## Ray tracing and geometric representations



15-468, 15-668, 15-868
Physics-based Rendering

## Course announcements

- Programming assignment 1 will be posted on Friday $1 / 27$ and will be due two weeks later.
- Take-home quiz 1 will be posted on Tuesday $1 / 24$ and will be due a week later.
- Office hours for this week only (will finalize starting next week based on survey results):
- Yannis-Thursday 3-4 pm, Smith Hall (EDSH) 225.


## Course announcements

- Is anyone not on Piazza?
https://piazza.com/class/lctj7gng8wql4/
- Is anyone not on Canvas?
https://canvas.cmu.edu/courses/33678
- Is anyone not on Slack?


Hanyu Chen
15-468 TA, Senior in Computer Science \& Math

- Research interest broadly in computer vision/computer graphics/rendering
- Currently working with Yannis in neural rendering \& surface reconstruction related research

some random computer vision related work...

and some differentiable rendering related work...

Jeff Tan (jefftan@andrew.cmu.edu)
15-468 TA and Senior in Computer Science
Research: Neural rendering for real-time dynamic 3D reconstruction Advised by Prof. Deva Ramanan


Yang et al. (CVPR 2022)




震

Tan et al. (in submission)

## Overview of today's lecture

- Introduction to ray tracing.
- Intersections with geometric primitives.
- Triangular meshes.


## Slide credits

Most of these slides were directly adapted from:

- Wojciech Jarosz (Dartmouth).


## Two forms of 3D rendering

Rasterization: object point to image plane

- start with a 3D object point
- apply transforms
- determine the 2D image plane point it projects to

Ray tracing: image plane to object point

- start with a 2D image point
- generate a ray
- determine the visible 3D object point

Inverse processes

## Two forms of 3D rendering



## Rasterization advantages

Modern scenes are more complicated than images

- A 1920×1080 frame (1080p) at 64-bit color and 32-bit depth per pixel is 24 MB (not that much)
- of course, if we have more than one sample per pixel this gets larger, but e.g. $4 x$ supersampling is still a relatively comfortable $\sim 100 \mathrm{MB}$
- Our scenes are routinely larger than this
- This wasn't always true

A rasterization-based renderer can stream over the triangles, no need to keep entire dataset around

- Allows parallelism and optimizations of memory systems


## Rasterization limitations

Restricted to scan-convertible primitives

- Pretty much: triangles

Faceting, shading artifacts

- This is largely going away with programmable per-pixel shading, though

No unified handling of shadows, reflection, transparency


## Ray/path tracing

## Advantages

- Generality: can render anything that can be intersected with a ray
- Easily allows recursion (shadows, reflections, etc.)


## Disadvantages

- Hard to implement in hardware (lacks computation coherence, must fit entire scene in memory, bad memory behavior)
- Not such a big point anymore given general purpose GPUs
- Has traditionally been too slow for interactive applications
- Both of the above are changing rather rapidly right now!


## A ray-traced image




## Rapid change in film industry

## 2008:

- Most CGI in films rendered using micro-polygon rasterization.
- "You'd be crazy to render a full-feature film with ray/path tracing."
- Ray/path tracing mostly interesting to academics 2018:
- Most major films now rendered using ray/path tracing.
- "You'd be crazy not to render a full-feature film using path tracing."


## Albrecht Dürer (1525)



## René Descartes (1650)



## Isaac Newton (1670)



## Appel (1968)

## Ray casting



- Generate an image by sending one ray per pixel
- Check for shadows by sending a ray towards the light

Whitted (1979)


## Light Transport - Assumptions

Geometric optics:

- no diffraction, no polarization, no interference

Light travels in a straight line in a vacuum

- no atmospheric scattering or refraction
- no gravity effects

Color can be represented as three numbers: (R,G,B)

## Emission theory of vision



Supported by:

- Ancient greeks
- $50 \%$ of US college students*

Eyes send out "feeling rays" into the world

## Ray Tracing - Overview

## "light tracing"



## Basic Ray Tracing Pipeline

Ray Generation



7

## Basic Ray Tracing Pipeline



7

## Basic Ray Tracing Pipeline



## Ray Tracing Pseudocode

rayTraceImage()
\{
parse scene description
for each pixel
ray = generateCameraRay(pixel)
pixelColor = trace(ray)
\}

