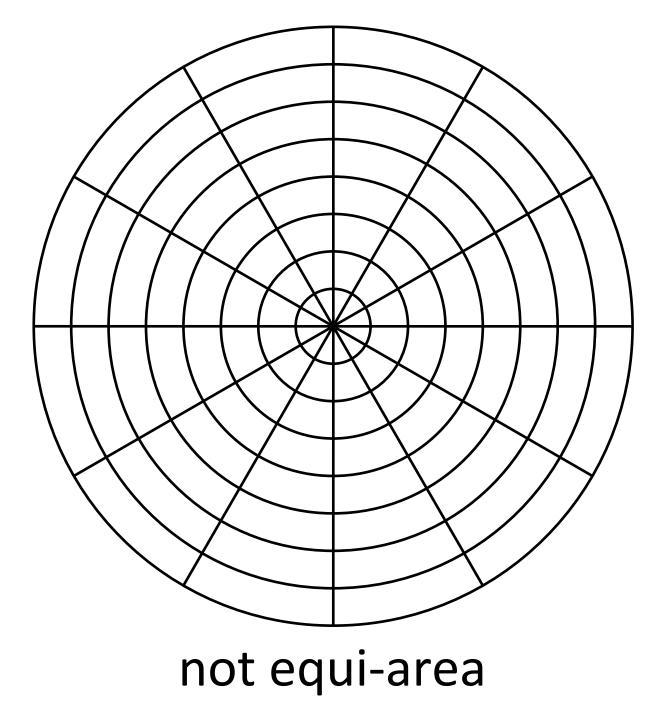


Uniformly Sampling a Disk

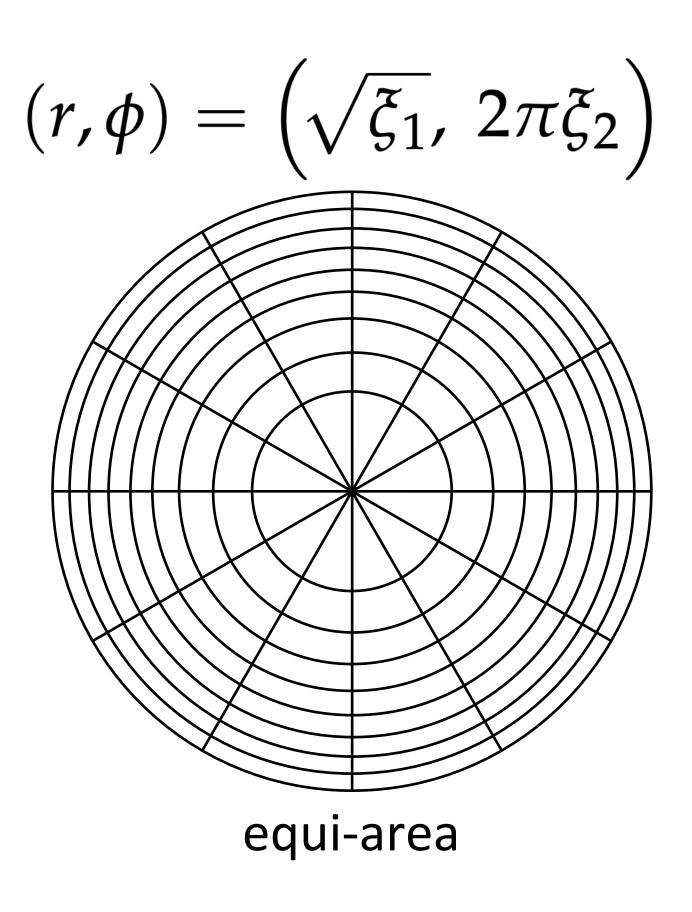
Pick two uniform random variables ξ_{1}, ξ_{2}

Sample in polar coordinates with:

$$(r,\phi)=(\xi_1,\ 2\pi\xi_2)$$



iables ξ_1, ξ_2



Recipe

- Express the desired distrib system
- 2. Account for distortion by coordinate system
- Requires computing the determinant of the Jacobian
- 3. Compute marginal and conditional 1D PDFs
- 4. Sample 1D PDFs using the inversion method

1. Express the desired distribution in a convenient coordinate

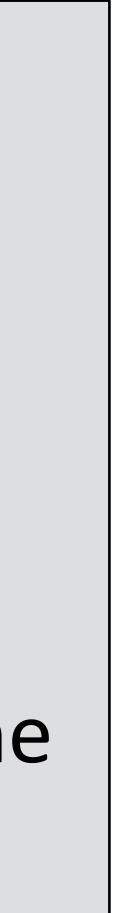
Directly Sampling on a Sphere

Can we use this?

Given a random variable $X_i \sim p(x)$ $Y_i = T(X_i)$ is also a random variable but what is its probability density? -Jacobian of T

$p_y(y) = p_y(T(x)) = \frac{p_x(x)}{|I_T(x)|}$

- where $|J_T(x)|$ is the absolute value of the determinant of the



Directly Sampling on a Sphere

Different transformation rule:

$$p_{\boldsymbol{x}}(\boldsymbol{x}(u,v)) = \frac{p_{(u,v)}(u,v)}{\|\boldsymbol{x}_{u}(u,v) \times \boldsymbol{x}_{v}(u,v)\|}$$

Where does this come from?

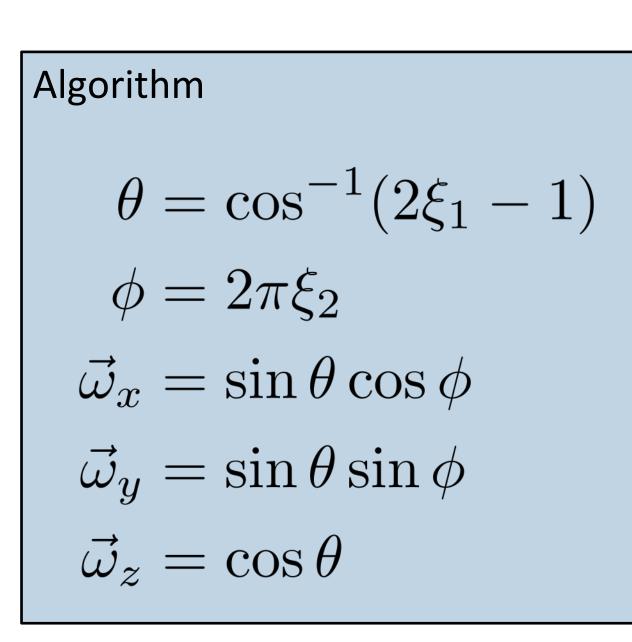
• Expression for differential area (e.g., as in area integral):

 $dA(\mathbf{x}) = \|\mathbf{x}_u(u, v) \times \mathbf{x}_v(u, v)\| du dv$

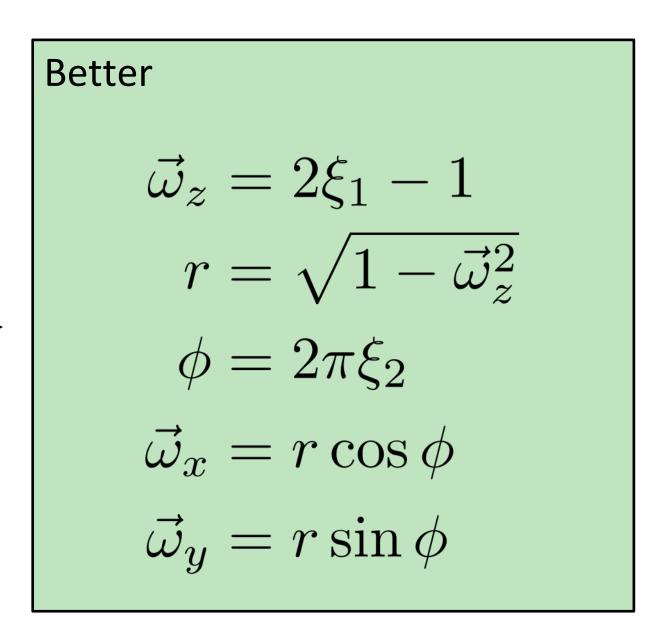
Directly Sampling on a Sphere

Pick two uniform random variables ξ_1, ξ_2

- Idea: select point at (θ, φ) with θ
- **Problem**: not uniform with respect to surface area!
- **Correct solution**: $\theta = \cos^{-1}(2\xi_1 1)$ and $\varphi = 2\pi\xi_2$



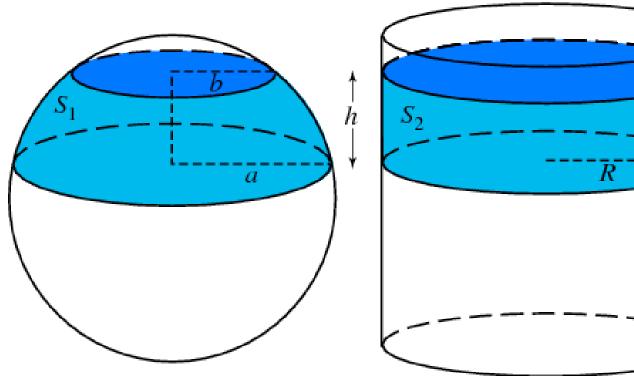
$$\theta = \pi \xi_1$$
 and $\varphi = 2\pi \xi_2$



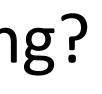
Archimedes' Hat-Box Theorem

The surface area of a sphere between any two horizontal planes is equal to the corresponding area on the circumscribing cylinder.

