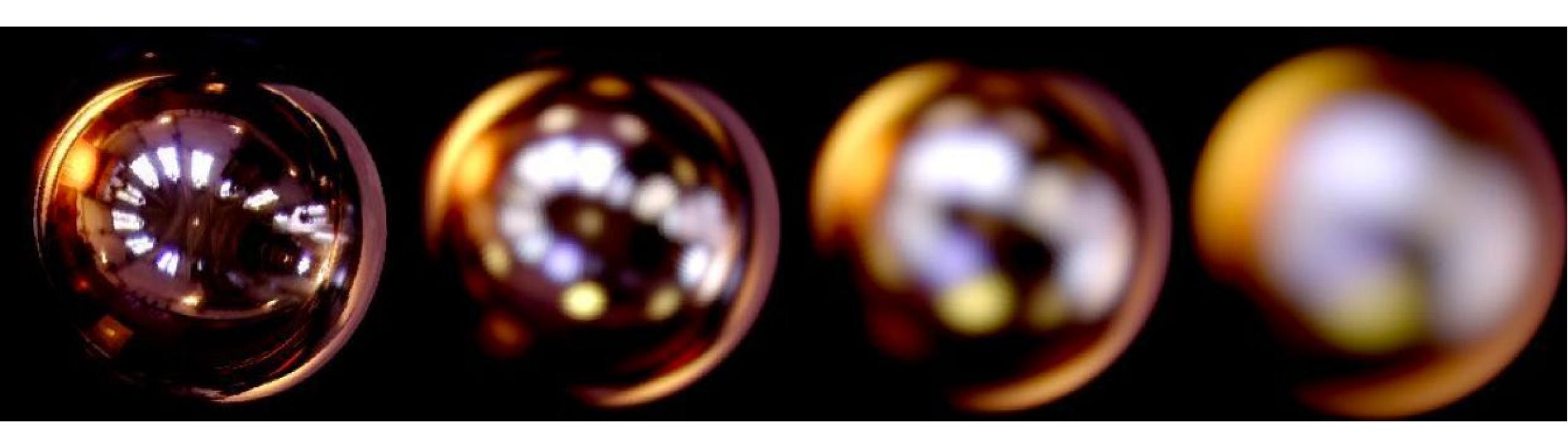
Modeling BRDFs



15-468, 15-668, 15-868 Physics-based Rendering Spring 2022, Lecture 7

Course announcements

- Take-home quiz 2 posted, due tonight, Tuesday 2/8 at 23:59.
 - How many of you have looked at/started/finished it?
 - Any questions?
- Take-home quiz 3 will be posted tonight, due next Tuesday.
- Programming assignment 1 posted, due Friday 2/11 at 23:59.
 - How many of you have looked at/started/finished it?
 - Any questions?
- First reading group took place on Friday 2/4, 4-6 pm.
 - Recording and virtual whiteboard on Canvas.
 - Any feedback?
- Second recitation tomorrow, Wednesday 2/9 at 4-5 pm.

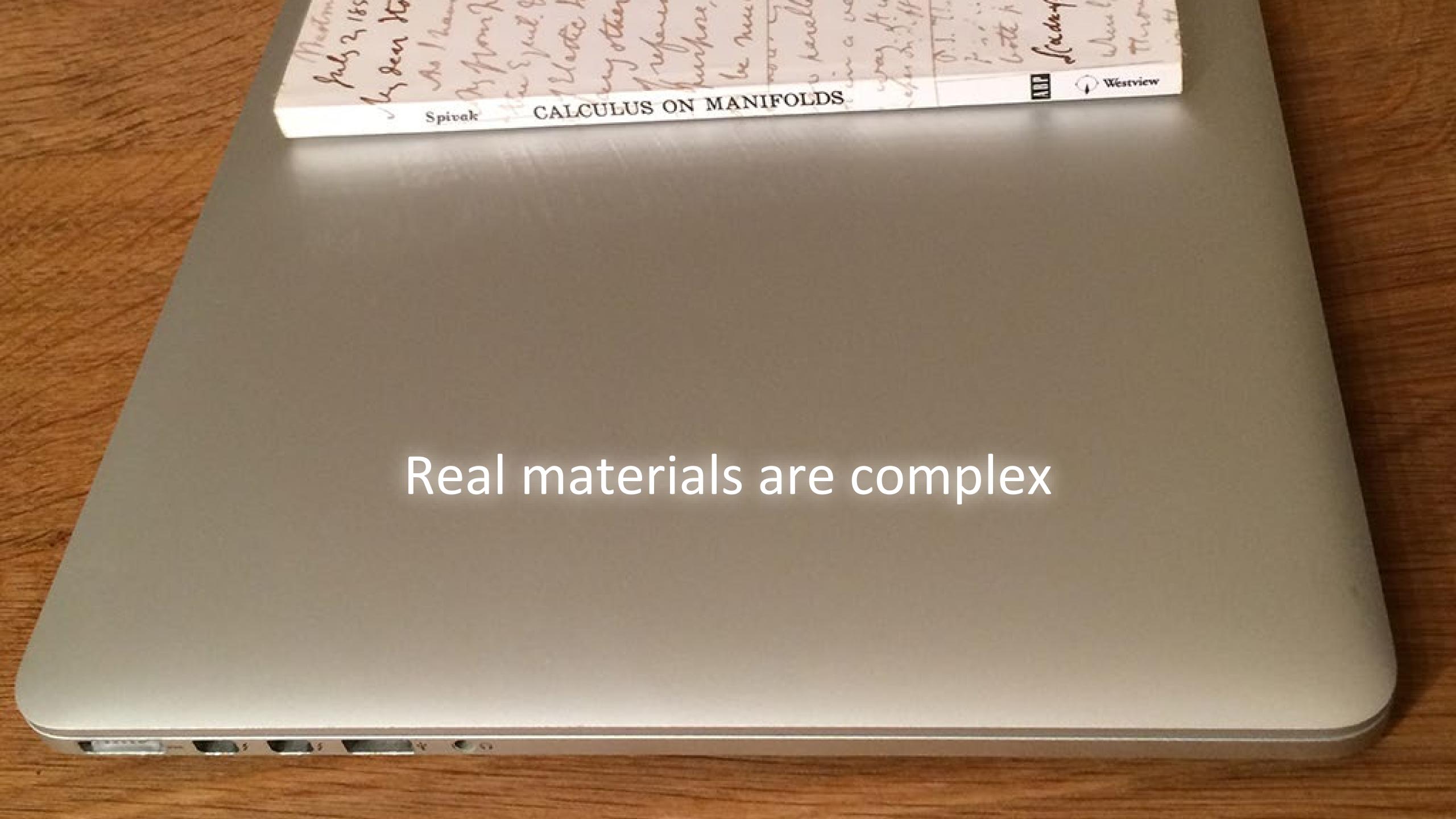
Overview of today's lecture

- BRDF modeling.
- Microfacet BRDFs.
- Data-driven BRDFs.

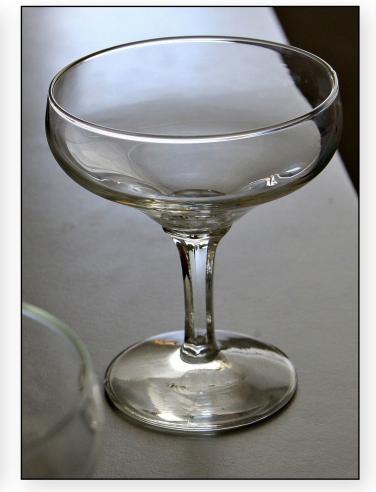
Slide credits

Most of these slides were directly adapted from:

Wojciech Jarosz (Dartmouth).