## Ray Tracing Pseudocode

## trace(ray)

\{
hit = find first intersection with scene objects


## Ray Tracing Pseudocode

rayTraceImage()
\{
parse scene description
for each pixel
ray = generateCameraRay (pixel)
|pixelColor = trace(ray)
\}

## Ray: a half line

Standard representation: origin (point) $\mathbf{o}$ and direction $\mathbf{d}$

$$
\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}
$$

- this is a parametric equation for the line
- lets us directly generate the points on the line
- if we restrict to $t>0$ then we have a ray
- note replacing $\mathbf{d}$ with $a \mathbf{d}$ does not change ray (for $a>0$ )



## Generating eye rays

## Orthographic



## Perspective



## Pinhole Camera (Camera Obscura)



Fig. I3I.-How Light and a Pinhole Form an Image.

## Pinhole Camera

## Pinhole Camera



## Pinhole Camera

## Pinhole Camera



## Generating eye rays-perspective

Establish view rectangle in $X-Y$ plane, specified by, e.g.

- I, r, t, b

Place rectangle at $\mathrm{z}=-d$

$$
\begin{aligned}
& \mathbf{s}=[u, v,-d]^{T} \\
& \mathbf{d}=\mathbf{s} \\
& \mathbf{r}(t)=\mathbf{o}+t \mathbf{d}
\end{aligned}
$$



## Placing the camera in the scene



## Generating eye rays—orthographic

 How do you generate a ray for an orthographic camera?
## Ray-Surface Intersections



## Ray-Surface Intersections

## Surface primitives

- spheres
- planes
- triangles
- general implicits
- etc.


## Ray-Sphere Intersection

## Algebraic approach:

- Condition 1: point is on ray: $\quad \mathbf{r}(t)=\mathbf{o}+t \mathbf{d}$
- Condition 2: point is on sphere: $\underbrace{\| \mathbf{x}}_{\substack{\text { point of } \\ \text { interest }}}-\underset{c}{\mathbf{c}\left\|_{\text {center }}\right\|^{2}-\underbrace{r^{2}}_{\text {radius }}=0}$
- substitute and solve for $t$ :

$$
\|\mathbf{o}+t \mathbf{d}-\mathbf{c}\|^{2}-r^{2}=0
$$



## Ray-Sphere Intersection

substitute and solve for $t$

$$
\begin{aligned}
\|\mathbf{o}+t \mathbf{d}-\mathbf{c}\|^{2}-r^{2}=0 \longrightarrow & \left(\mathbf{o}_{x}+t \mathbf{d}_{x}-\mathbf{c}_{x}\right)^{2}+ \\
& \left(\mathbf{o}_{y}+t \mathbf{d}_{y}-\mathbf{c}_{y}\right)^{2}+ \\
& \left(\mathbf{o}_{z}+t \mathbf{d}_{z}-\mathbf{c}_{z}\right)^{2}-r^{2}=0
\end{aligned}
$$

which reduces to: $\quad A t^{2}+B t+C=0$
Solve for $t$ using quadratic equation:

$$
t=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$



What happens when square root is zero or negative?

## Ray-Surface Intersections

## Surface primitives

- spheres
- planes
- triangles
- general implicits
- etc.


## Ray-Plane Intersection

Plane equation (implicit)
Algebraic form:

$$
a x+b y+c z+d=0
$$

## Ray-Plane Intersection

## Plane equation (implicit)


substitute ray equation for $\mathbf{x}$ and solve for $t$

$$
\begin{array}{r}
(\mathbf{o}+t \mathbf{d}-\mathbf{p}) \cdot \mathbf{n}=0 \\
t \mathbf{d} \cdot \mathbf{n}+(\mathbf{o}-\mathbf{p}) \cdot \mathbf{n}=0 \\
t=-\frac{(\mathbf{o}-\mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
\end{array}
$$



## Ray-Surface Intersections

## Surface primitives

- spheres
- planes
- triangles
- general implicits
- etc.


