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Course announcements

• Talk by Yifan Peng on AR/VR today.

• Take-home quiz 9-10 posted, due 4/26.

• Feedback for final project proposals posted.
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Slide credits

Most of these slides were directly adapted from:

• Shuang Zhao (UC Irvine).
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Today’s Lecture
• Metropolis light transport (MLT)

• A Markov Chain Monte Carlo (MCMC) framework
implementing the Metropolis-Hastings method
first proposed by Veach and Guibas in 1997

• Capable of efficiently constructing “difficult” 
transport paths

• Lots of ongoing research long this direction

• MLT is capable of solving both the rendering 
equation (RE) and the radiative transfer 
equation (RTE). We will focus on the former
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Metropolis-Hastings Method

• A Markov-Chain Monte Carlo technique

• Given a non-negative function f, generate a
chain of (correlated) samples X1, X2, X3, … that
follow a probability density proportional to f

• Main advantage: f does not have to be a PDF 
(i.e., unnormalized)



Metropolis-Hastings Method

• Input
• Non-negative function f
• Probability density g(y → x) suggesting a candidate for 
the next sample value x, given the previous sample value y

• The algorithm: given current sample Xi
1. Sample X’ from g(Xi → X’)

2. Let
3. If

and draw
, set Xi+1 to X’; otherwise, set Xi+1 to Xi

• Start with arbitrary initial state X0
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The Problem
• We focus on estimating the pixel values of a virtual 

image where intensity I(j) of pixel j is

Image plane
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The Problem
• We focus on estimating the pixel values of a virtual 

image where intensity I(j) of pixel j is

• h(j) varies per pixel and is called the filter function
• f stays identical for all pixels
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Example Filter Functions
• Box Filter

• Gaussian Filter

Image plane
h(j)

Image plane
h(j)

9



Estimating Pixel Values

• We have seen that if we can draw N path samples 
according to some density function p, then

• Particularly, if we take , namely
b being the normalization factor, then

with
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Estimating Pixel Values

?

?• How to draw samples from
Metropolis-Hastings method

• Challenges
• How to obtain

Monte Carlo integration
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Metropolis Light Transport (MLT)

• Overview
• Phase 1: initialization (estimating b)

• Draw N’ “seed” paths from some known 
density p0 (e.g., using bidirectional path tracing)

• Set

• Pick a small number (e.g., one) of representatives from
and apply Phase 2 to each of them

• Phase 2: Metropolis
• Starting with a seed path, apply the Metropolis-

Hastings method to generate samples according to f
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Metropolis Phase
• Overview (pseudocode)
Metropolis_Phase(image, xseed):

x = xseed

for i = 1 to N:
y = mutate(x)
a = acceptanceProbability(x → y) 
if rand() < a:

x = y
recordSample(image, x)
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Path Mutations
• The key step of the Metropolis phase

• Given a transport path , we need to define a 
transition probability to allow sampling 
mutated paths based on

• Given this transition density, the acceptance 
probability is then given by
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Desirable Mutation Properties
• High acceptance probability

• should be large with high probability

• Large changes to the path

• Ergodicity (never stuck in some-region of the path space)
• should be non-zero for all with

• Low cost
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Path Mutation Strategies
• [Veach & Guibas 1997]

• Bidirectional mutation
• Path perturbations
• Lens sub-path mutation

• [Jakob & Marschner 2012]
• Manifold exploration

• [Li et al. 2015]
• Hamiltonian Monte Carlo

…
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Bidirectional Path Mutations
• Basic idea

, pick l, m and replace 
with

• Given a path 
the vertices

• l and m satisfies

Image 
plane

Image 
plane
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Deletion Probability
Image
plane

• l and m are sampled as follows:
• Draw integer kd from some probability mass function pd,1[kd]. 

This number captures the length of deleted sub-path (i.e., m - l)

• Draw l from another probability mass function pd,2[l | kd] to 
avoid low acceptance probability and set m to l + kd
(more on this at the end of today’s lecture)

• The joint probability pd for drawing (l, m) is
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Addition Probability
Image
plane

• The deleted sub-path is then replaced by adding l’ and
m’ vertices on each side. To determine l’ and m’:

• Draw integer ka from pa[ka]. This integer determines the new
sub-path length (i.e., ka = l’ + m’ + 1)

• Draw l’ uniformly from {0, 1, …, ka - 1} and set m’ to ka - 1 - l’

• Let pa[l’, m’] denote the joint probability for drawing (l’, m’)