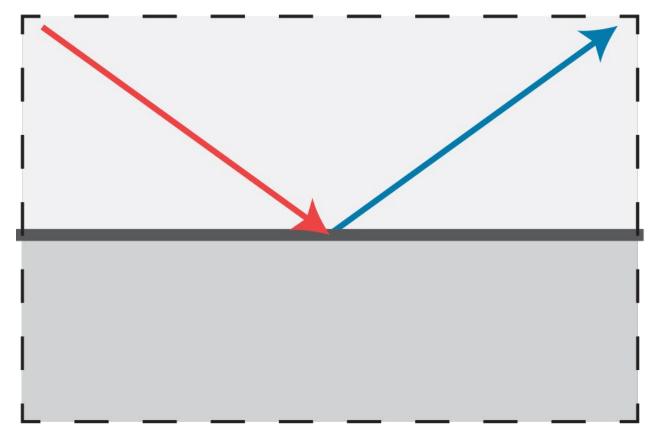
Conductors vs. Dielectrics

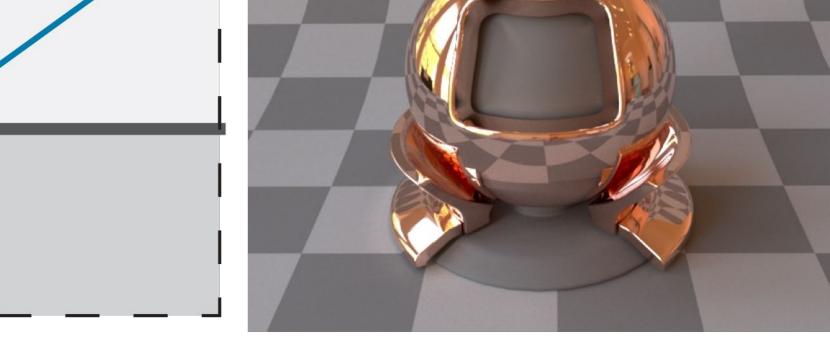


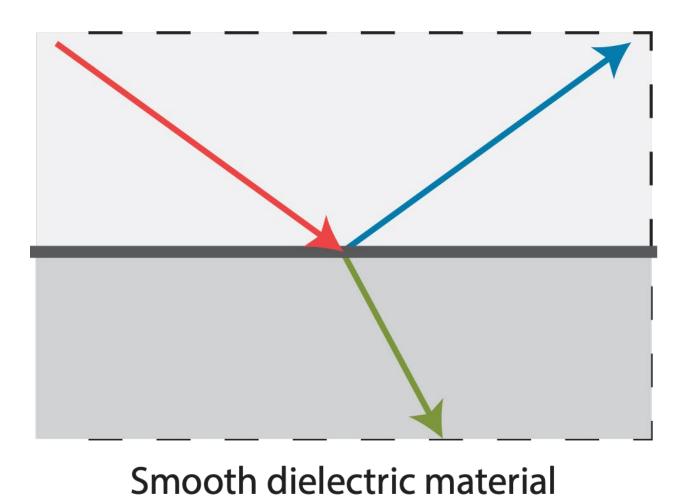
Copper Iron Glass Ethanol

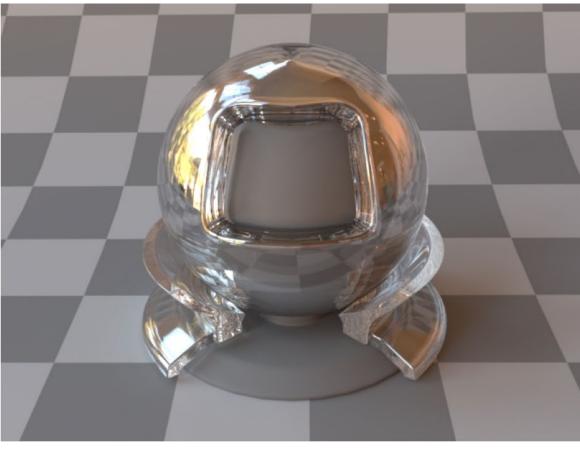
Gold Mercury Water Air

Conductors vs. Dielectrics

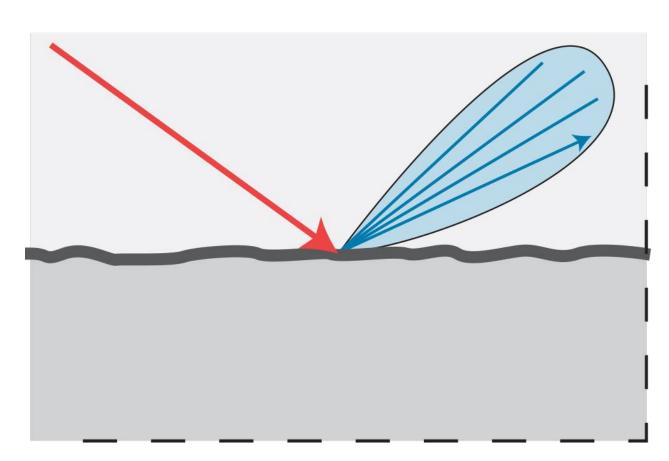




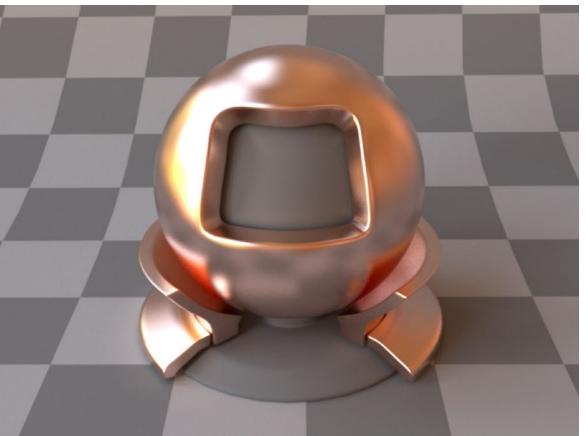




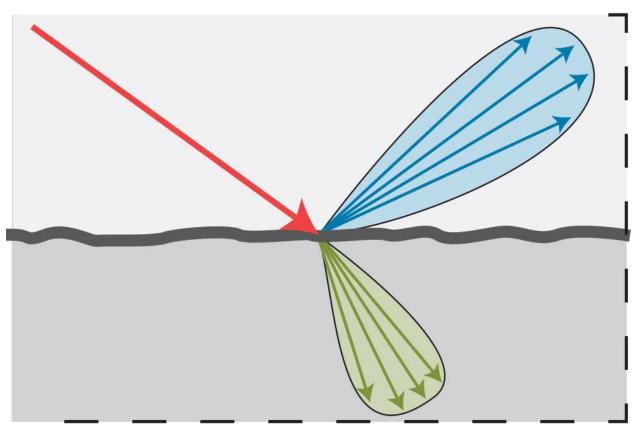
Smooth conducting material



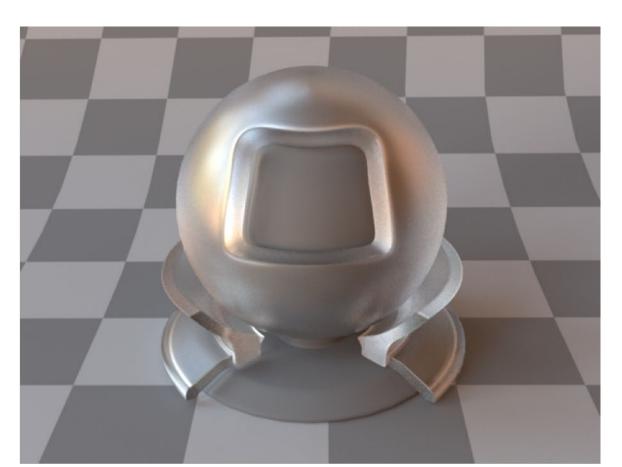
Rough conducting material



Ro



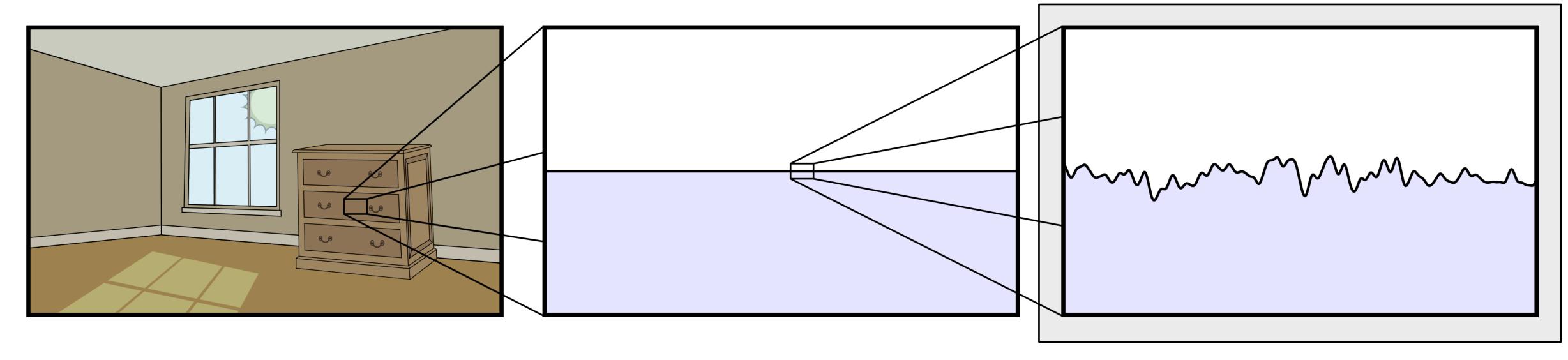
Rough dielectric material



Three Levels of Detail

Key idea:

- transition from individual interactions to statistical averages



Macro scale

Scene geometry

Meso scale

Detail at intermediate scales (can have variations here too)

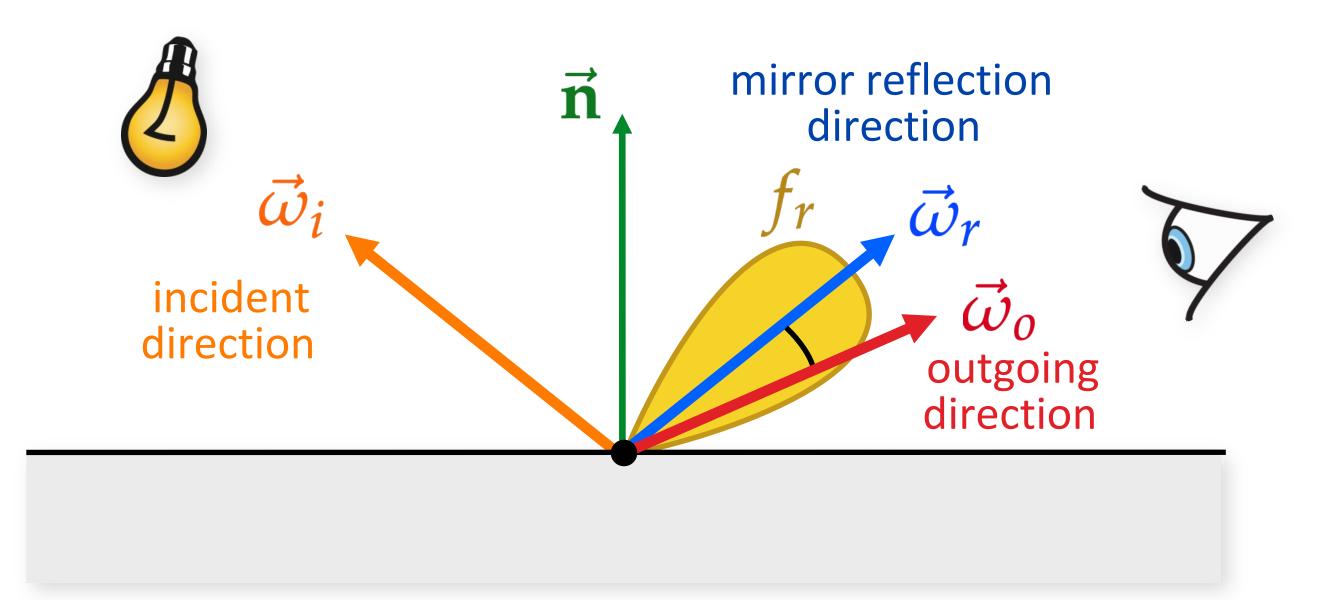
Micro scale

Roughness

Phong BRDF

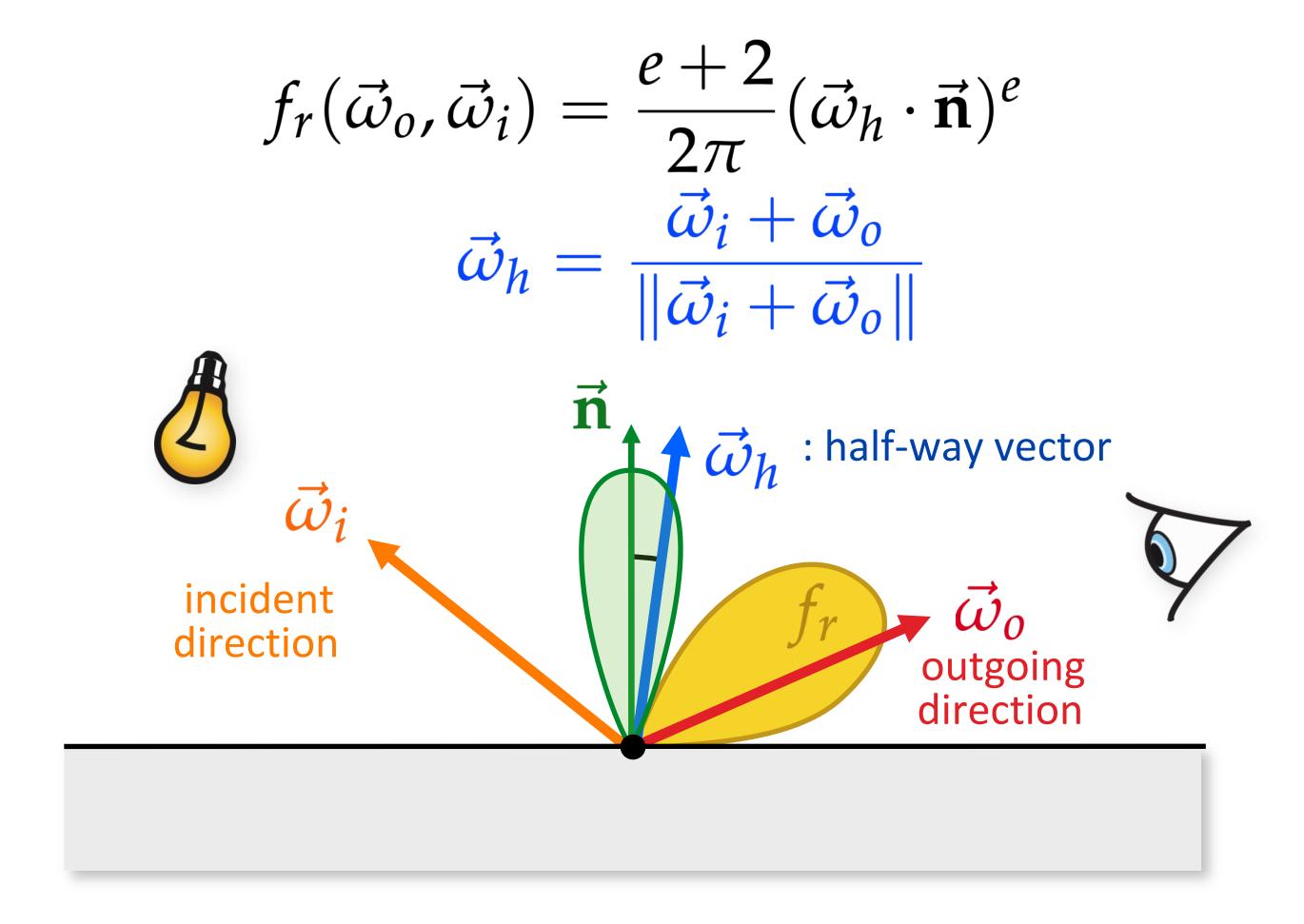
Reflection direction distributed over an exponentiated cosine lobe:

$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2\pi} (\vec{\omega}_r \cdot \vec{\omega}_o)^e$$
$$\vec{\omega}_r = (2\vec{\mathbf{n}}(\vec{\mathbf{n}} \cdot \vec{\omega}_i) - \vec{\omega}_i)$$



Blinn-Phong BRDF

Distribution of normals instead of reflection directions



Ward model

Gaussian blur distribution over half vector slopes

Original version had issues with energy conservation and singularities; several modified variants exist

Rough Surfaces

Empirical glossy models have limitations:

- not physically-based
- (often) not reciprocal
- not energy-preserving (can be normalized)
 - many conflicting normalizations in the literature
- (often) no Fresnel effects
- cannot accurately model appearance of many glossy surfaces

Blinn-Phong was first step in the right direction

Can do better

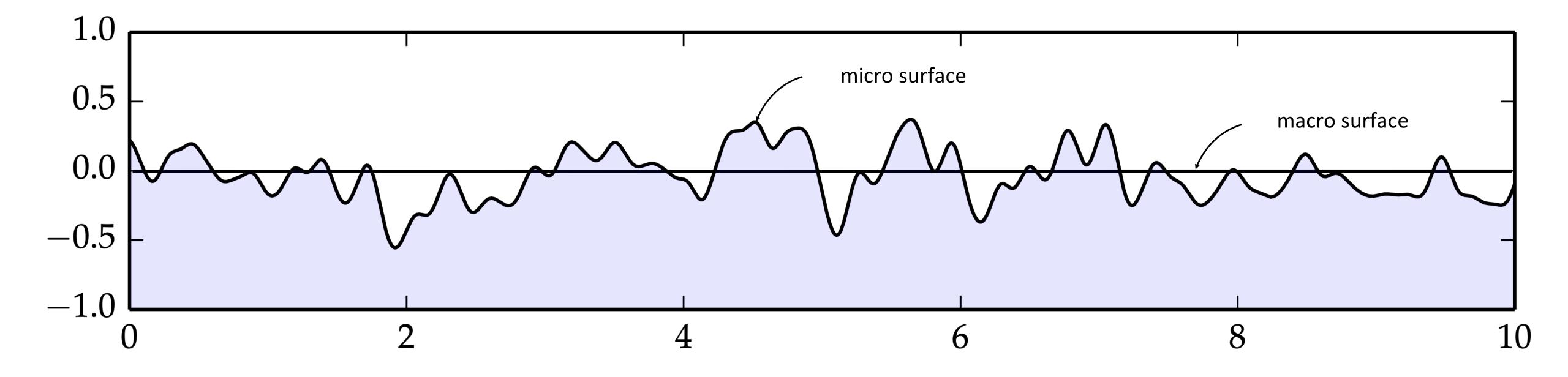
Microfacet Theory

Microfacet Theory

Assume surface consists of tiny facets

Assume that the differential area being viewed/illuminated is relatively large compared to the size of microfacets