## Ray-Triangle intersection

Condition 1: point is on ray: $\quad \mathbf{r}(t)=\mathbf{o}+t \mathbf{d}$
Condition 2: point is on plane: $\quad(\mathbf{x}-\mathbf{p}) \cdot \mathbf{n}=0$
Condition 3: point is on the inside of all three edges
First solve 1\&2 (ray-plane intersection) for $t$ :

$$
\begin{aligned}
& (\mathbf{o}+t \mathbf{d}-\mathbf{p}) \cdot \mathbf{n}=0 \\
& t=-\frac{(\mathbf{o}-\mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}
\end{aligned}
$$

Several options for 3

## Ray-Triangle intersection (Approach 1)

In plane, triangle is the intersection of 3 half spaces


## Ray-Triangle intersection (Approach 1)

$$
\mathbf{n}=\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)
$$

Which way does $\mathbf{n}$ point?


## Ray-Triangle intersection (Approach 1)

$$
\begin{aligned}
\mathbf{n} & =\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right) \\
\mathbf{n}_{\times 13} & =\left(\mathbf{x}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)
\end{aligned}
$$

Which way does $\mathbf{n}$ point?
What about $\mathbf{n}_{\times 13}$ ?


## Ray-Triangle intersection (Approach 1)

$$
\begin{aligned}
\mathbf{n} & =\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right) \\
\mathbf{n}_{\mathrm{x} 13} & =\left(\mathbf{x}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)
\end{aligned}
$$

Which way does $\mathbf{n}$ point?
What about $\mathbf{n}_{\times 13}$ ?

- How about now?



## Ray-Triangle intersection (Approach 1)

$$
\begin{aligned}
\mathbf{n} & =\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right) \\
\mathbf{n}_{\mathrm{x} 13} & =\left(\mathbf{x}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)
\end{aligned}
$$

Which way does $\mathbf{n}$ point?
What about $\mathbf{n}_{\times 13}$ ?

- How about now?
- Edge test: $\left(\mathbf{n}_{\mathbf{x} 13} \cdot \mathbf{n}\right)<0$



## Ray-Triangle intersection (Approach 1)

$$
\begin{aligned}
\mathbf{n} & =\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right) \\
\mathbf{n}_{\mathbf{x} 13} & =\left(\mathbf{x}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)
\end{aligned}
$$

Which way does $\mathbf{n}$ point?
What about $\mathbf{n}_{\times 13}$ ?

- How about now?
- Edge test: $\left(\mathbf{n}_{\mathbf{x} 13} \cdot \mathbf{n}\right)<0$



## Ray-Triangle Intersection (Approach 2)

Intersect ray with triangle's plane
Test whether hit-point is within triangle

- compute sub-triangle areas $\alpha, \beta, \gamma$
- test inside triangle conditions


## Barycentric coordinates

Barycentric coordinates: $\quad \mathbf{x}(\alpha, \beta, \gamma)=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3}$ Inside triangle conditions:

$$
\alpha+\beta+\gamma=1 \quad 0 \leq \alpha \leq 1
$$



$$
\begin{array}{ll}
\gamma=1-\alpha-\beta & 0 \leq \beta \leq 1 \\
& 0 \leq \gamma \leq 1
\end{array}
$$

## Interpretations of barycentric coords

Sub-triangle areas


## Ray-Triangle Intersection (Approach 3)

Insert ray equation:

$$
\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+(1-\alpha-\beta) \mathbf{p}_{3}=\mathbf{o}+t \mathbf{d}
$$

$$
\alpha\left(\mathbf{p}_{1}-\mathbf{p}_{3}\right)+\beta\left(\mathbf{p}_{2}-\mathbf{p}_{3}\right)+\mathbf{p}_{3}=\mathbf{o}+t \mathbf{d}
$$

$$
\alpha\left(\mathbf{p}_{1}-\mathbf{p}_{3}\right)+\beta\left(\mathbf{p}_{2}-\mathbf{p}_{3}\right)-t \mathbf{d}=\mathbf{o}-\mathbf{p}_{3}
$$