- i.e.: uniform areas on a cylinder map to uniform areas on a sphere
- What is $|J_T|$ for cylindrical mapping?



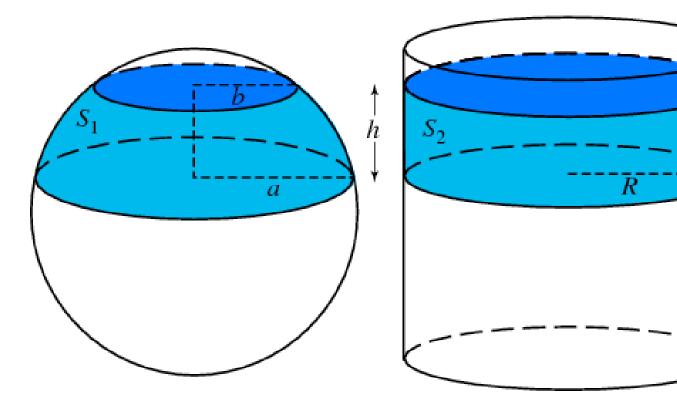
Weisstein, Eric W. "Archimedes' Hat-Box Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html



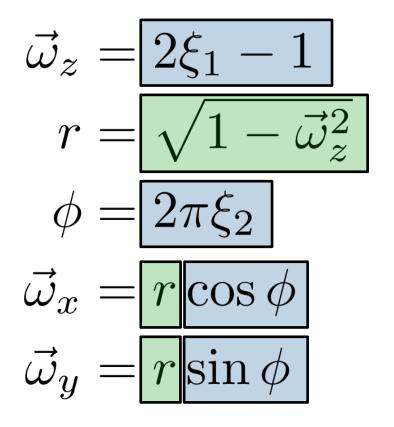
Archimedes' Hat-Box Theorem

The surface area of a sphere between any two horizontal planes is equal to the corresponding area on the circumscribing cylinder.

- i.e.: uniform areas on a cylinder map to uniform areas on a sphere
- What is $|J_T|$ for cylindrical mapping?



Weisstein, Eric W. "Archimedes' Hat-Box Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ArchimedesHat-BoxTheorem.html



projection onto sphere

Directly Sampling a Hemisphere

Just like a sphere

Use Hat-Box theorem with shorter cylinder

More Random Sampling

Other useful sampling domains:

- triangles
- 1- or 2-D discrete PDFs (e.g. environment maps)

Much more!

Sampling Various Distributions

Target space	Density	Domain	Transformation
Radius R disk	$p(r,\theta) = \frac{1}{\pi R^2}$	$\theta \in [0, 2\pi]$ $r \in [0, R]$	$\begin{array}{l} \theta = 2\pi u \\ r = R\sqrt{v} \end{array}$
Sector of radius R disk	$p(r,\theta) = \frac{2}{(\theta_2 - \theta_1)(r_2^2 - r_1^2)}$	$\boldsymbol{\theta} \in \left[\boldsymbol{\theta}_1, \boldsymbol{\theta}_2\right]$ $\boldsymbol{r} \in \left[\boldsymbol{r}_1, \boldsymbol{r}_2\right]$	$\begin{aligned} \theta &= \theta_1 + u \big(\theta_2 - \theta_1 \big) \\ r &= \sqrt{r_1^2 + v \big(r_2^2 - r_1^2 \big)} \end{aligned}$
Phong density exponent n	$p(\theta, \phi) = \frac{n+1}{2\pi} \cos^n \theta$	$\theta \in \left[0, \frac{\pi}{2}\right]$	$\theta = \arccos \big((1-u)^{1/(n+1)} \big)$
		$\phi \in [0, 2\pi]$	$\phi = 2\pi v$
Separated triangle filter	p(x, y)(1 - x)(1 - y)	$x \in \left[-1,1\right]$	$x = \begin{cases} 1 - \sqrt{2(1 - u)} & \text{if} \\ -1 + \sqrt{2u} & \text{if} \end{cases}$
		$y \in [-1,1]$	$y = \begin{cases} 1 - \sqrt{2(1 - v)} & \text{if} \\ -1 + \sqrt{2v} & \text{if} \end{cases}$
Triangle with vertices a_0, a_1, a_2	$p(a) = \frac{1}{\text{area}}$	$s \in [0, 1]$ $t \in [0, 1 - s]$	$s = 1 - \sqrt{1 - u}$ t = (1 - s)v $a = a_0 + s(a_1 - a_0) + t(s_1)$
Surface of unit sphere	$p(\theta,\phi) = \frac{1}{4\pi}$	$\theta \in [0, \pi]$ $\phi \in [0, 2\pi]$	
Sector on surface	$p(\theta, \phi)$	$\boldsymbol{\theta} \in \left[\boldsymbol{\theta}_1, \boldsymbol{\theta}_2 \right]$	$\theta = \arccos[\cos \theta_1]$
of unit sphere	$=\frac{1}{(\phi_2-\phi_1)(\cos\theta_1-\cos\theta_2)}$	$\phi \in \left[\phi_1, \phi_2\right]$	$+u(\cos\theta_2 - \cos\theta_3)] \\ \phi = \phi_1 + v(\phi_2 - \phi_1)$
Interior of	$p = \frac{3}{4\pi R^3}$	$\theta \in [0,\pi]$	
radius R sphere	$^{\nu -} 4\pi R^3$	$\phi \in [0, 2\pi]$ $R \in [0, R]$	$\begin{array}{l} \phi = 2\pi v \\ r = w^{1/2} R \end{array}$

^a The symbols u, v, and w represent instances of uniformly distributed random variables ranging over [0, 1].

·**)

if u ≥ 0.5 if **κ** < 0.5

if $v \ge 0.5$

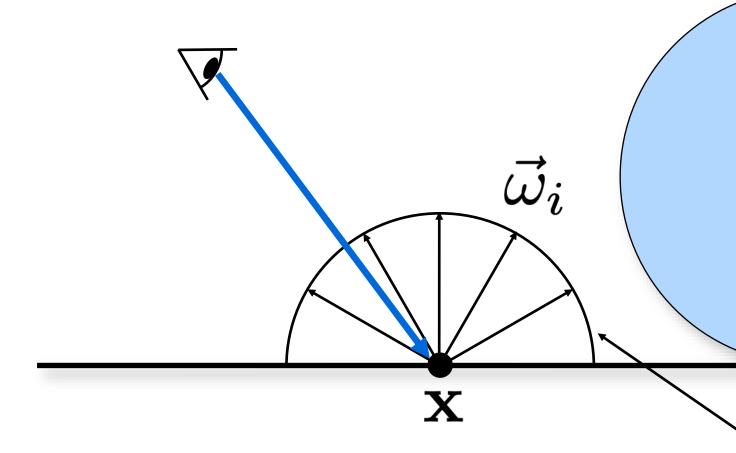
if v < 0.5

 $t(a_2 - a_0)$

from: Peter Shirley. "Nonuniform random point sets via warping." Graphics Gems III, 1992.