A facet can be perfectly specular or diffuse



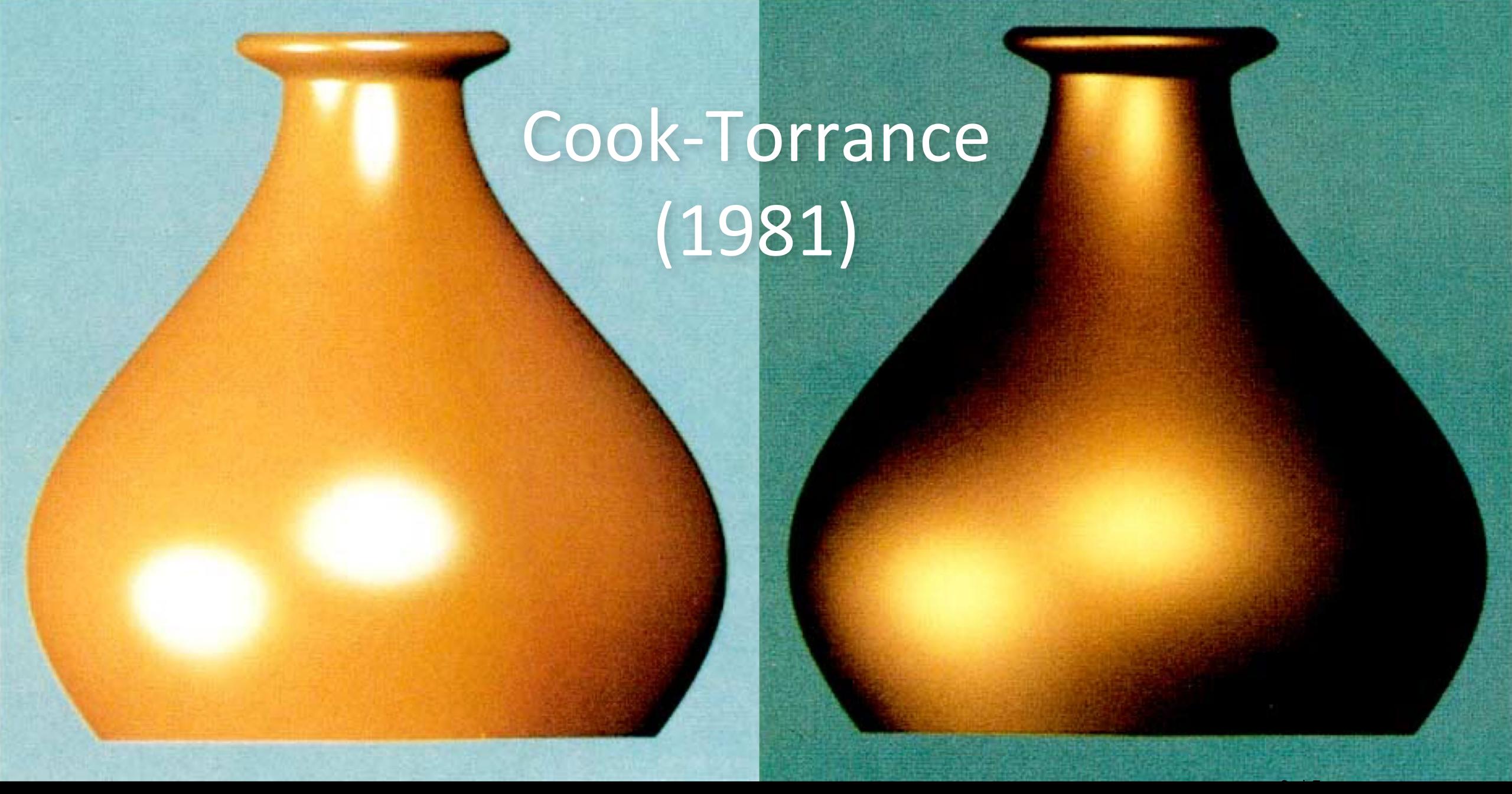
Torrance-Sparrow Model

Developed by Torrance & Sparrow in 1967

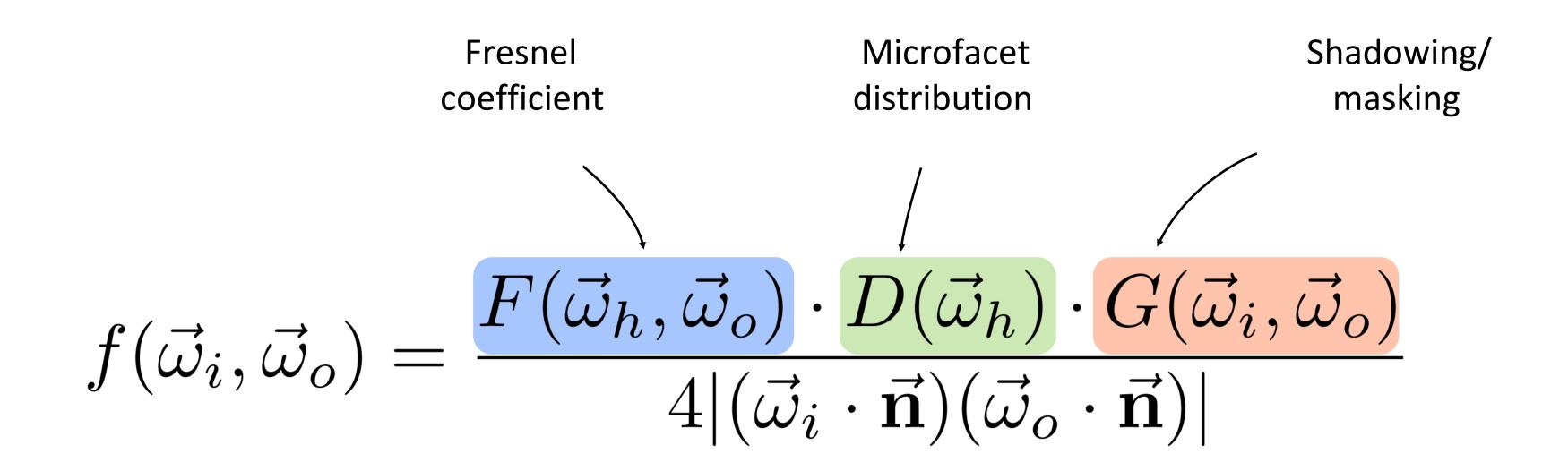
- Originally used in the physics community
- Adapted by Cook & Torrance and Blinn for graphics
 - added ambient and diffuse terms

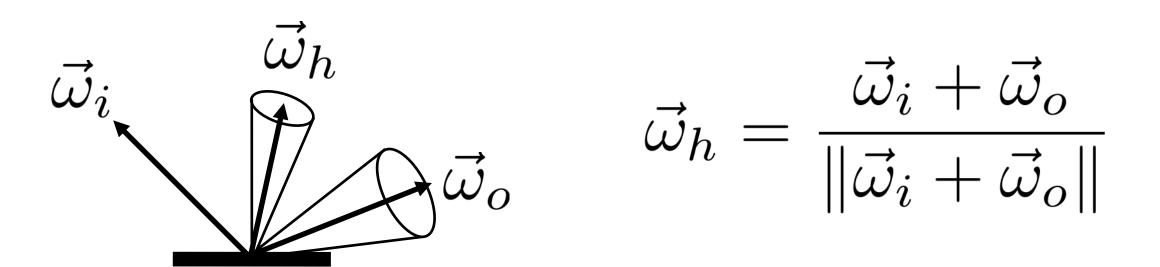
Explains off-specular peaks

Assumes surface is composed of many micro-grooves, each of which is a perfect mirror.

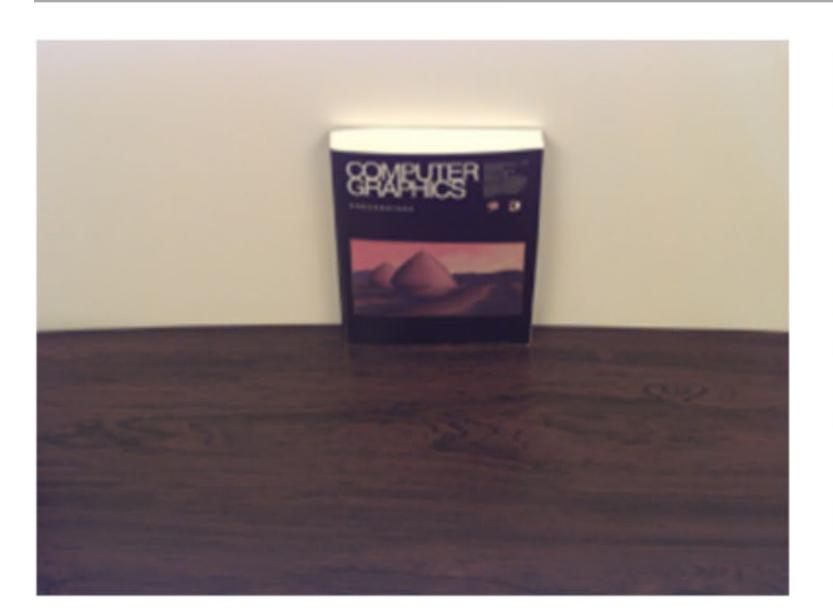


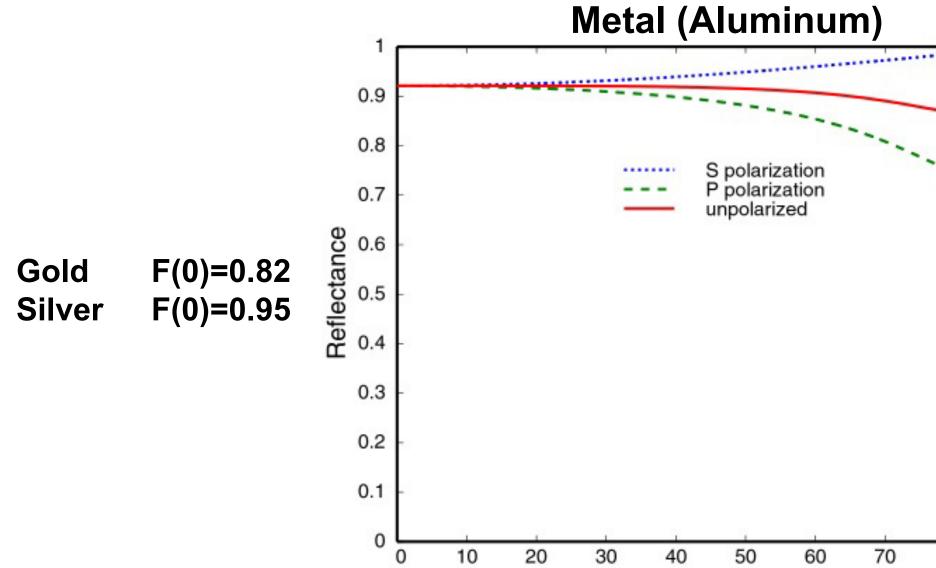
General Microfacet Model



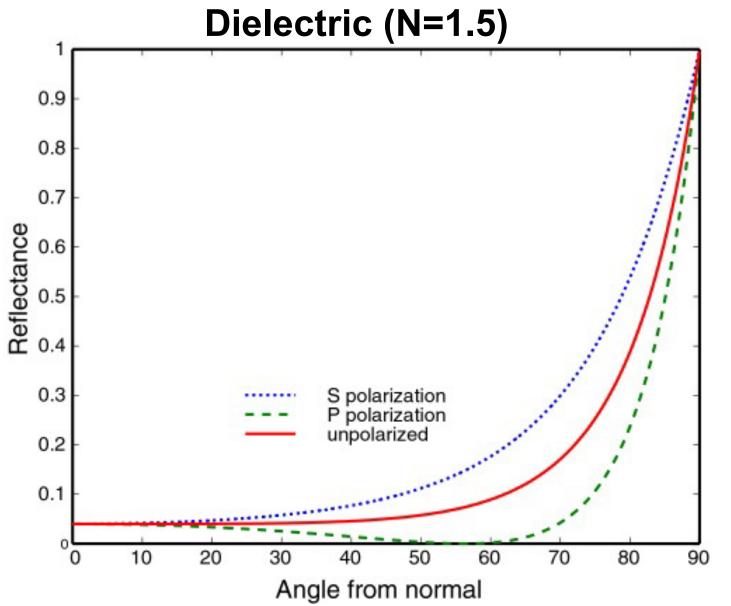


Fresnel Term





Angle from normal

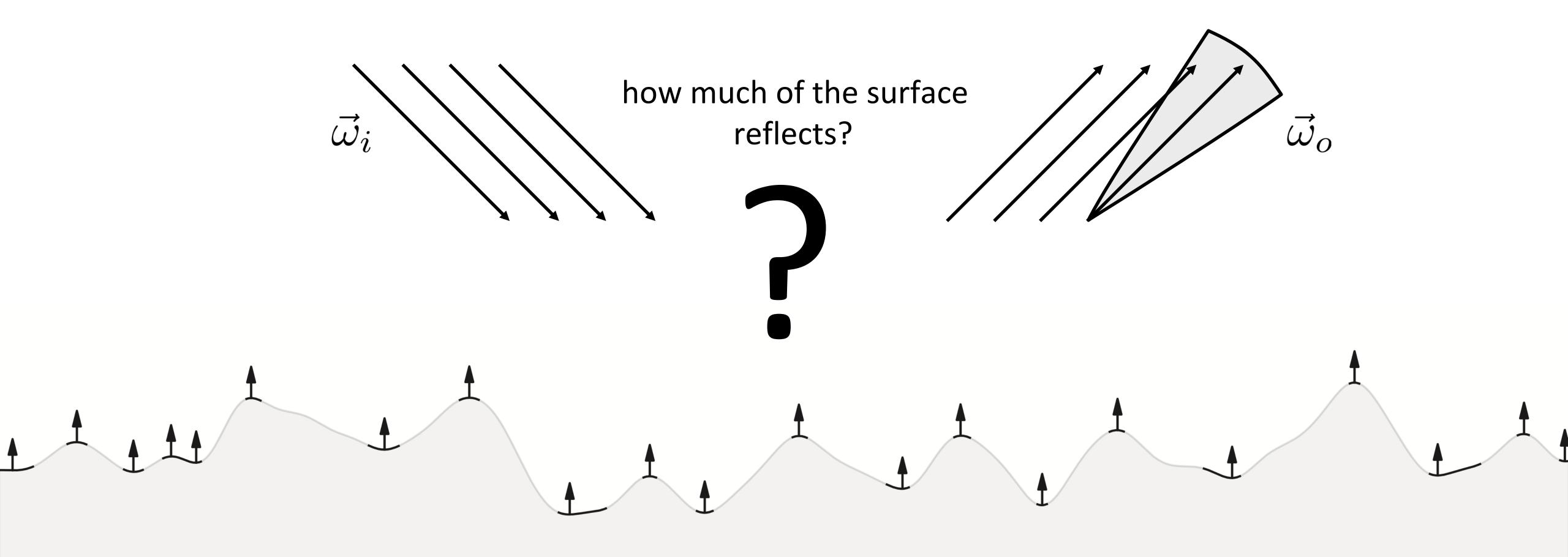


Glass n=1.5 F(0)=0.04 Diamond n=2.4 F(0)=0.15

General Microfacet Model

$$f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o) \cdot D(\vec{\omega}_h) \cdot G(\vec{\omega}_i, \vec{\omega}_o)}{4|(\vec{\omega}_i \cdot \vec{\mathbf{n}})(\vec{\omega}_o \cdot \vec{\mathbf{n}})|}$$

Microfacet Distribution



Microfacet Distribution

What fraction of the surface participates in the reflection?