Solve directly
Can be much faster!

$$
\begin{aligned}
\alpha \mathbf{a}+\beta \mathbf{b}-t \mathbf{d} & =\mathbf{e} \\
{\left[\begin{array}{lll}
-\mathbf{d} & \mathbf{a} & \mathbf{b}
\end{array}\right]\left[\begin{array}{c}
t \\
\alpha \\
\beta
\end{array}\right] } & =\mathbf{e}
\end{aligned}
$$

## Ray-Surface Intersections

## Other primitives

- cylinder
- cone, paraboloid, hyperboloid
- torus
- disk
- general polygons, meshes
- etc.


## Intersecting transformed primitive?

Option 1: Transform the primitive

- simple for triangles, since they transform to triangles
- other primitives get more complicated (e.g. sphere $\rightarrow$ ellipsoid)

Option 2: Transform the ray (by the inverse transform)

- more elegant; works on any primitive
- allows simpler intersection tests (e.g., just use existing sphere-intersection routine)


## Intersection and coordinate systems

World space


Local space


## Intersection and coordinate systems

World space
Local space


## Intersection and coordinate systems

World space


## Local space



We have a sphere now
But with a different ray

## Transformations in homogeneous coords

A 3D transformation matrix:
$M=\left(\begin{array}{llll}m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{24} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44}\end{array}\right)$

A 3D homogenous vector:


A position has $w \neq 0$, and a direction has $w=0$

## Transformations

Matrix-vector multiplication, $M \mathbf{v}$, transforms the vector

A translation matrix:

$$
M_{\mathbf{t}}=\left(\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$



A scaling matrix:

$$
M_{\mathbf{s}}=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

## Intersection and coordinate systems

Have a transform $M$, a ray $\mathbf{r}(t)$, and a surface S
To intersect:

1. Transform ray to local coords (by inverse of $M$ )
2. Call surface intersection
3. Transform hit data back to global coords (by M)

How to transform a ray $\mathbf{r}(t)=\mathbf{p}+t \mathbf{d}$ by $M^{-1}$ ?

- $\mathbf{r}^{\prime}(t)=M^{-1} \mathbf{p}+t M^{-1} \mathbf{d}$
- Remember: $\mathbf{p}$ forms as a point, $\mathbf{d}$ as a direction!


## Ray-Surface Intersections

## Other primitives

- cylinder
- cone, paraboloid, hyperboloid
- torus
- disk
- general polygons, meshes
- etc.


## Image so far

## With eye ray generation and sphere intersection

```
parse scene description
for each pixel:
    ray = camera.getRay(pixel);
    hit = s.intersect(ray, 0, +inf);
    if hit:
        image.set(pixel, white);
```


## Intersecting many shapes

Intersect each primitive
Pick closest intersection

- Only within considered range [ $\mathrm{t}_{\text {min }}, \mathrm{t}_{\max }$ ]
- After each valid intersection, update $t_{\max }$

Essentially a line search


## Intersection against many shapes

The basic idea is:

```
Surfaces::intersect(ray, tMin, tMax):
    tBest = +inf; firstHit = null;
    for s in surfaces:
        hit = s.intersect(ray, tMin, tBest);
        if hit:
            tBest = hit.t;
            firstHit = hit;
    return firstHit;
```

- this is linear in number of surfaces but there are sublinear methods (acceleration structures)


## Image so far

## With eye ray generation and scene intersection

```
for each pixel:
    ray = camera.getRay(pixel);
    c = scene.trace(ray, 0, +inf);
    image.set(pixel, c);
Scene::trace(ray, tMin, tMax):
    hit = surfaces.intersect(ray, tMin, tMax);
    if (hit)
        return hit.color();
    else
        return backgroundColor;
```


## Ray-Surface Intersections

## Other primitives

- cylinder
- cone, paraboloid, hyperboloid
- torus
- disk
- general polygons, meshes
- etc.


## How should we represent complex geometry?

 How are they obtained?- modeled by hand
- scanned

What operations must we support?