sky

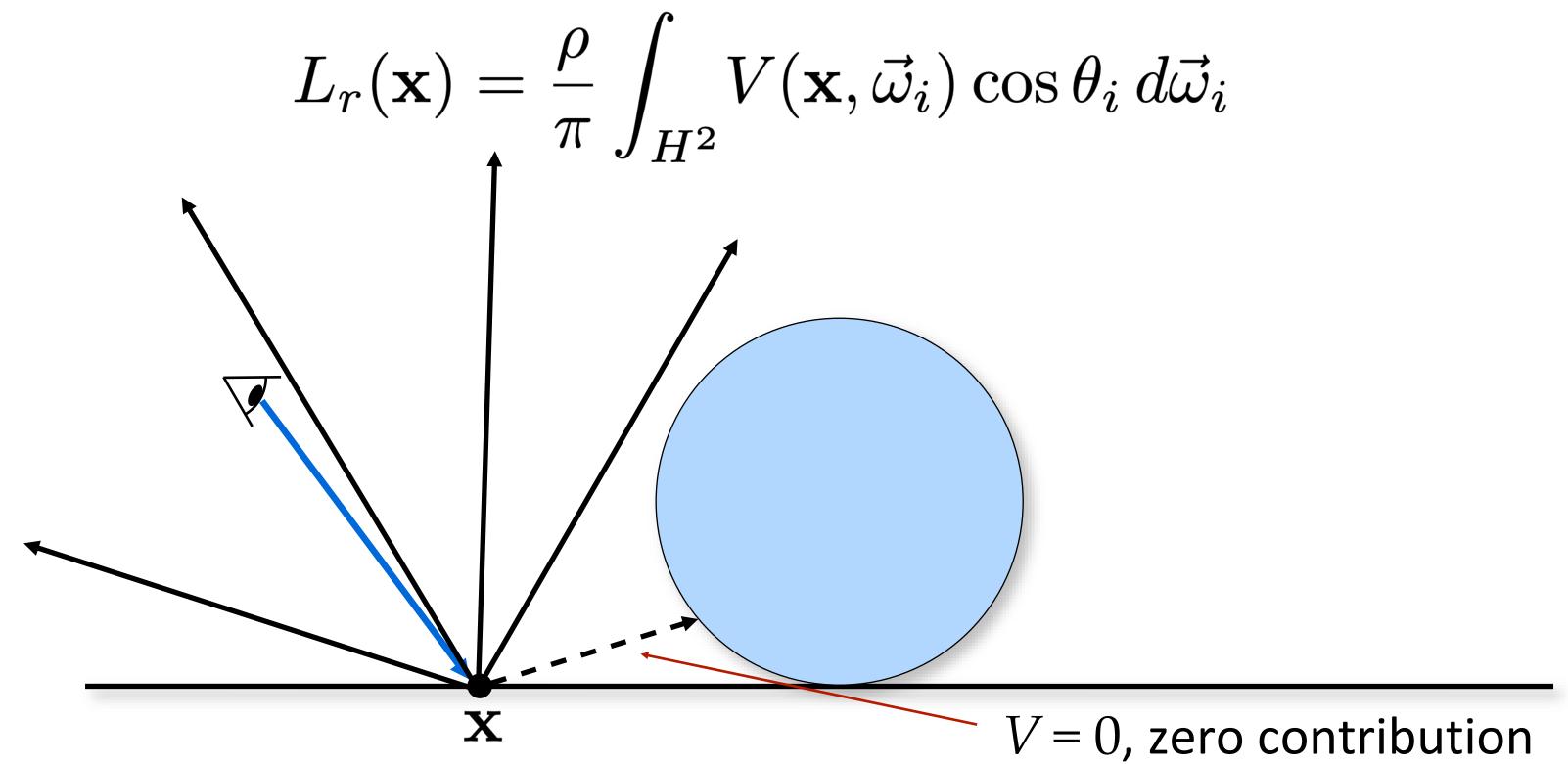
$$L_r(\mathbf{x}, \vec{\omega}_r) \equiv \int_{\pi} f_r(\mathbf{x}) \int_{H^2} f_r(\mathbf{x}) dr$$



Consider diffuse objects illuminated by an ambient overcast

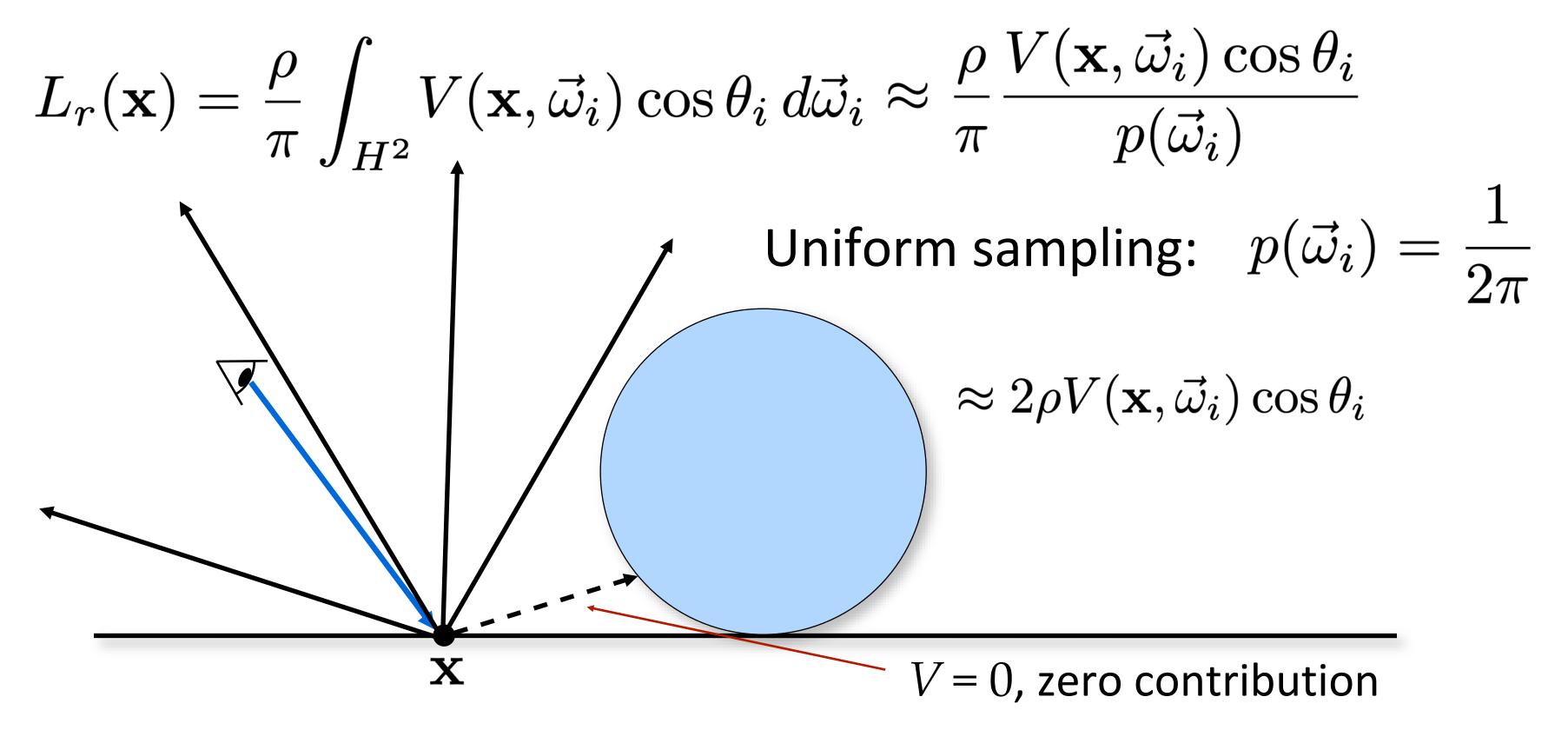
 $\left(\mathbf{x}_{i}, \vec{\omega}_{i}, \vec{\omega}_{i}\right) L_{i}\left(\mathbf{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} d\vec{\omega}_{i} \cos \theta_{i} d\vec{\omega}_{i}$