- Answer 1: difficult to say (need an actual microsurface to compute this, tedious...)
- Answer 2: solve using principles of statistical physics
 - Is there something general we can say about the surface when there are many bumps?

merchan structured the second of the second

Microfacet Distribution

Fraction of microfacets facing each direction

Probability density function over *projected* solid angle (must be normalized):

$$\int_{H^2} D(\vec{\omega}_h) \cos \theta_h \, d\vec{\omega}_h = 1$$

more than the family t

The Beckmann Distribution

The slopes follow a Gaussian distribution

Let's express slope distribution wrt. directions

- Slope of θ_h is $\tan \theta_h$

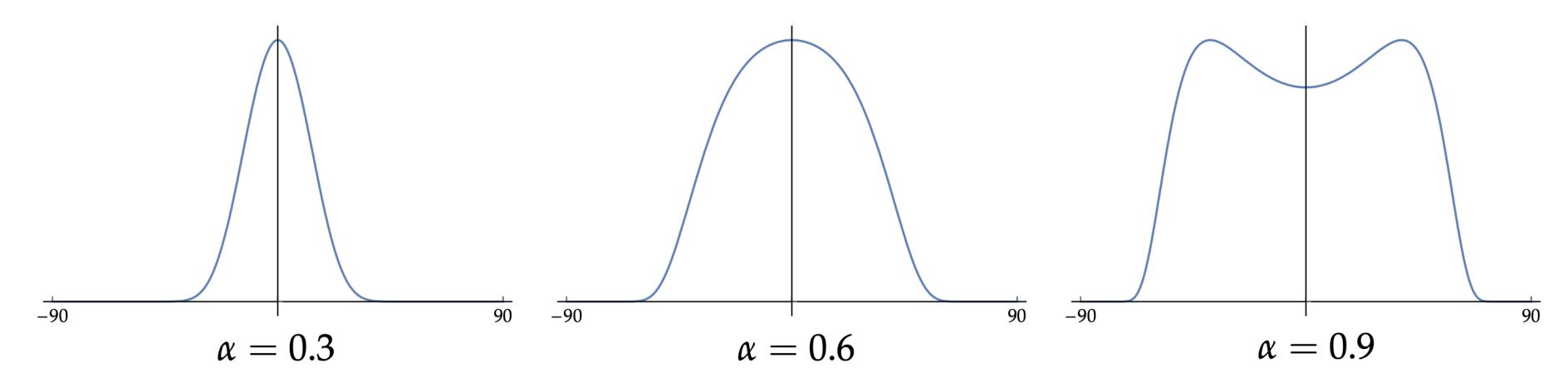
$$D(\vec{\omega}_h) = \frac{1}{\pi \alpha^2 \cos^4 \theta_h} e^{-\frac{\tan^2 \theta_h}{\alpha^2}}$$

MATHEMAN THE PROPERTY OF THE PARTY OF THE PA

The Beckmann Distribution

The slopes follow a Gaussian distribution

Let's express slope distribution wrt. directions



mentioned the manner of the contraction of the cont

Other Distributions

The Blinn distribution:

$$D(\vec{\omega}_h) = \frac{e+2}{2\pi} (\vec{\omega}_h \cdot \vec{\mathbf{n}})^e$$

GGX distribution, see [Walter et al., EGSR 2007]

Anisotropic distributions, see [PBRTv2, Ch. 8]

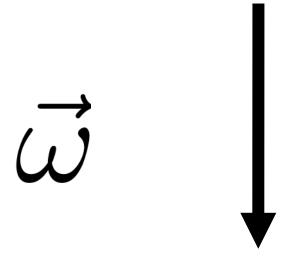


General Microfacet Model

$$f(\vec{\omega}_i,\vec{\omega}_o) = \frac{F(\vec{\omega}_h,\vec{\omega}_o)\cdot D(\vec{\omega}_h)\cdot G(\vec{\omega}_i,\vec{\omega}_o)}{4|(\vec{\omega}_i\cdot\vec{\mathbf{n}})(\vec{\omega}_o\cdot\vec{\mathbf{n}})|}$$

merchan your many the many the

Microfacets can be *shadowed* and/or *masked* by other microfacets



Angle = 85 degrees

Each microfacet distribution typically has its respective shadowing and masking term

Beckman distribution:

$$G(\vec{\omega}) = \frac{2}{1 + \operatorname{erf}(s) + \frac{1}{s\sqrt{\pi}}e^{-s^2}} \qquad s = \frac{1}{\alpha \tan \theta}$$

$$G(\vec{\omega}_i, \vec{\omega}_o) = G(\vec{\omega}_i) \cdot G(\vec{\omega}_o)$$

Each microfacet distribution typically has its respective shadowing and masking term

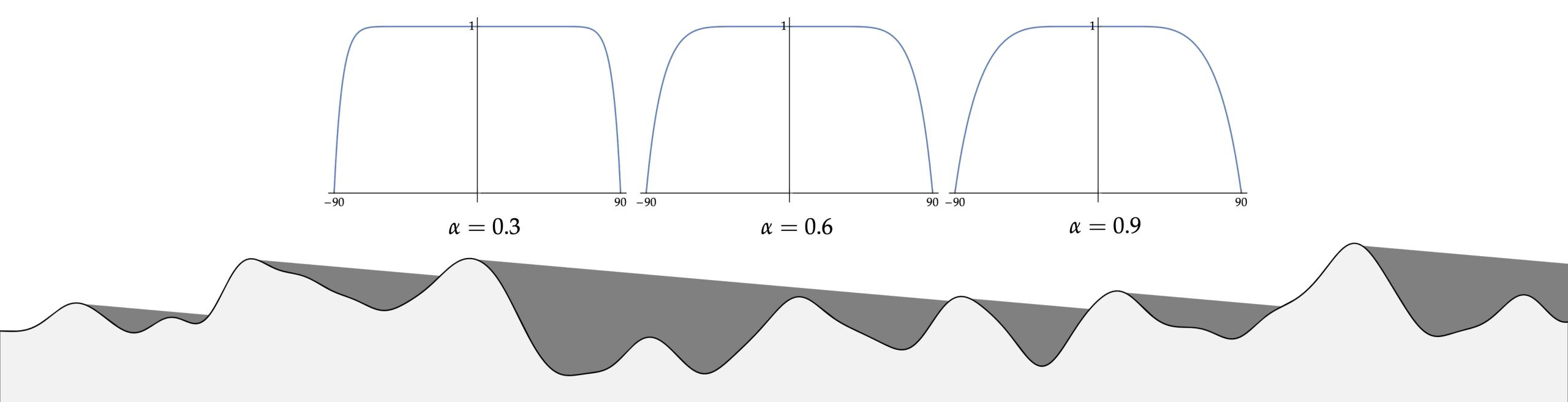
Beckman distribution (approximated):

$$G(\vec{\omega}) \approx \begin{cases} \frac{3.535s + 2.181s^2}{1 + 2.276s + 2.577s^2}, & s < 1.6\\ 1, & \text{otherwise} \end{cases}$$

$$G(\vec{\omega}_i, \vec{\omega}_o) = G(\vec{\omega}_i) \cdot G(\vec{\omega}_o)$$

Each microfacet distribution typically has its respective shadowing and masking term

Beckman distribution (approximated):



Each microfacet distribution typically has its respective shadowing and masking term

Torrance-Sparrow (Blinn):

$$G(\vec{\omega}_i, \vec{\omega}_o) = \min\left(1, \frac{2(\vec{\mathbf{n}} \cdot \vec{\omega}_h)(\vec{\mathbf{n}} \cdot \vec{\omega}_i)}{(\vec{\omega}_h \cdot \vec{\omega}_i)}, \frac{2(\vec{\mathbf{n}} \cdot \vec{\omega}_h)(\vec{\mathbf{n}} \cdot \vec{\omega}_o)}{(\vec{\omega}_h \cdot \vec{\omega}_o)}\right)$$

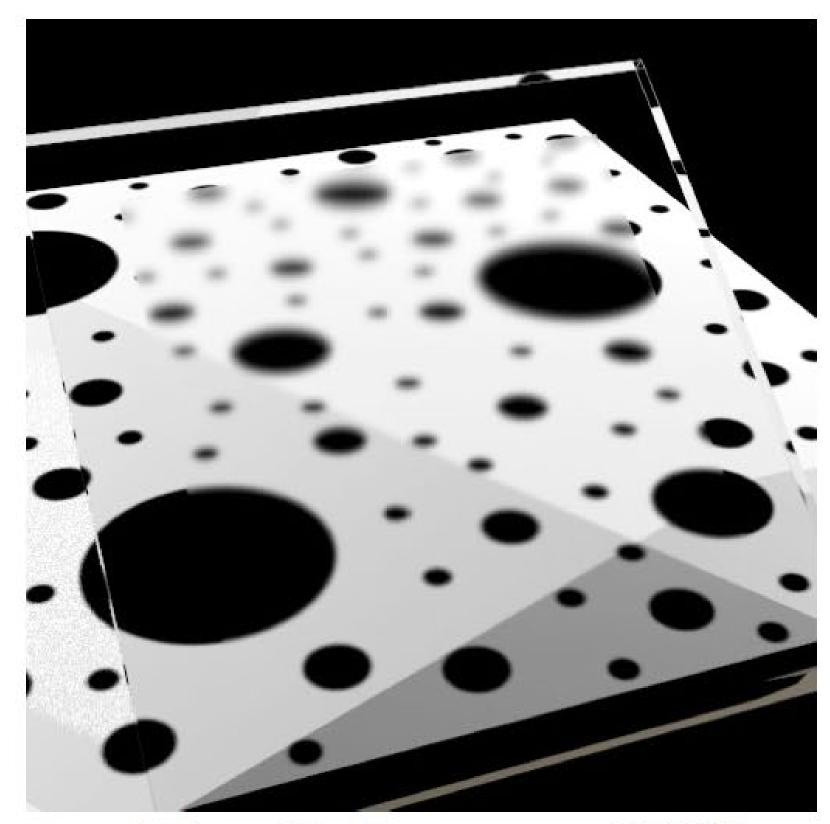
General Microfacet Model

$$f(\vec{\omega}_i, \vec{\omega}_o) = \frac{F(\vec{\omega}_h, \vec{\omega}_o) \cdot D(\vec{\omega}_h) \cdot G(\vec{\omega}_i, \vec{\omega}_o)}{4|(\vec{\omega}_i \cdot \vec{\mathbf{n}})(\vec{\omega}_o \cdot \vec{\mathbf{n}})|}$$

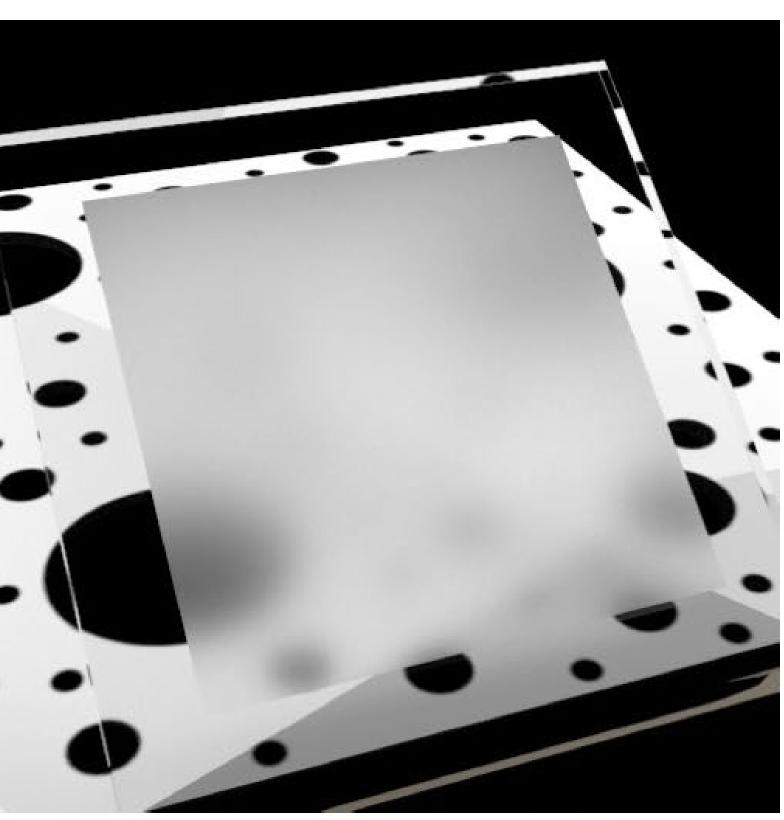
Denominator: correction term coming from energy conservation, Jacobians, etc.

- see PBR book and Walter et al. [EGSR 2007] for more detail

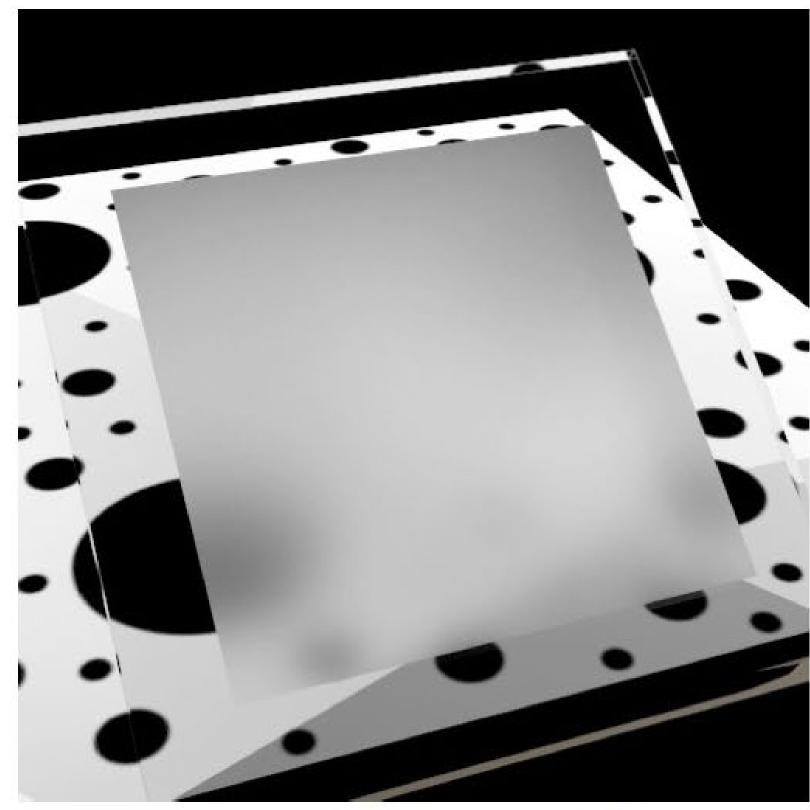
GGX and Beckmann



anti-glare (Beckman, $\alpha_b = 0.023$)

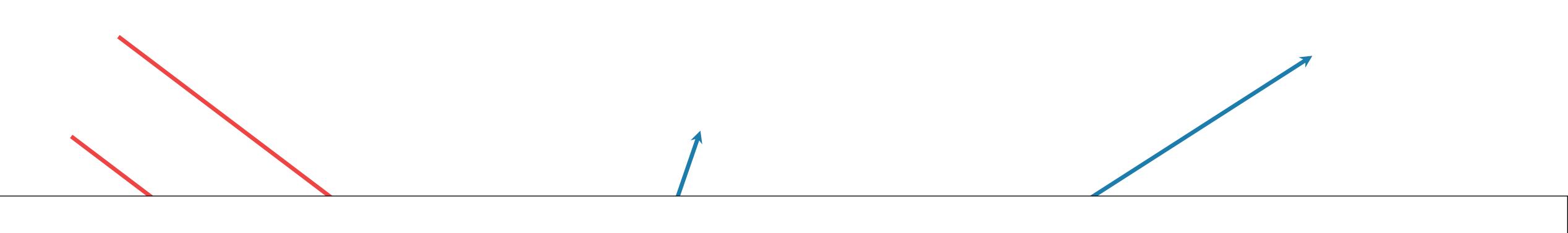


ground (GGX, $\alpha_g = 0.394$)