- modeling/editing
- animating
- texturing
- rendering



## Surface representation zoo!



## Polygonal Meshes

## Boundary representations of objects

- Piecewise linear



## A small triangle mesh



12 triangles, 8 vertices

## A large mesh

10 million triangles from a highresolution 3D scan





## Meshes as Approx. of Smooth Surfaces

## Piecewise linear approximation

- Error is $O\left(h^{2}\right)$

$25 \%$

6.5\%

1.7\%

0.4\%


## Meshes as Approx. of Smooth Surfaces

## Piecewise linear approximation

- Error is $O\left(h^{2}\right)$
\#faces vs. approximation error


25\%




## Polygonal Meshes

## Polygonal meshes are a good representation

- approximation $O\left(h^{2}\right)$
- arbitrary topology



## Data Structures: What should be stored?



Geometry: 3D coordinates
Attributes

- Normal, color, texture coordinates
- Per vertex, face, edge

Connectivity

- Adjacency relationships


## Separate Triangle List or Face Set (STL)

Face: 3 vertex positions
Storage:

- 4 Bytes/coordinate (using 32-bit floats)
- 36 Bytes/face

Wastes space

| Triangles |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | $x 0$ | $y 0$ | $z 0$ |
| 1 | $x 1$ | $y 1$ | $z 1$ |
| 2 | $x 2$ | $y 2$ | $z 2$ |
| 3 | $x 3$ | $y 3$ | $z 3$ |
| 4 | $x 4$ | $y 4$ | $z 4$ |
| 5 | $x 5$ | $y 5$ | $z 5$ |
| 6 | $x 6$ | $y 6$ | $z 6$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

## Indexed Face Set (OBJ, OFF, WRL)

Vertex: position
Face: vertex indices
Storage:

- 12 Bytes/vertex
- 12 Bytes/face


## Reduces wasted space

Even better with per-vertex attributes

| Triangles |  |  |  |
| :---: | :---: | :---: | :---: |
| t0 | $v 0$ | $v 1$ | $v 2$ |
| t1 | $v 0$ | $v 1$ | $v 3$ |
| t2 | $v 2$ | $v 4$ | $v 3$ |
| t3 | $v 5$ | $v 2$ | $v 6$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |


| Vertices |  |  |  |
| :---: | :---: | :---: | :---: |
| v0 | $x 0$ | $y 0$ | $z 0$ |
| v1 | $x 1$ | $x 1$ | $z 1$ |
| v2 | $x 2$ | $y 2$ | $z 2$ |
| v3 | $x 3$ | $y 3$ | $z 3$ |
| v4 | $x 4$ | $y 4$ | $z 4$ |
| v5 | $x 5$ | $y 5$ | $z 5$ |
| v6 | $x 6$ | $y 6$ | $z 6$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

## Data on meshes

Often need to store additional information besides just the geometry
Can store additional data at faces, vertices, or edges

## Examples

- colors stored on faces, for faceted objects
- information about sharp creases stored at edges
- any quantity that varies continuously (without sudden changes, or discontinuities) gets stored at vertices


## Key types of vertex data

## Surface normals

- when a mesh is approximating a curved surface, store normals at vertices

Texture coordinates

- 2D coordinates that tell you how to paste images on the surface


## Positions

- at some level this is just another piece of data


## Defining normals

Face normals: same normal for all points in face

- geometrically correct, but faceted look



## Problems with face normals

Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases

- error is $O\left(h^{2}\right)$

But the surface normals don't converge so well

- normal is constant over each triangle, with discontinuous jumps across edges
- error is only $O(h)$


## Problems with face normals-2D example

Approximating circle with increasingly many segments
Max error in position error drops by factor of 4 each step
Max error in normal only drops by factor of 2


## Problems with face normals-solution

## Piecewise planar approximation converges pretty quickly to the smooth geometry as the number of triangles increases <br> - for mathematicians: error is $O\left(h^{2}\right)$ <br> But the surface normals don't converge so well <br> - normal is constant over each triangle, with discontinuous jumps across edges <br> - for mathematicians: error is only $O(h)$

Better: store the "real" normal at each vertex, and interpolate to get normals that vary gradually across triangles

## Defining normals

Vertex normals: store normal at vertices, interpolate in face

- geometrically "inconsistent", but smooth look



## Barycentric coordinates

Barycentric interpolation:

$$
\mathbf{p}(\alpha, \beta, \gamma)=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3}
$$



Can use this eqn. to interpolate any vertex quantity across triangle!