sky



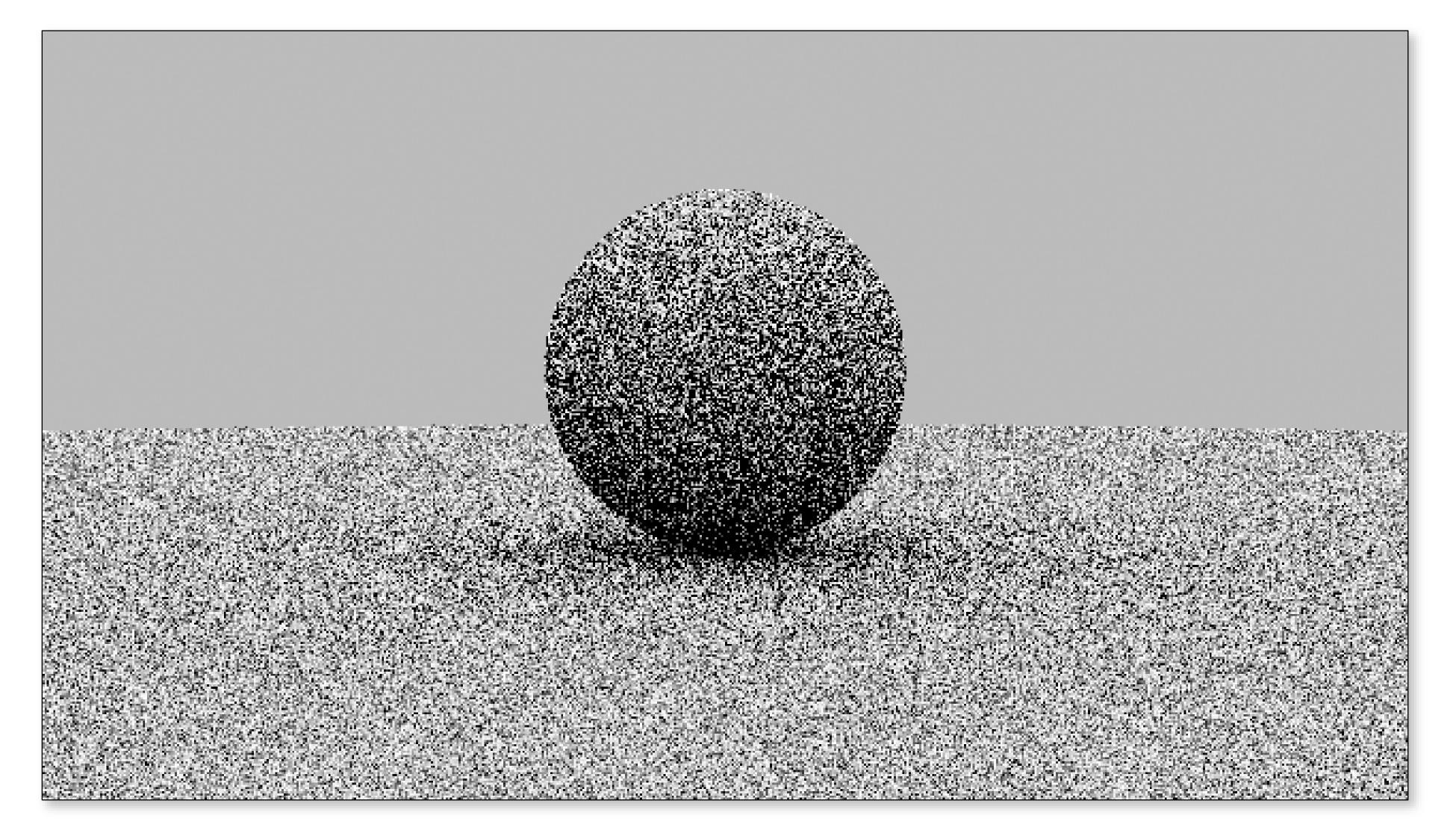
Consider diffuse objects illuminated by an ambient overcast