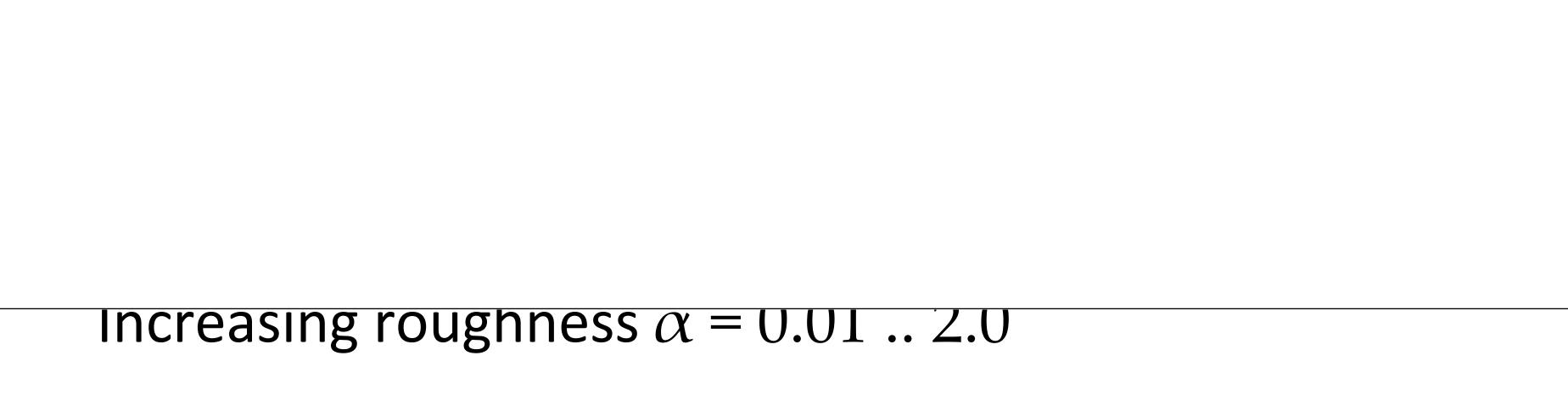
etched (GGX, $\alpha_g = 0.553$)

Energy Loss Issue

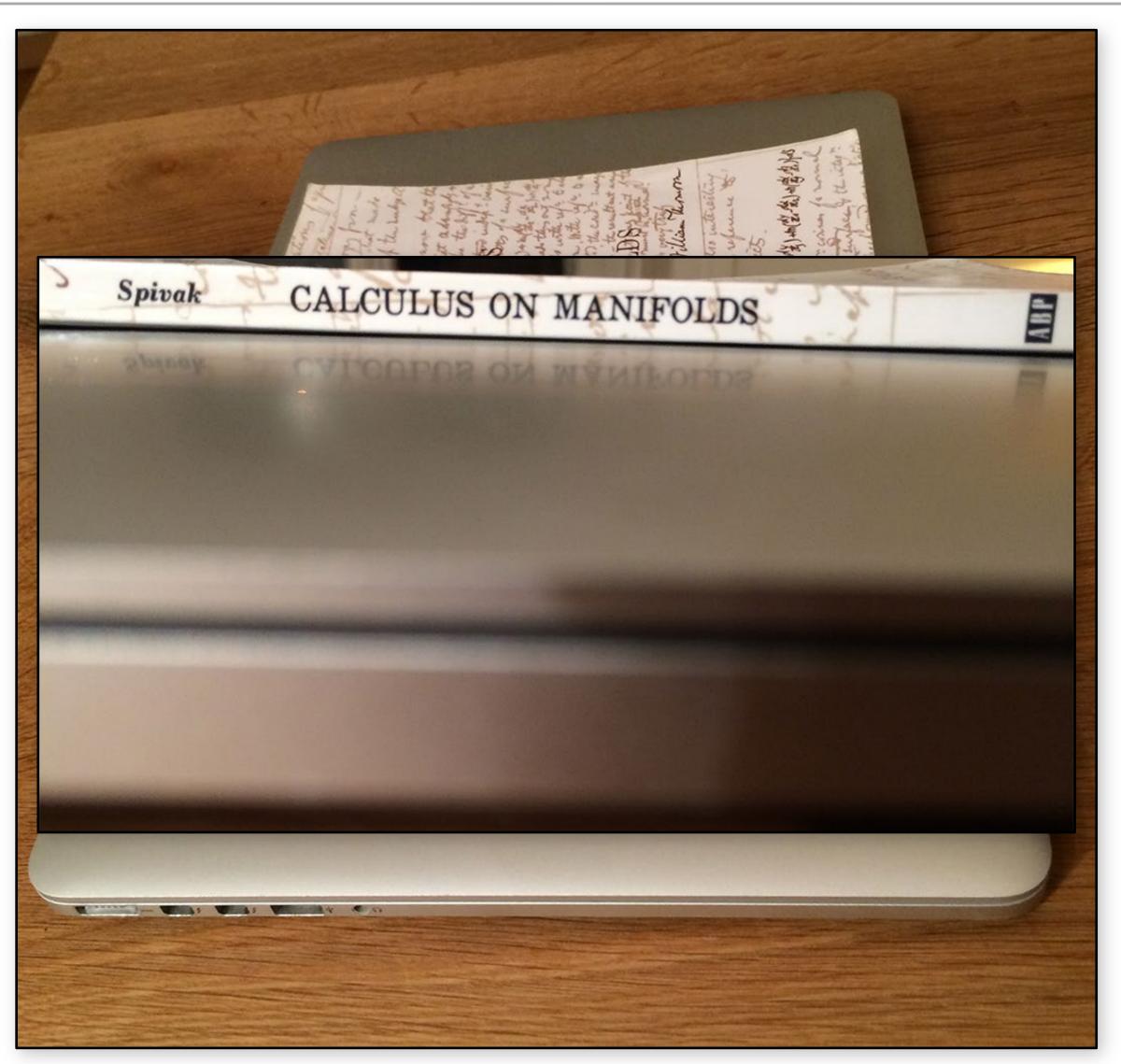


Energy Loss Issue - Conductor

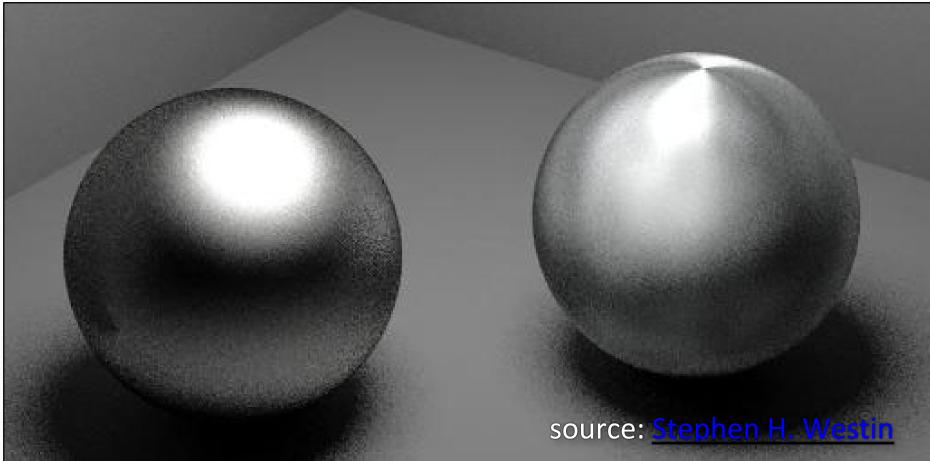
Energy Loss Issue - Dielectric



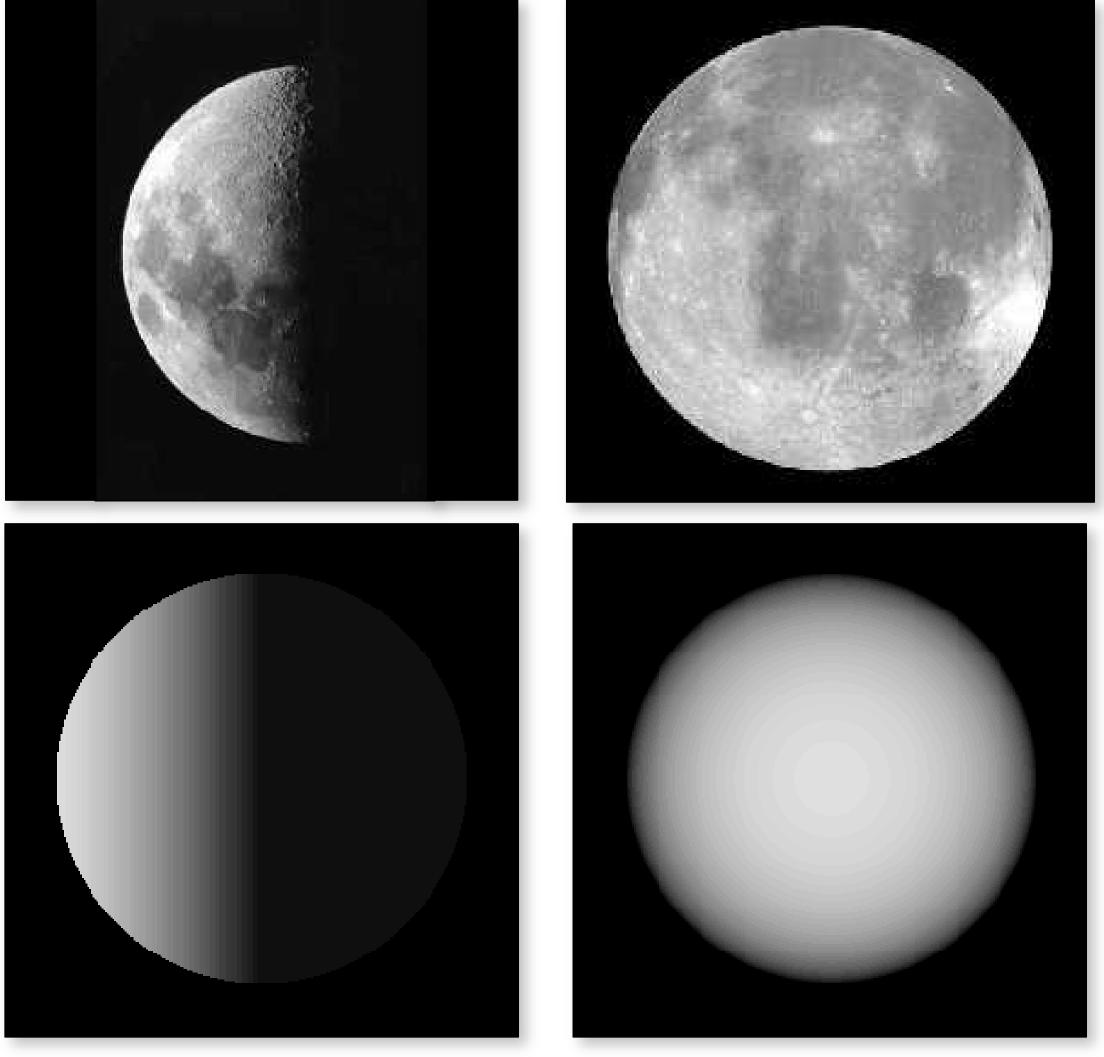
Interesting grazing angle behavior



Extension: Anisotropic Reflection



Why does the Moon have a flat appearance?



Lambertian sphere and Moon under similar illumination

The Oren-Nayar Model

Same concept as the microfacet models, but assumes that the facets are diffuse

Shadowing/masking + interreflections

No analytic solution; fitted approximation

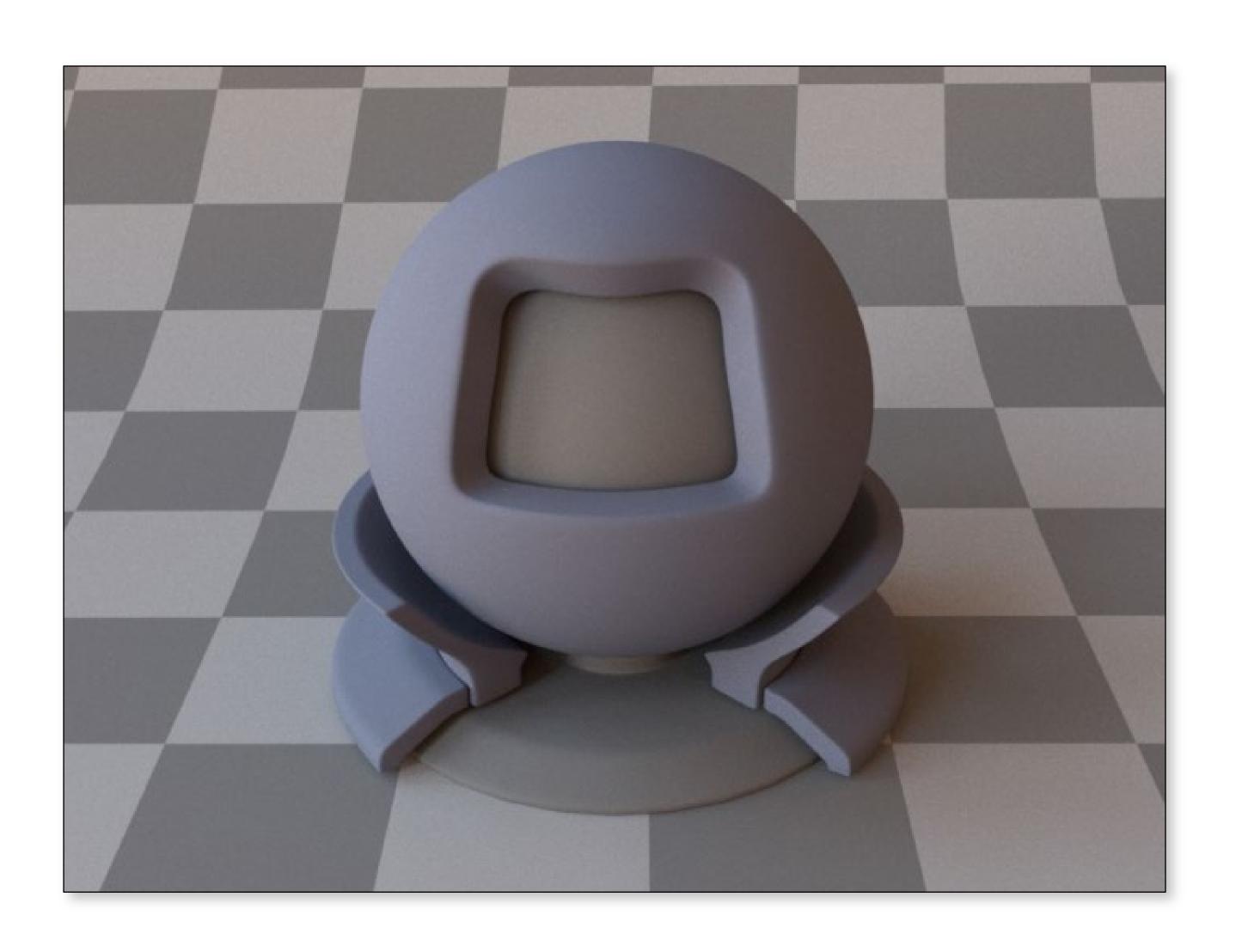
$$f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{\rho}{\pi} \left(A + B \max(0, \cos(\phi_i - \phi_o)) \sin \alpha \tan \beta \right)$$

$$A = 1 - \frac{\sigma^2}{2(\sigma^2 + 0.33)} \qquad B = \frac{0.45\sigma^2}{\sigma^2 + 0.09}$$