## Barycentric coordinates

Barycentric interpolation:

$$
\begin{aligned}
\mathbf{p}(\alpha, \beta, \gamma) & =\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3} \\
\mathbf{c}(\alpha, \beta, \gamma) & =\alpha \mathbf{c}_{1}+\beta \mathbf{c}_{2}+\gamma \mathbf{c}_{3}
\end{aligned}
$$



Can use this eqn. to interpolate any vertex quantity across triangle!

## Barycentric coordinates

Barycentric interpolation:

$$
\begin{aligned}
& \mathbf{p}(\alpha, \beta, \gamma)=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3} \\
& \mathbf{c}(\alpha, \beta, \gamma)=\alpha \mathbf{c}_{1}+\beta \mathbf{c}_{2}+\gamma \mathbf{c}_{3} \\
& \mathbf{n}(\alpha, \beta, \gamma)=\alpha \mathbf{n}_{1}+\beta \mathbf{n}_{2}+\gamma \mathbf{n}_{3} \\
& \begin{aligned}
\text { not guaranteed to be unit length }
\end{aligned} \\
& 3 \begin{array}{c}
\text { Can use this eqn. to } \\
\text { interpolate any vertex } \\
\text { quantity across triangle! }
\end{array}
\end{aligned}
$$



Realism through geometric complexity

## Ray Tracing Acceleration

Ray-surface intersection is at the core of every ray tracing algorithm
Brute force approach:

- intersect every ray with every primitive
- many unnecessary raysurface intersection tests



## Ray Tracing Cost

"the time required to compute the intersections of rays and surfaces is over 95 percent" [Whitted 1980]

Cost $=O\left(n_{x} \cdot n_{y} \cdot n_{o}\right)$

- (number of pixels) • (number of objects)
- Assumes 1 ray per pixel

Example: $1024 \times 1024$ image of a scene with 1000 triangles

- Cost is (at least) $10^{9}$ ray-triangle intersections

Typically measured per ray:

- Naive: $O\left(n_{0}\right)$ - linear with number of objects


## $\boldsymbol{O}\left(\boldsymbol{n}_{\mathbf{o}}\right)$ Ray Tracing (The Problem)



8 primitives $\rightarrow 3$ seconds


50 K trees each with 1 M polygons $=50 \mathrm{~B}$ polygons

## Sub-linear Ray Tracing



50 K trees each with 1 M polygons $=50 \mathrm{~B}$ polygons $\rightarrow 11$ minutes 300,000,000x speedup!

## The solution

Improve efficiency of ray-surface intersections by constructing acceleration structures.

- A spatial organization of objects in a scene to minimize the necessary number of ray-object intersection tests.

Spatial sorting/subdivision (e.g. grid, kd-tree, ochre)

- Decompose space into disjoint regions \& assign objects to regions

Object sorting/subdivision (bounding volume hierarchy)

- Decompose objects into disjoint sets \& bound using simple volumes for fast rejection


## Bounding Volumes

## Spheres



## Bounding Volumes

## Axis-aligned bounding boxes (most common)



## Bounding Volumes Hierarchies

Now do this hierarchically!


## BVH Traversal

void BVHNode::intersectBVH(ray, \&hit): if (bound.hit(ray)):
if (leaf):
leaf.intersect(ray, hit);
else:
leftChild.intersectBVH(ray, hit); rightChild.intersectBVH(ray, hit);

## Constructing BVHs

Top-down:

- partition objects along an axis and create two sub-sets Bottom-up:
- recursively group nearby objects together


## Divisive (top-down) BBH construction

1. Choose split axis
2. Choose split plane location
3. Choose whether to create leaf or split + repeat

Many strategies for each of these steps

## Choosing axis based on centroid extents



## Object-median splitting

1. Sort bbox centroids along split axis
2. Take take first half as left child, second half as right