Consider diffuse objects illum sky

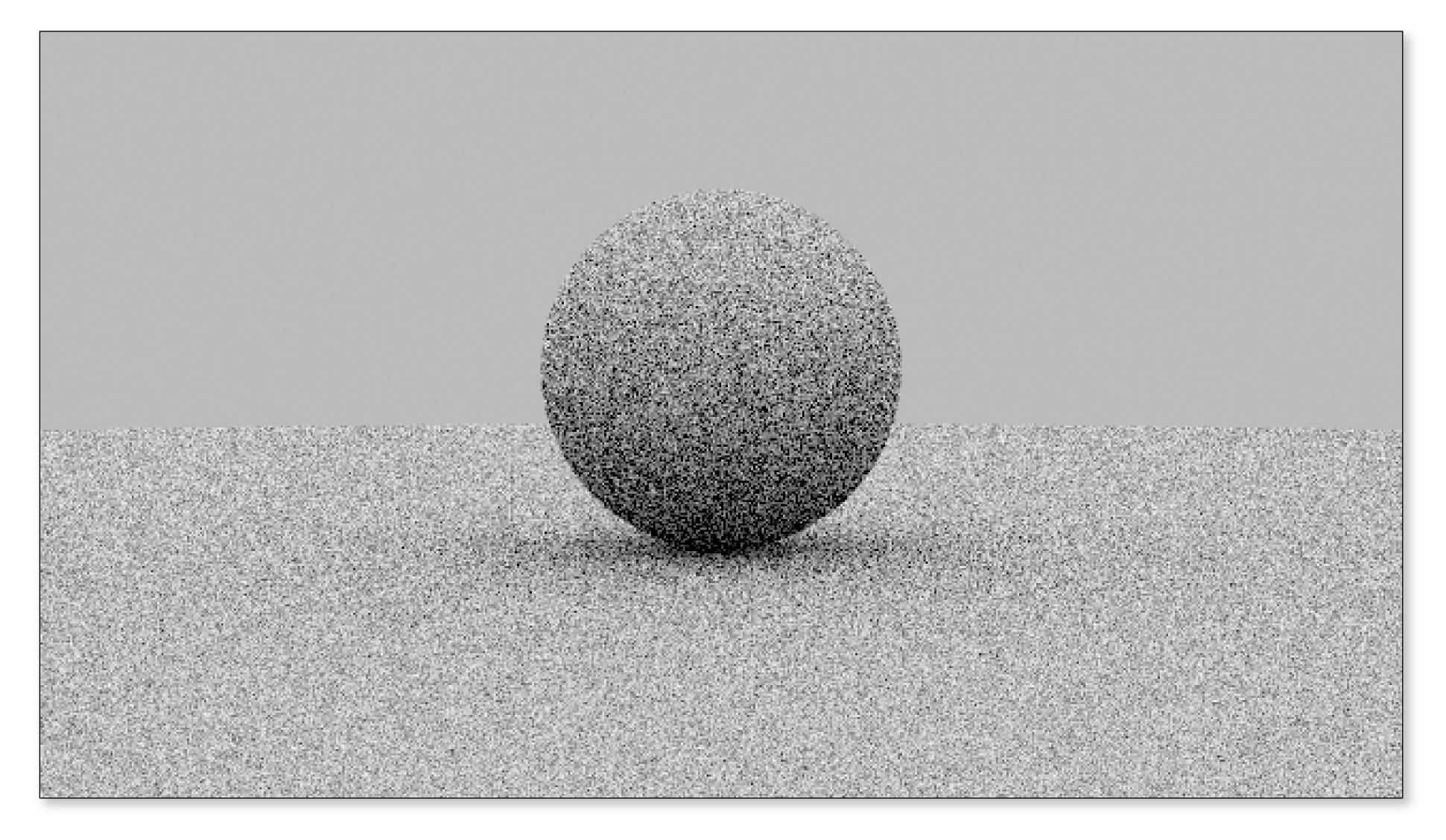


Consider diffuse objects illuminated by an ambient overcast

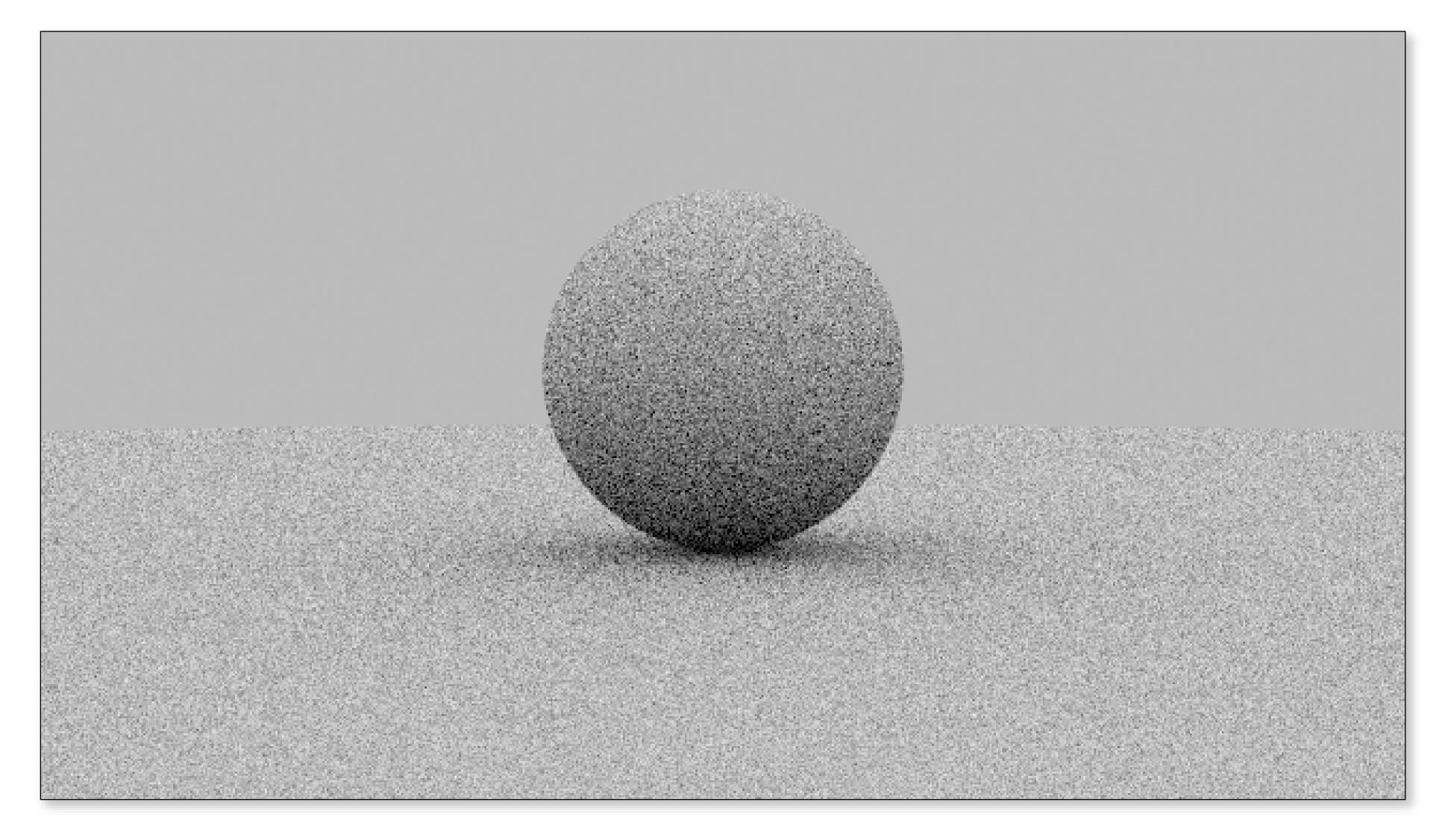
Hemispherical Sampling (1 Sample)



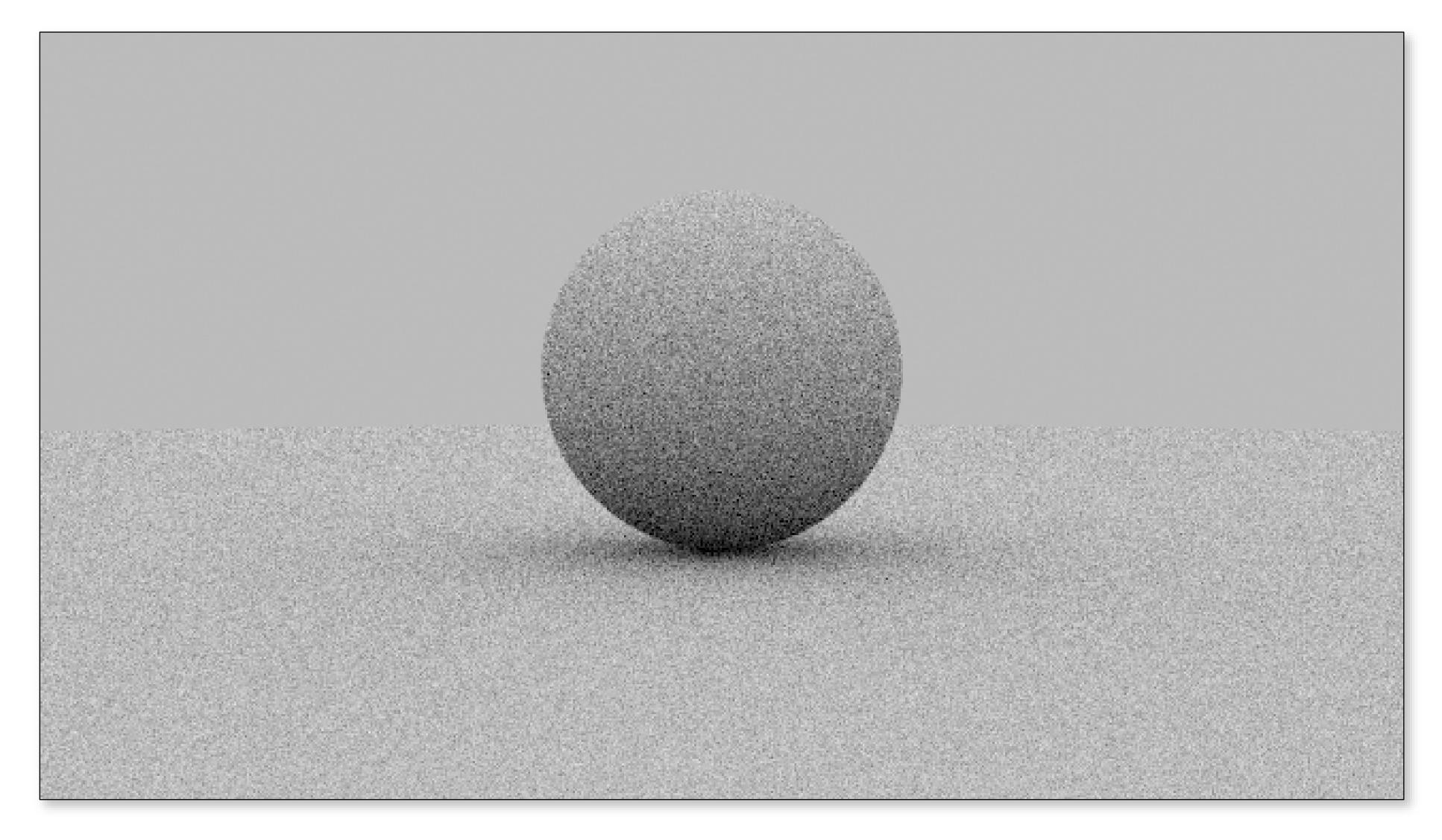
Hemispherical Sampling (4 Samples)