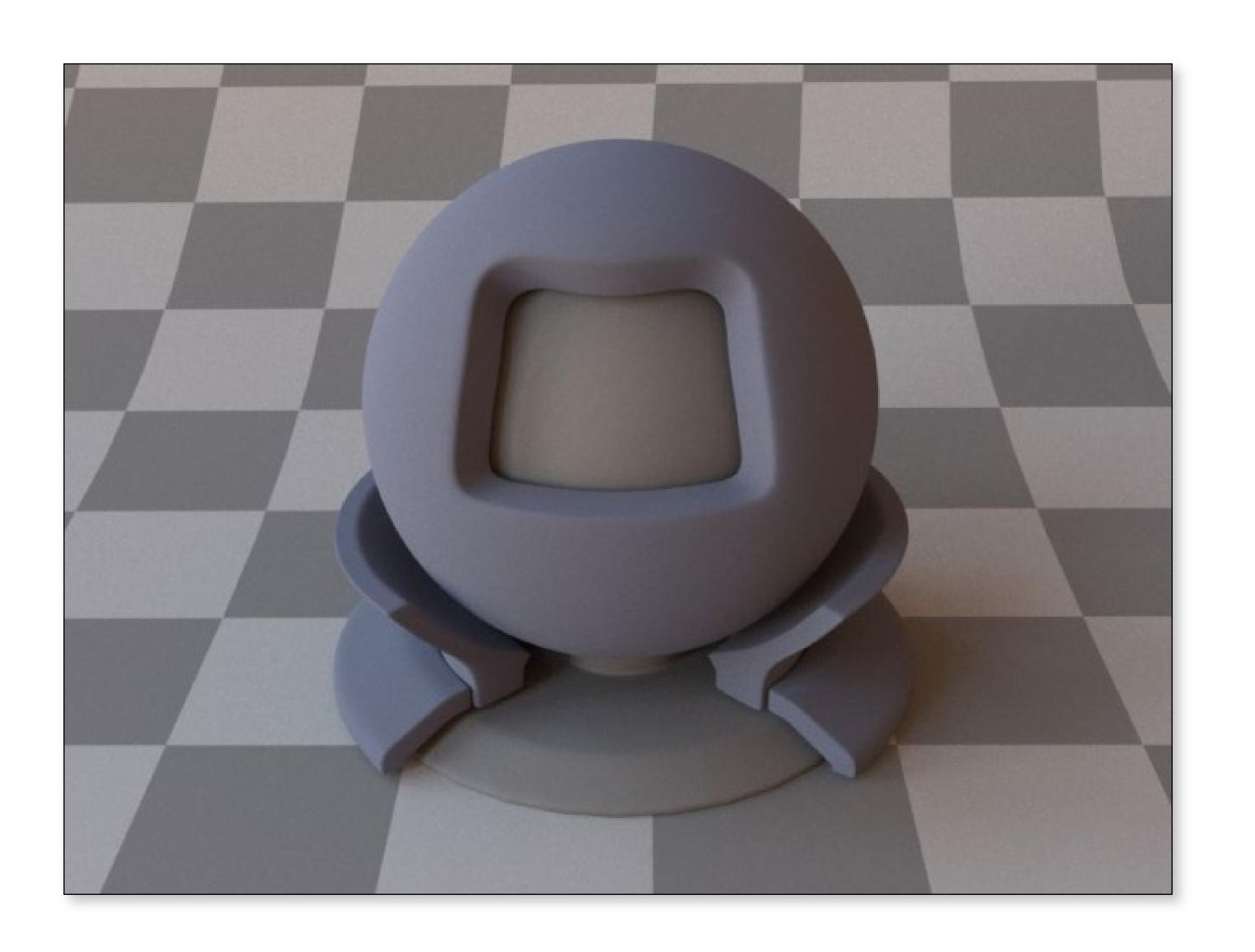
$$\alpha = \max(\theta_i, \theta_o) \qquad \beta = \min(\theta_i, \theta_o)$$

Ideal Lambertian is just a special case ($\sigma = 0$)

Smooth Diffuse

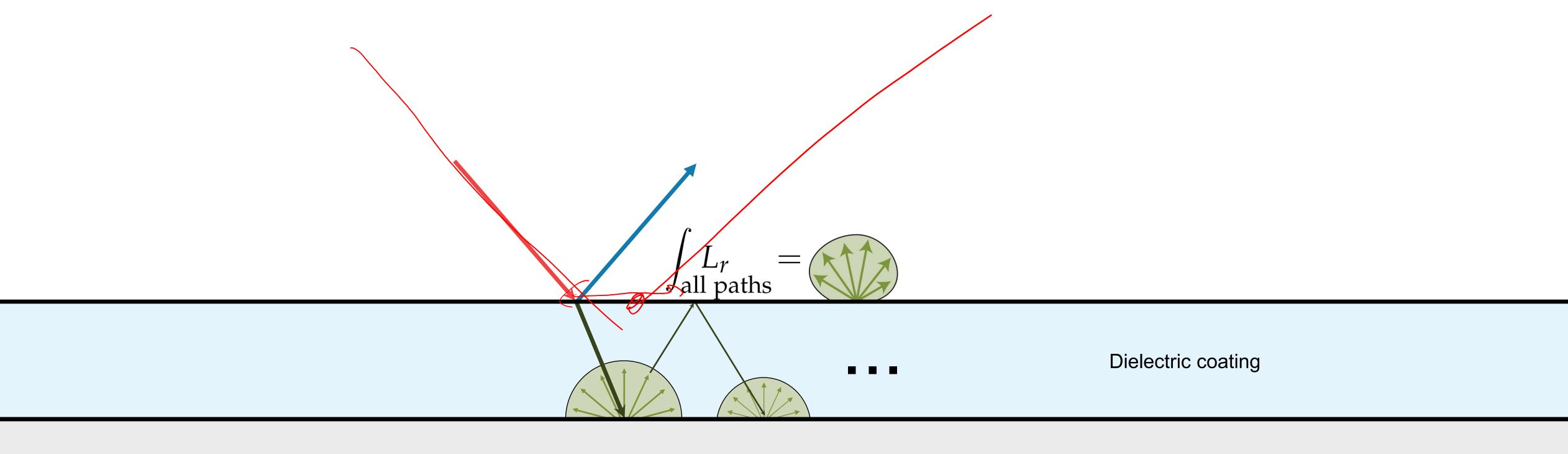


Rough Diffuse



Extension: layered materials

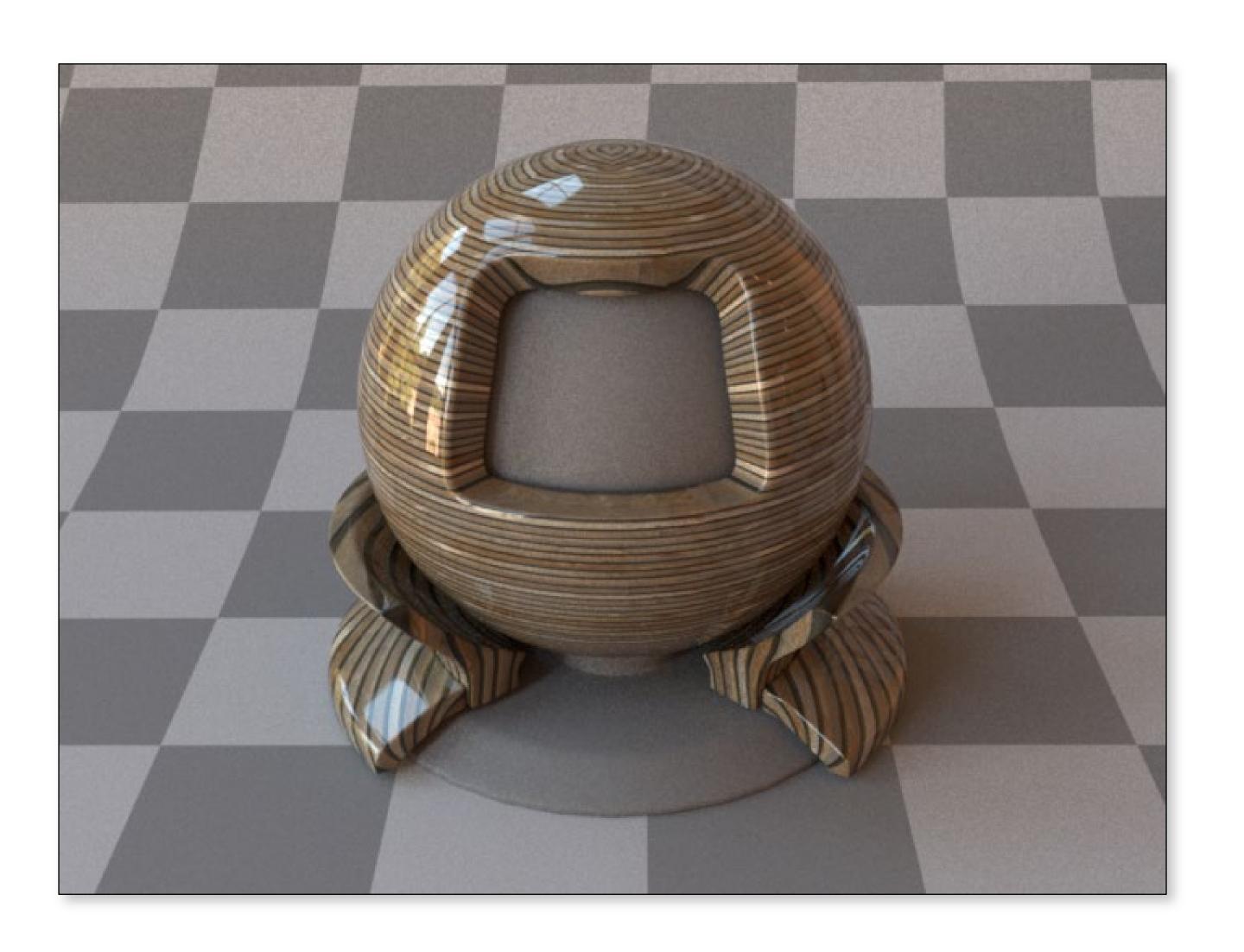
Diffuse base layer coated using a perfectly smooth dielectric (can do something similar with microfacets)