• After obtaining l’ and m’, the two corresponding sub-
paths are generated via local path sampling, yielding
the new path
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Parameter Values
• Veach [1997] proposed the following parameters:

• Deletion parameters
• pd,1[1] = 0.25, pd,1[2] = 0.5, pd,1[k] = 2-k for k > 2 

(before normalization)
• pd,2[l | kd] to be discussed later

• Addition parameters (given kd)
• pa,1[kd] = 0.5, pa,1[kd ± 1] = 0.15, pa,1[kd ± j] = 0.2(2-j) for j > 2

(before normalization)



Evaluating Transition Probability

• The probability for transitioning from to is

Image
plane

Image 
plane

21



Bidirectional Mutation: Example

Image 
plane

• Original path:
• Mutation parameters:

• l = 1, m = 2 (deletion); l’ = 1, m’ = 0 (addition)

• Mutated path:
• The probability to accept equals

where
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Bidirectional Mutation: Example

• , where

• Recall that does not involve 
captured by the filter function h(j)

as it is

Image 
plane
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Bidirectional Mutation: Example

• can be generated from in two ways

• Thus,

Image 
plane

Image 
plane
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Bidirectional Mutation: Example

• , where

• To obtain from using bidirectional path mutation, 
we need l = 1, m = 3 and l’ = m’ = 0. Thus,

Image 
plane
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Path Perturbations
• “Smaller” mutations
• Useful for finding “nearby” paths with high 

contribution
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Path Perturbations
• Basic idea: choosing a sub-path and moving 

the vertices slightly

• Three types of perturbations
• Lens
• Caustic
• Multi-chain



Path Perturbation: Lens
• Replace sub-paths (x0, …, xm) of the form ES*D(D|L)
• Randomly move the endpoint x0 on the image plane to z0

• Trace a ray through z0 to form the new sub-path

Image 
plane

Specular 
surface

“Diffuse” 
surface

“Diffuse” surface

Center of 
projection
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Path Perturbation: Lens
• To draw z0:

• First, sample a distance R using

• Then, uniformly sample z0 from the circle 
which is center at x0 and has radius R

• The mutation is immediately rejected if
ray tracing through z0 fails to generate a new sub-path 
with exactly the same form (i.e., ES*D(D|L))

• Otherwise, the acceptance probability is evaluated in a
way similar to the bidirectional mutation case
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Path Perturbation: Caustic
• Replace sub-paths (x0, …, xm) of the form EDS*(D|L)
• Slightly modify the direction xm → xm-1 (at random)
• Trace a ray from xm with this new direction to form the 

new sub-path

Image 
plane

Specular 
interface

“Diffuse” surface

Center of 
projection
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• Replace sub-paths of the form ES+DS+D(D|L)
• Lens perturbation is applied for ES+D
• The direction of the DS+ edge in the original sub-path is

perturbed
• The new direction is then used to complete the DS+D(D|L) 

segment of the new sub-path (using ray tracing)

Path Perturbation: Multi-Chain

“Diffuse” surface

Specular 
interface

Image 
plane

“Diffuse” 
surface
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Lens Sub-Path Mutation
• Used to stratify samples over the image plane

• Each pixel should get enough sample paths

• Replace lens sub-paths of the form ES*(D|L)
• Similar to lens perturbation, but draw z0 from a different 

density

Specular 
surface

Image
plane

“Diffuse” 
surface

Center of
projection
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Selecting Between Mutation Types

• Path mutations strategies introduced so far:
• Bidirectional mutation
• Lens, caustic, multi-chain perturbations
• Lens sub-path mutation

• Choose one randomly in each iteration



Refinements
• Direct lighting

• It is more efficient to estimate direct illumination 
with standard methods (e.g., area & BSDF sampling 
combined using MIS) and apply MLT only for indirect 
illumination

• Importance sampling for mutation probabilities
• For increasing the average acceptance probability
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Improving Acceptance Rates
• Recall:

• Observation: given a path
,

partially evaluated without constructing

and
can be

• can be fully evaluated
• can be partially evaluated
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Improving Acceptance Rates

Unknown Known

• Set the unknown term to one and get a weight wl,m for 
each mutation

Image
plane

• Let ka = m - l - 1, then
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Improving Acceptance Rates

• Given a path , we can evaluate the 
weights for several possible mutation strategies and 
use these weights to sample one

• Can be used to obtain pd,2 for bidirectional mutations
• Given kd, simply make
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Results

BDPT
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