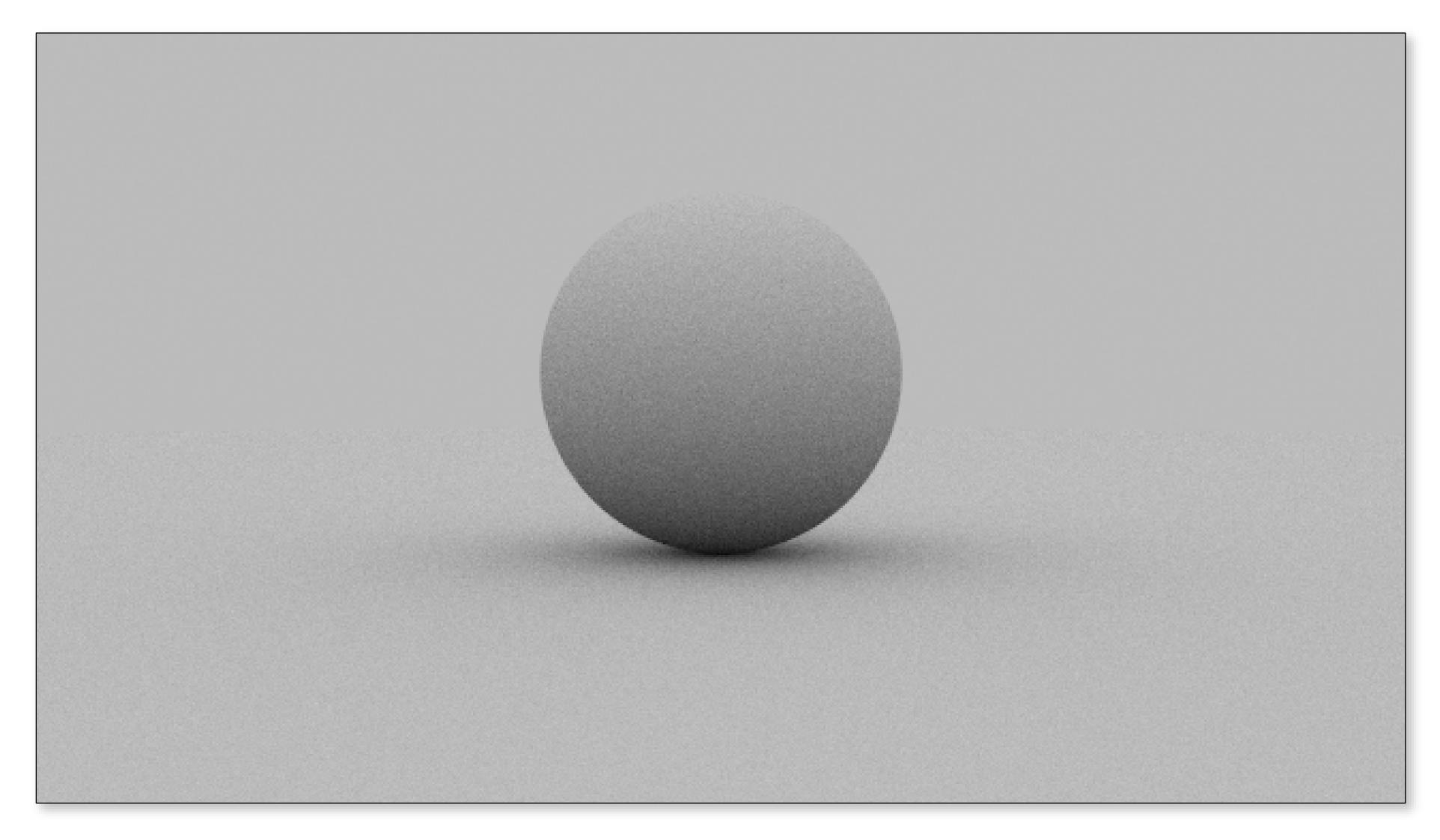
Hemispherical Sampling (9 Samples)



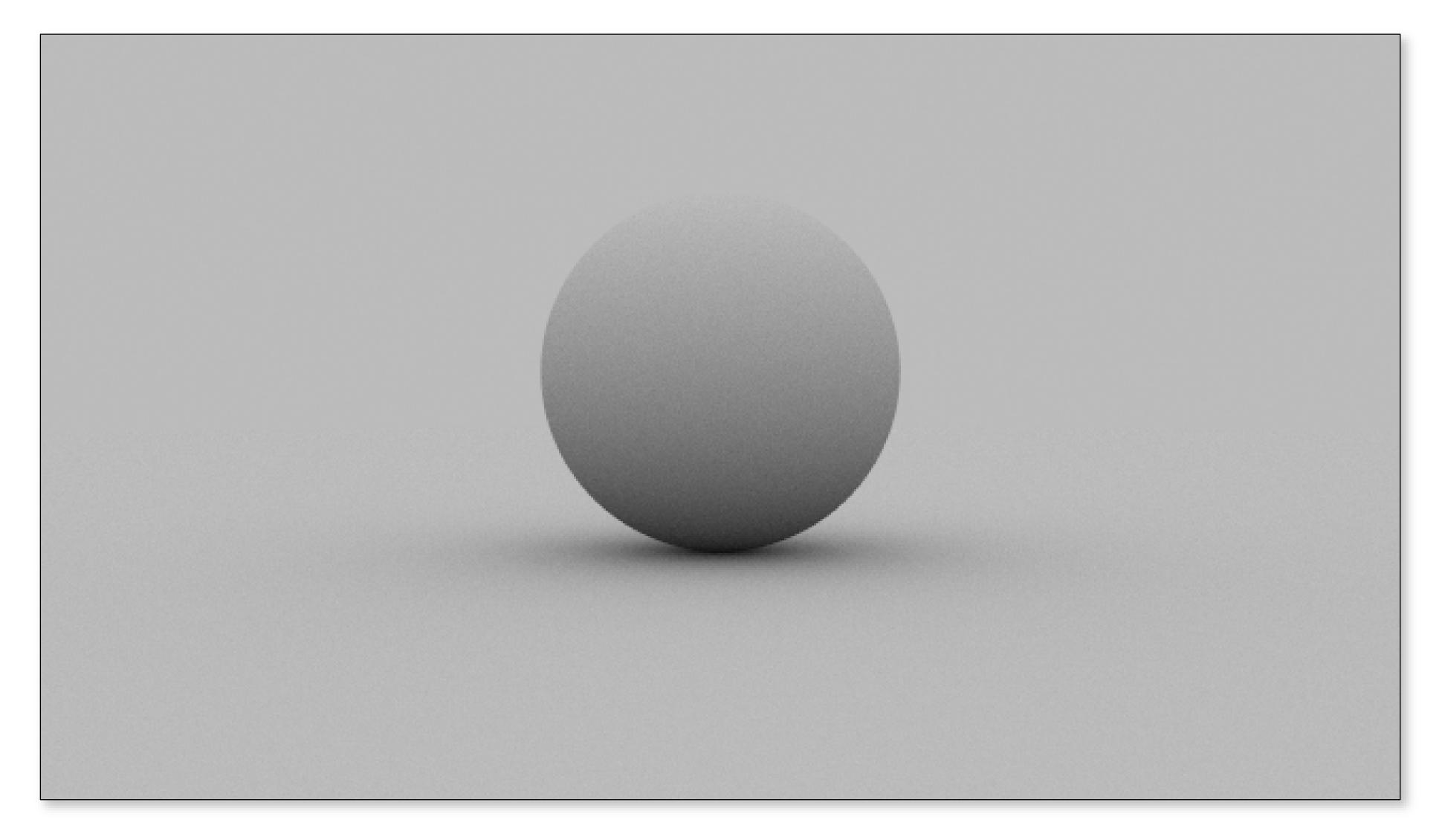
Hemispherical Sampling (16 Samples)



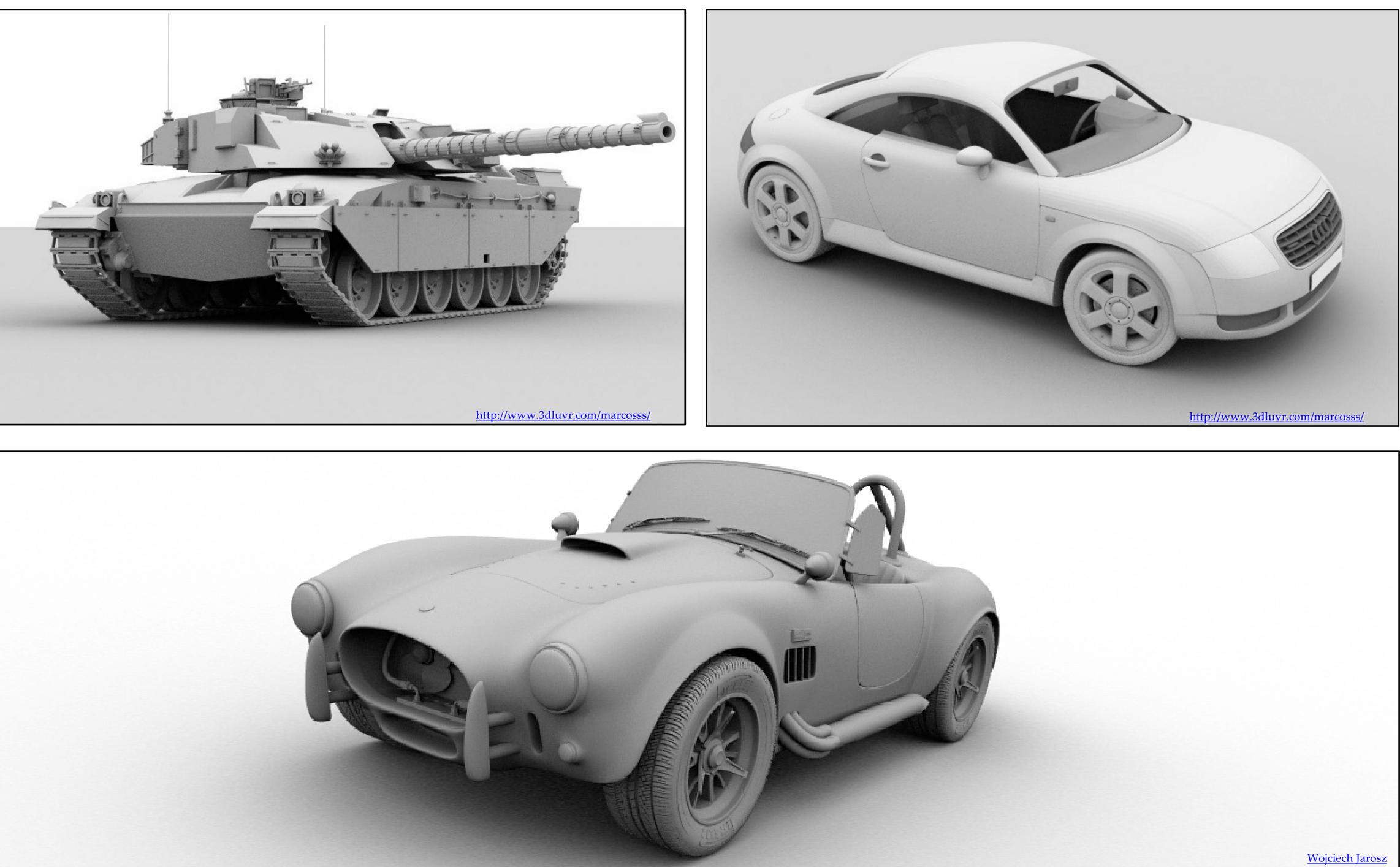
Hemispherical Sampling (256 Samples)