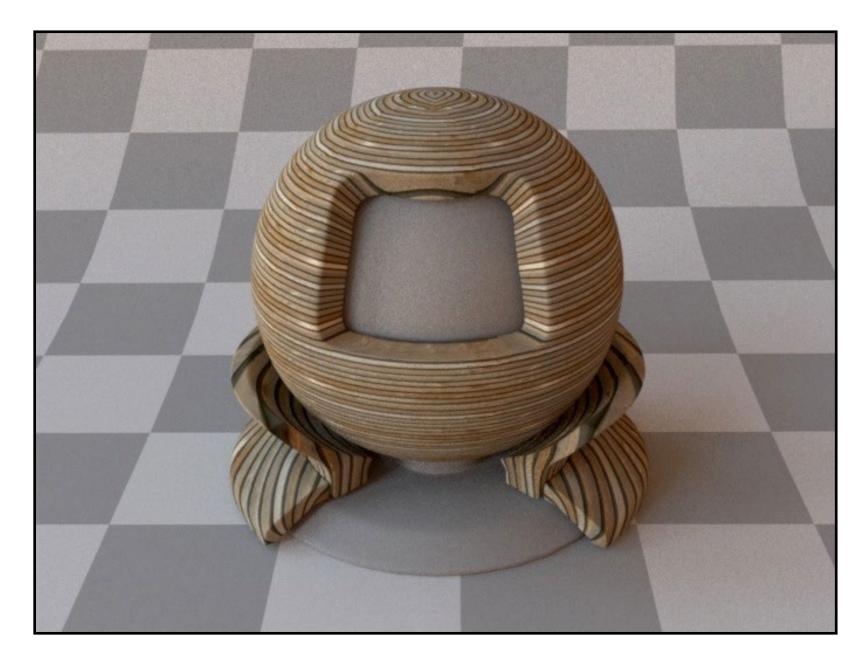
Diffuse base layer

Smooth Diffuse

Smooth Plastic

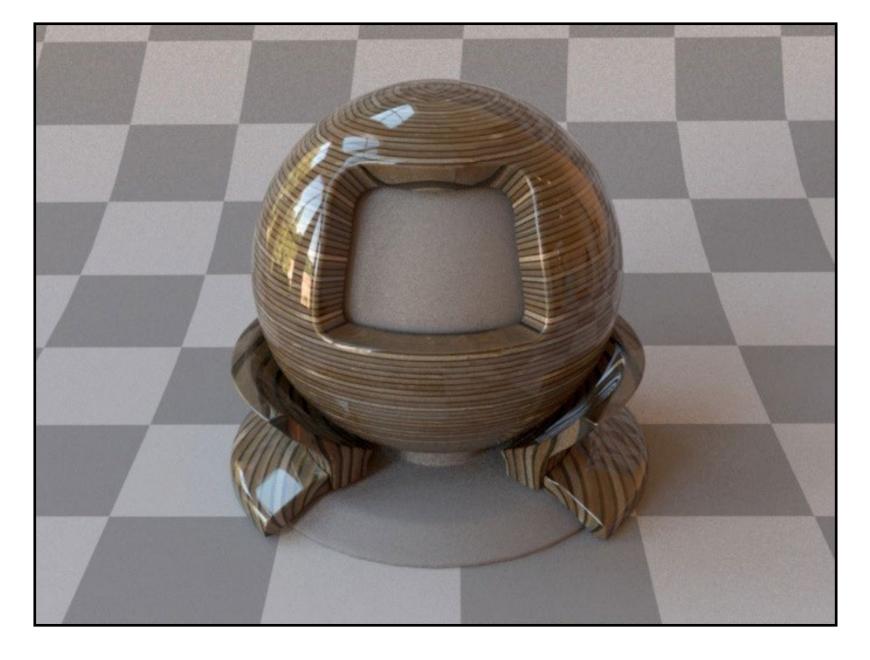


Smooth Plastic



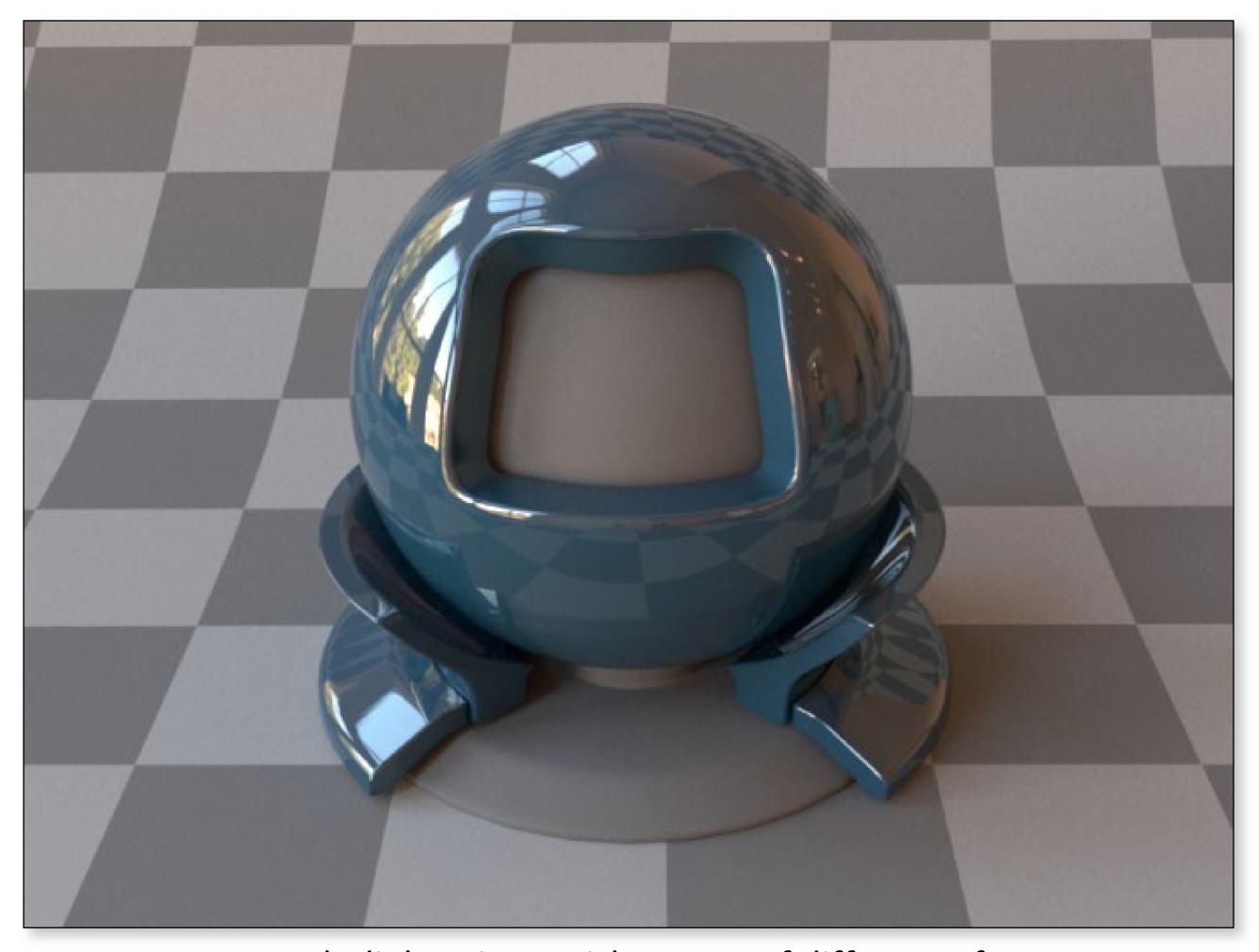
Plain diffuse material

Naïve blend of diffuse + specular (incorrect)



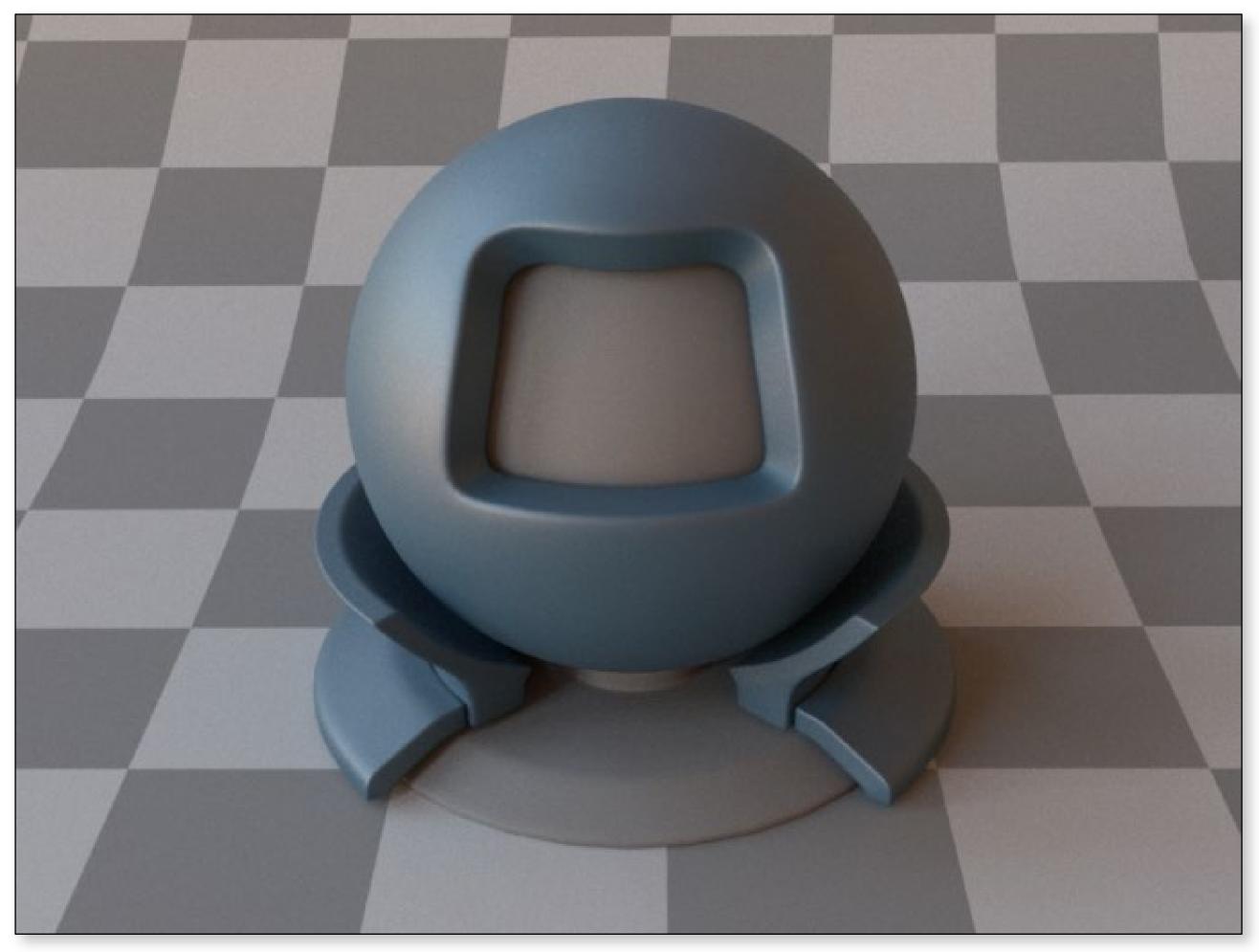
Specular-matte (correct)

Smooth Plastic



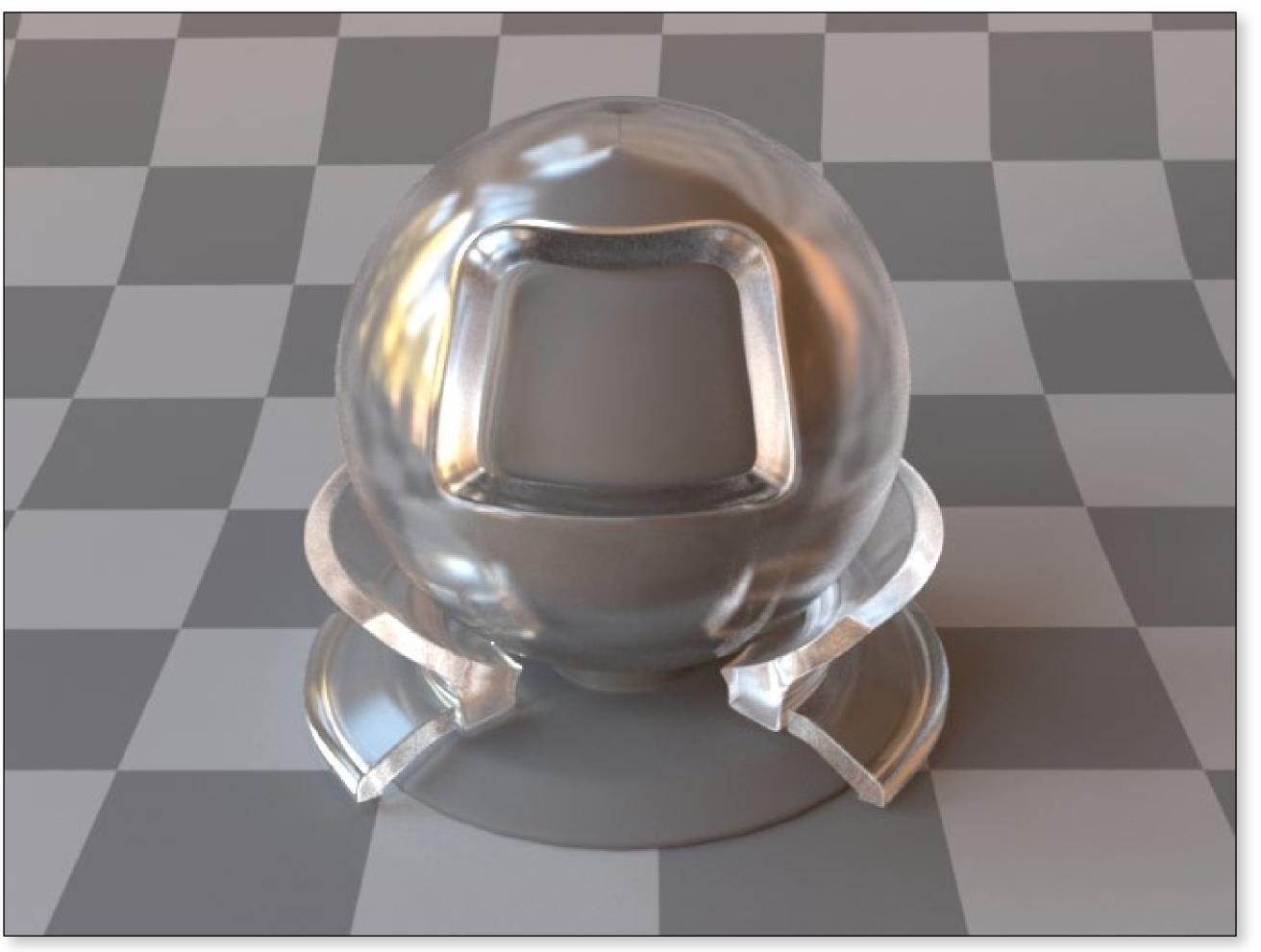
Smooth dielectric varnish on top of diffuse surface

Rough Plastic



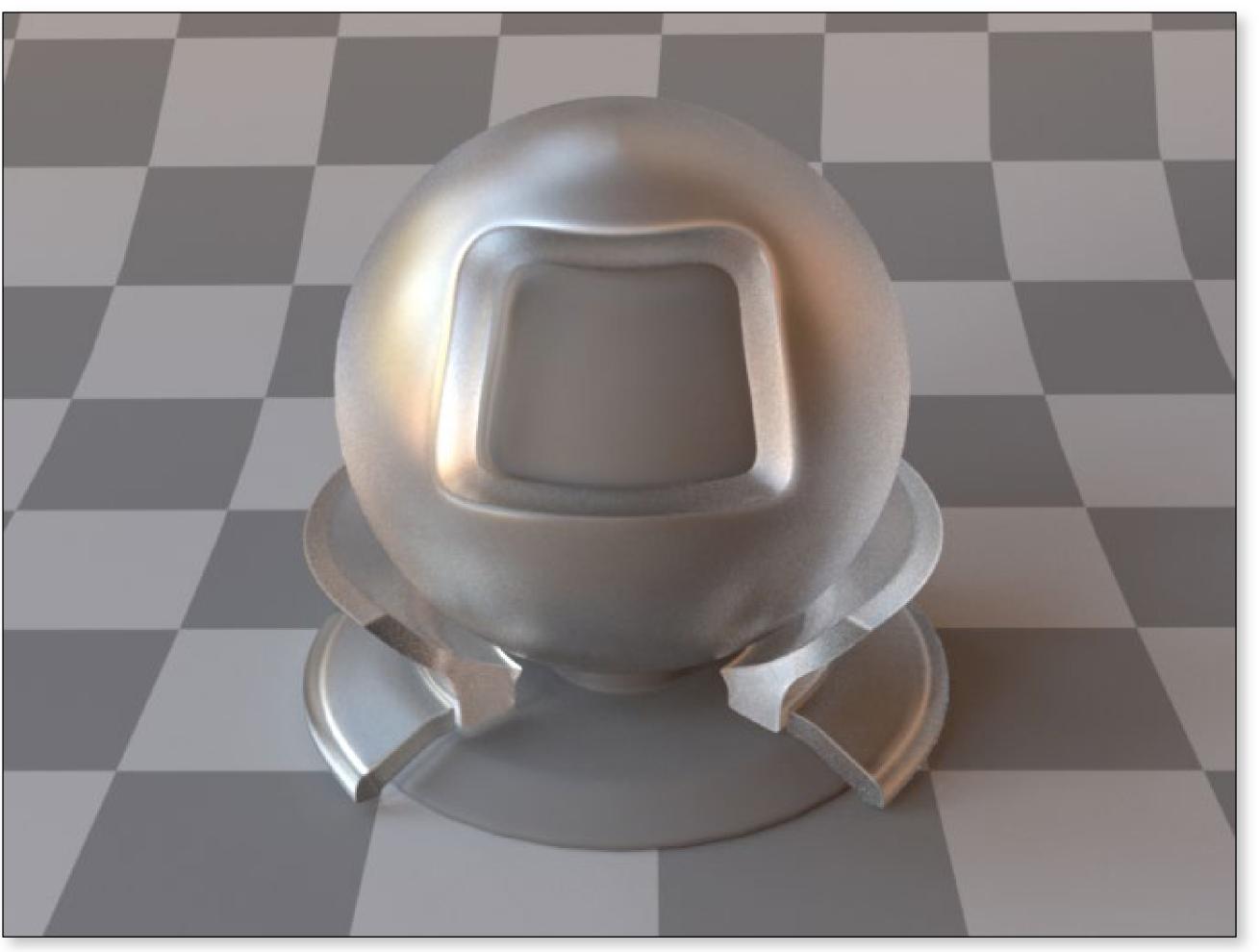
Rough dielectric varnish on top of diffuse surface