Hemispherical Sampling (1024 Samples)

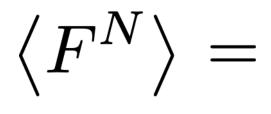


CCLUSIO bient AA



Strategies for reducing variance

The standard MC estimator:



$$\sigma\left[\left\langle F^{N}\right\rangle\right] =$$

How do we reduce the variance of Y?

- Importance sampling

 $F = \int_{\mu(x)} f(x) \, \mathrm{d}\mu(x)$

 $\langle F^N \rangle = \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(X_i)}{\mathrm{pdf}(X_i)}$

 $\frac{1}{\sqrt{N}}\sigma\left[Y\right]$

111

Importance sampling

Importance sampling

 $\int f(x)dx$

assume

p(x) = cf(x)

 $\int p(x)dx = 1$

estimator

 $\frac{f(X_i)}{p(X_i)} = \frac{1}{c} = \int f(x)dx$

 $F_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_{i})}{p(X_{i})}$

$$\rightarrow \quad c = \frac{1}{\int f(x) dx}$$

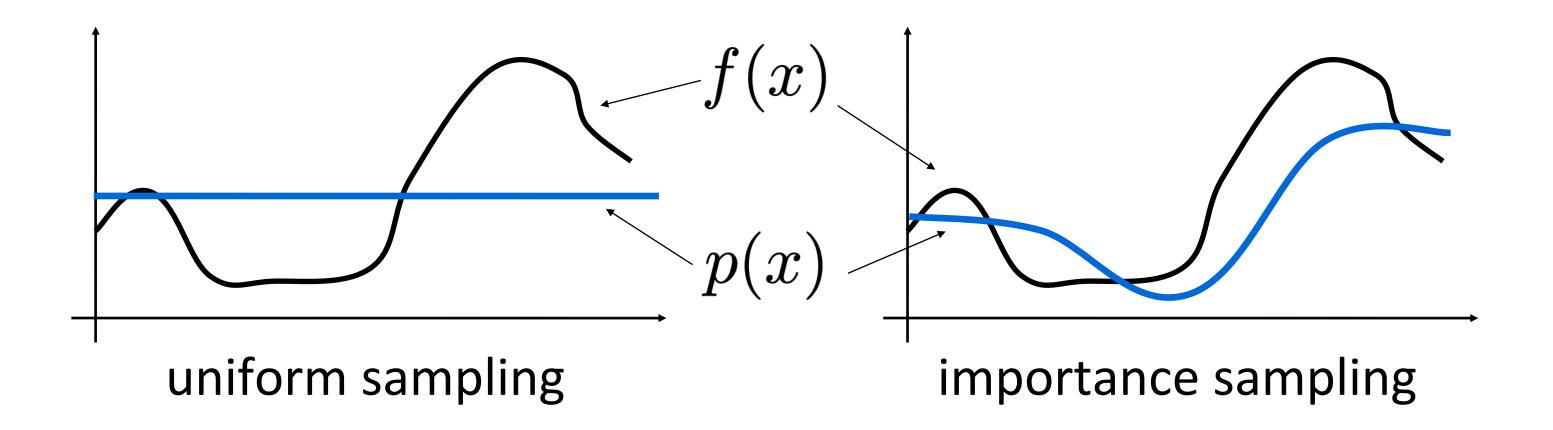
zero variance!

112

Importance sampling

compute in the first place!

reduced



- p(x) = cf(x) requires knowledge of the integral we are trying to
- But: If PDF is similar to integrand, variance can be significantly
- Common strategy: sample according to part of the integrand

 $L_r(\mathbf{x}) = \frac{\rho}{\pi} \int_{H^2} V(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

What terms can we importance sample?

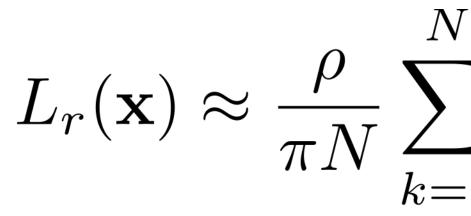
- incident radiance
- cosine term

115

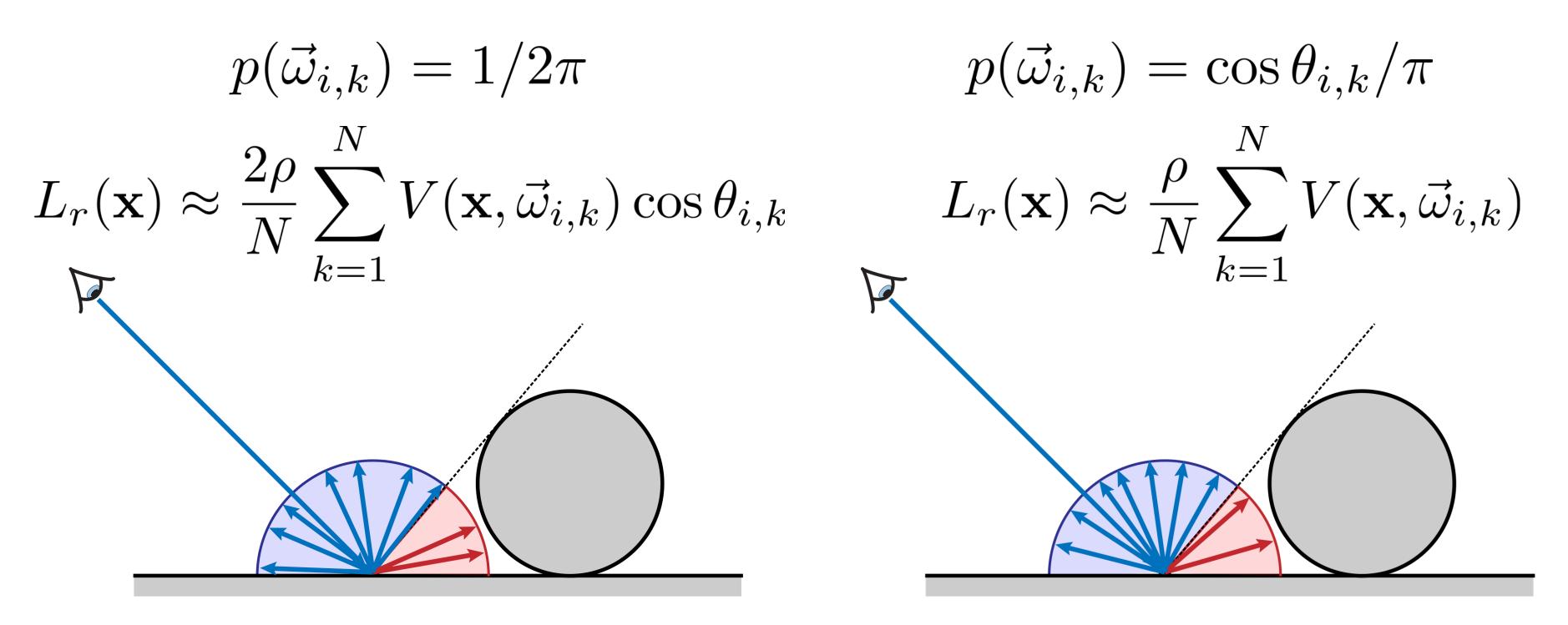
 $L_r(\mathbf{x}) = \frac{\rho}{\pi} \int_{H^2} V(\mathbf{x}, \vec{\omega}_i) \cos \theta_i d\vec{\omega}_i$

What terms can we importance sample?

- incident radiance
- cosine term



Uniform hemispherical sampling

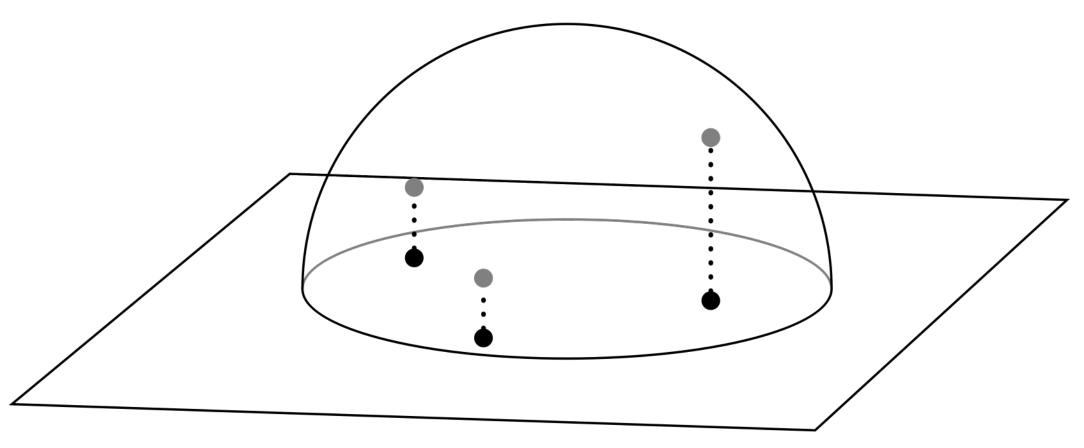


 $L_r(\mathbf{x}) \approx \frac{\rho}{\pi N} \sum_{k=1}^{N} \frac{V(\mathbf{x}, \vec{\omega}_{i,k}) \cos \theta_{i,k}}{p(\vec{\omega}_{i,k})}$

Could proceed as before: compute marginal and conditional densities, then use inversion method.

It turns out that:

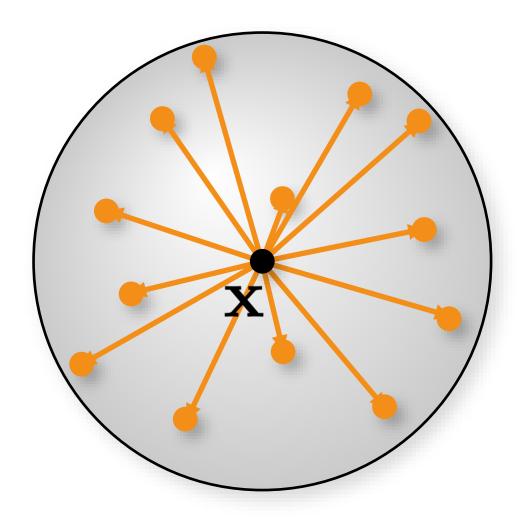
points vertically onto the hemisphere produces the desired distribution.



- Generating points uniformly on the disc, and then project these

Generate points on sphere

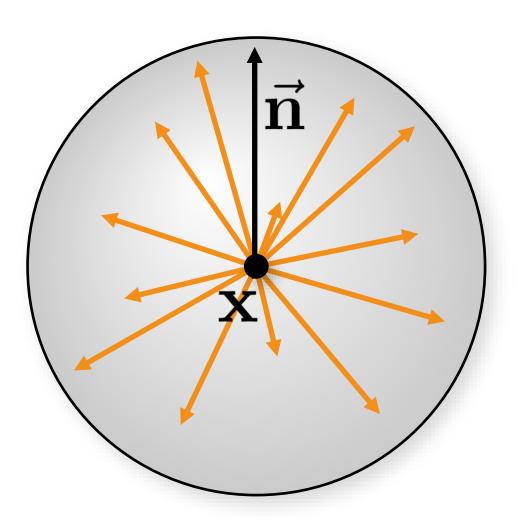
(unit directions)



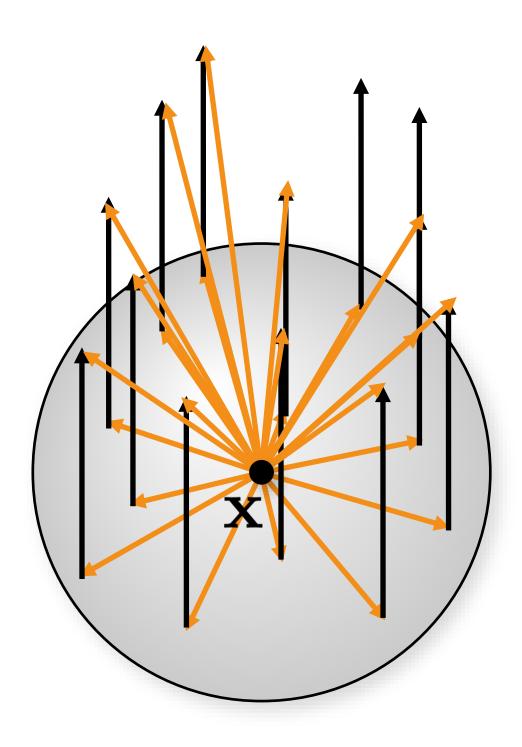
Generate points on sphere

(unit directions)

unit normal



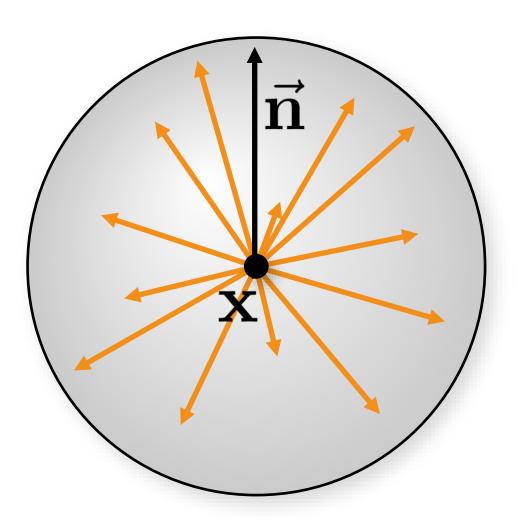
Add unit normal



Generate points on sphere

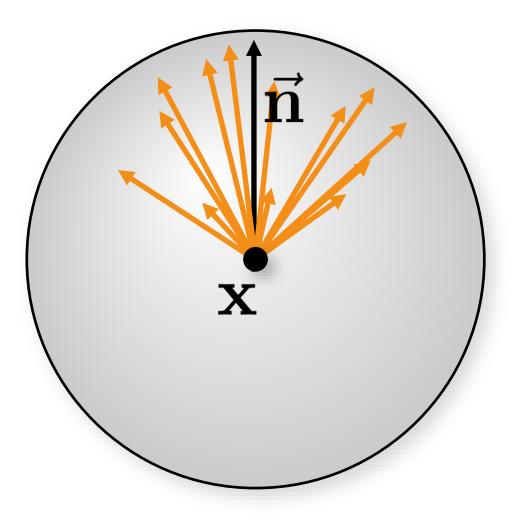
(unit directions)

unit normal



Add unit normal

normalize



Uniform hemispherical 1 sample/pixel sampling

Uniform hemispherical ⁴ sampling

4 sample/pixel

Uniform hemispherical 16 sample/pixel sampling

102040619

Uniform hemispherical 1024 sample/pixel sampling

More Integration Dimensions Anti-aliasing (image space) Light visibility (surface of area lights) Depth-of-field (camera aperture) Motion blur (time) Many lights Multiple bounces of light Participating media (volume)