Rough Dielectric



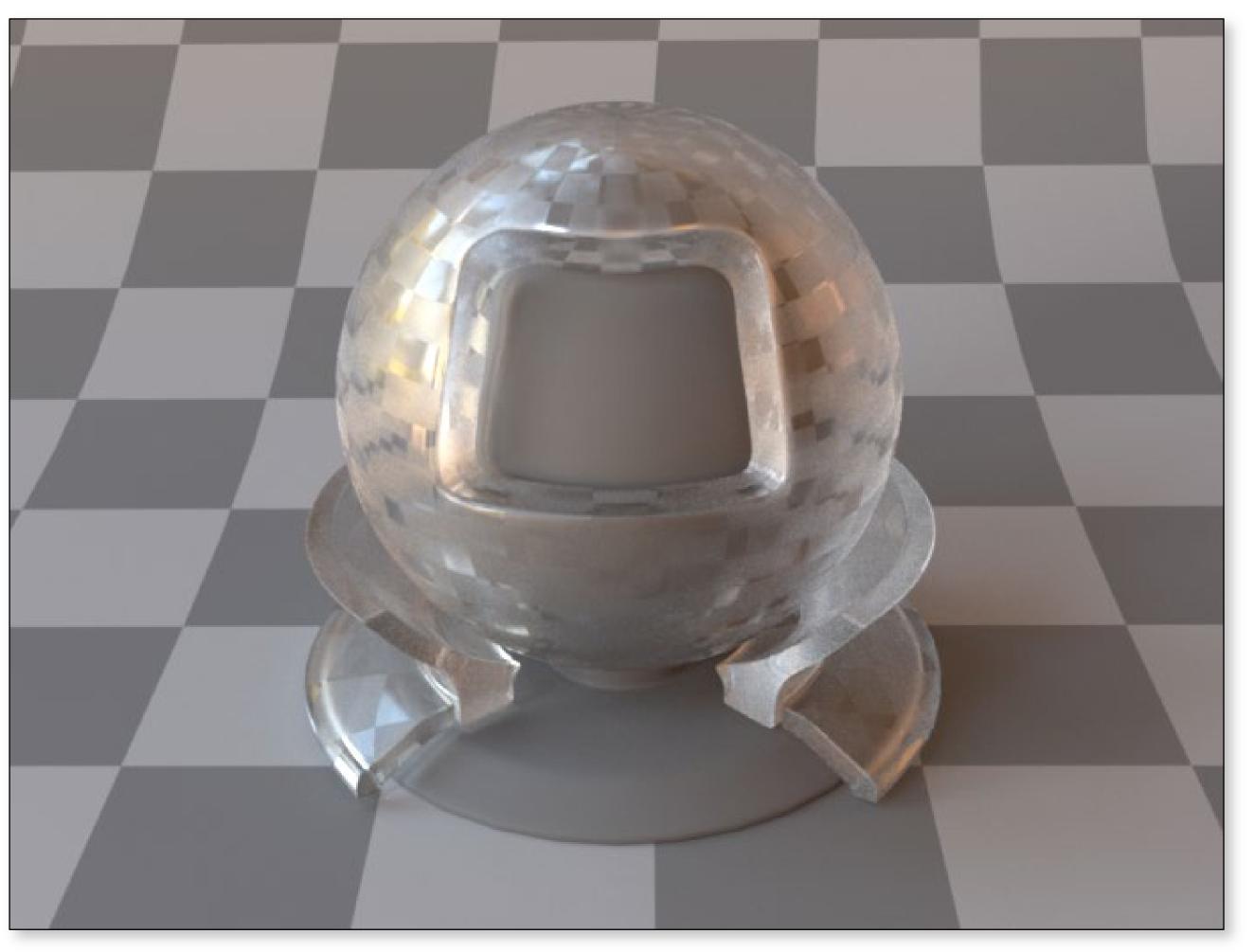
Anti-glare glass (m = 0.02)

Rough Dielectric



Rough glass (m = 0.1)

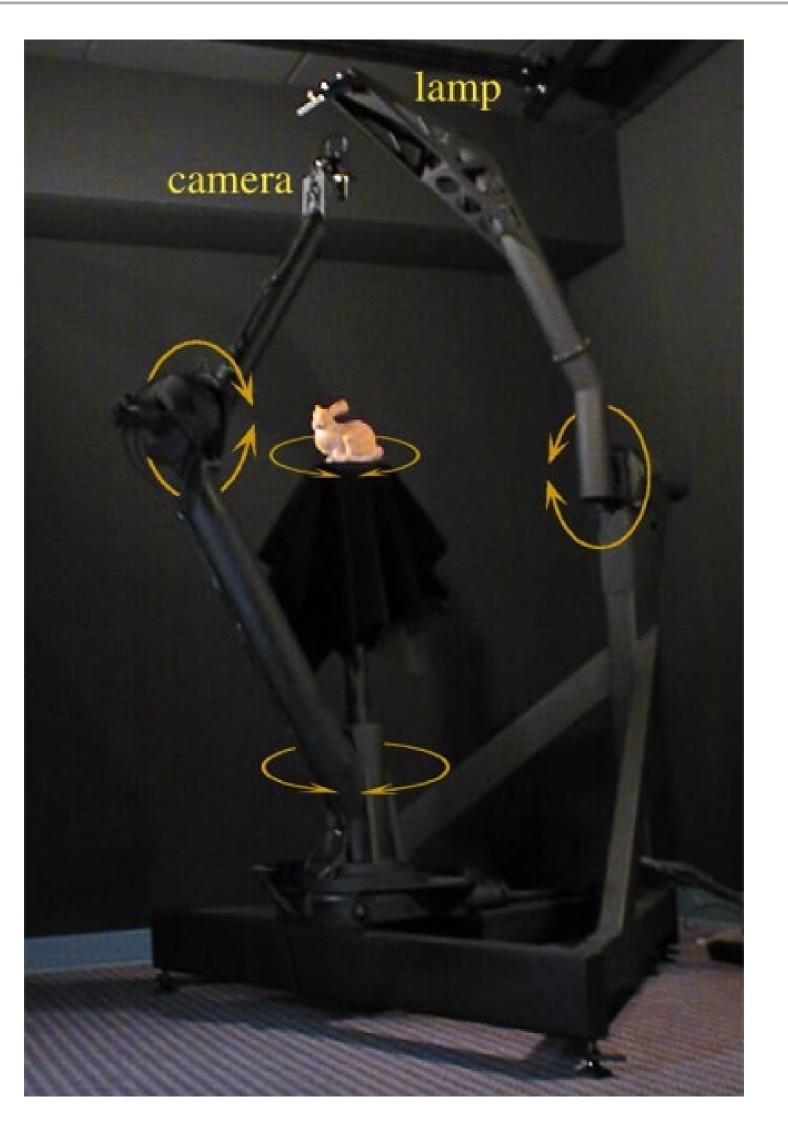
Rough Dielectric



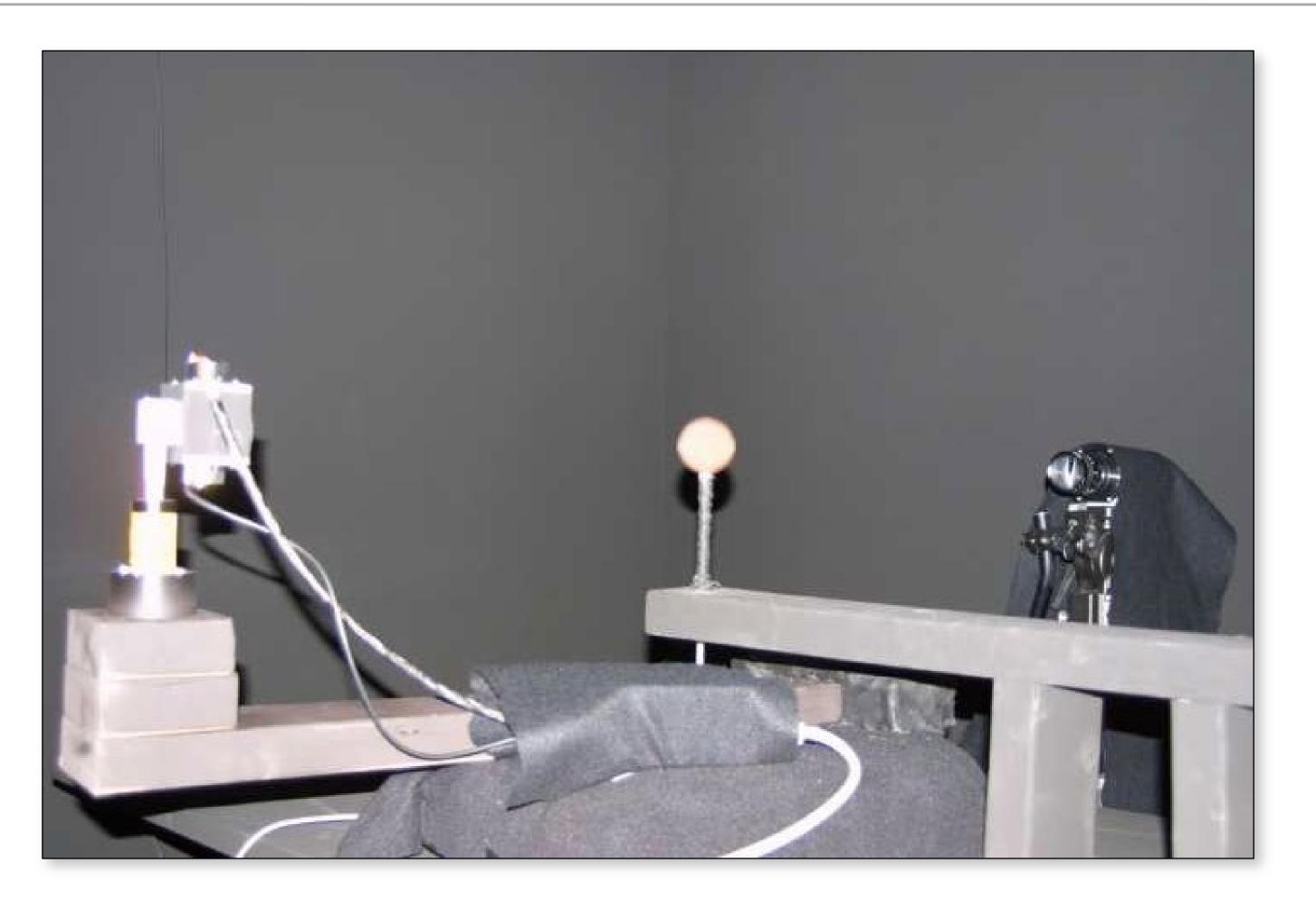
Textured roughness

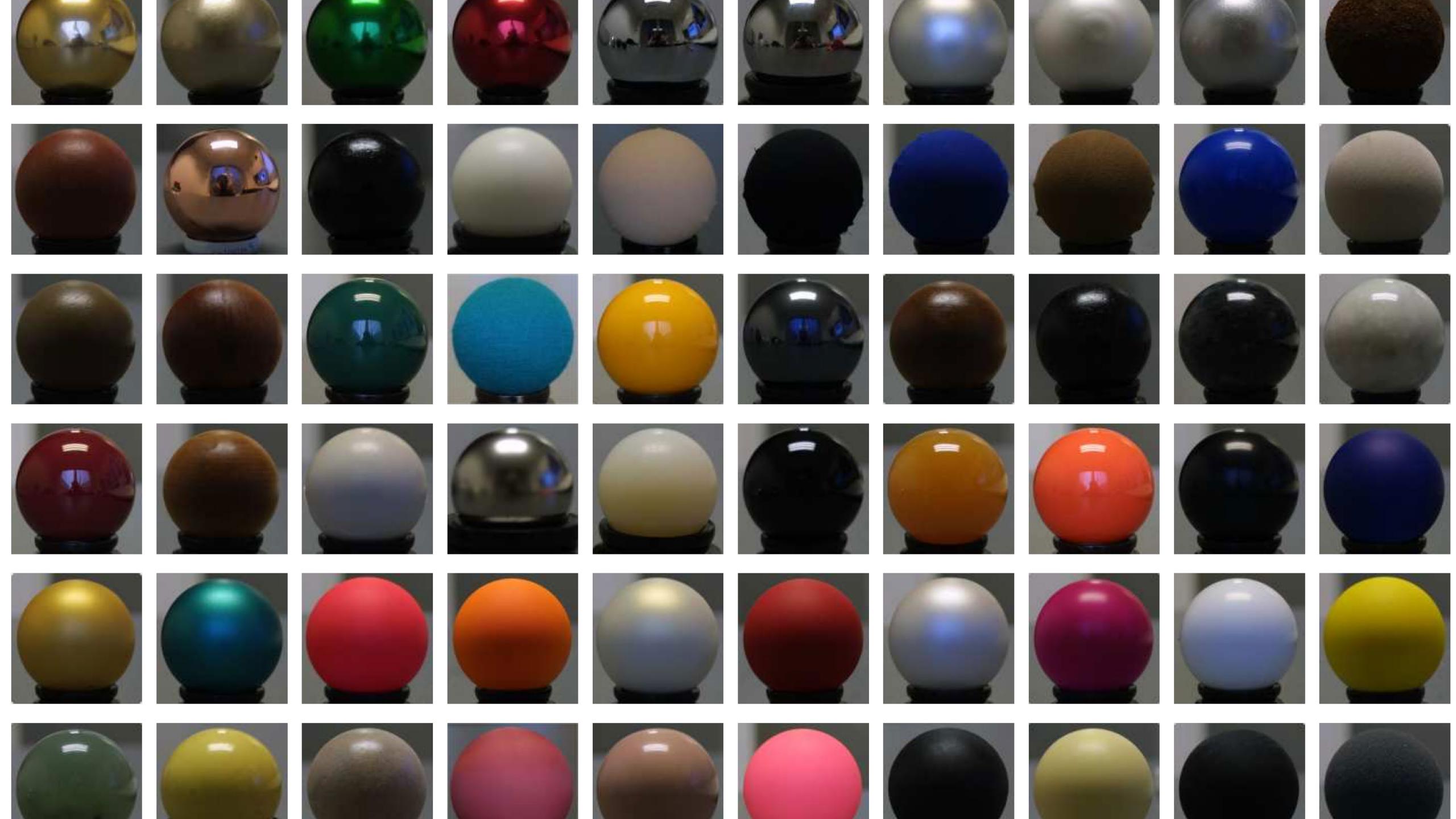
Data-Driven BRDFs

Spherical gantry



Measuring BRDFs





Nickel

Hematite

Gold Paint

Pink Fabric

BRDF Editing/Navigation

Given a large database, can mix/match and interpolate between BRDFs

The MERL Database

"A Data-Driven Reflectance Model"

Wojciech Matusik, Hanspeter Pfister, Matt Brand and Leonard McMillan.

ACM Transactions on Graphics 22, 3(2003), 759-769.

Download them and use them in your own renderer!

- http://www.merl.com/brdf/

Measuring and Modeling the Appearance of Wood

Stephen R. Marschner, Stephen H. Westin, Adam Arbree, and Jonathan T. Moon

Cornell University

Reading

PBRTv3 Chapter 8, and 14.1