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Course announcements

How many of you attended Thomas Mueller’s talk?
Take-home quiz 9-10 posted, due 4/26.
Nobody was around for yesterday’s recitation :-( .

Will try to go over final project proposals tonight.
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SimUIating SpECkles In graphics we describe
materials by statistical

inefficient
_ bulk parameters, as
’\-> Specify exact (sub-wavelength) ﬁ? the density of scatterers
position of scatterers
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G Advantad®

2. input IS % or tan Standard intensity MC

Monte Carlo (MC) Simulation of Speckles

Monte Carlo Modeling of Light
Transport in Multi-layered Tissues,
Wang & Jacques, 1992



Wave Solution v.s. Monte Carlo
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MC requires the scatterers density — no need for exact positions
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2" Moment - Covariance
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Cross —illumination statistics

scatterers Scatterers Scatterers

» sample sample

Memory Effect:
tilting illumination results in highly correlated shifted speckles

Next: Cross lllumination Covariance
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Cross —illumination statistics
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Monte Carlo Rendering 101

Image = | f(path)

paths ZThroughput that acts on
each path, depends on
the scattering material

volumetric density
(extinction coefficient) | g

scattealer ibedo | a

phase function |Pg

view 12



Covariance Rendering

ight, Covariance = fu(patm) - u*(path,)

path,,path, .
| u=ul e’ phase
light,

Need to consider products of pairs of paths

Each path contributes a complex number u

phase « Length ( path )

path. :
Iight11 > view, A phase « Length ( path, ) - Length ( path, )
path, :

View;, view, light, > view, .



light,

path, :
light, = view,

view,

Covariance Rendering

view,

Image = f f(path)

paths

path, = path,
2

Same complex contribution
u(path,) = u(path,)

1
A phase = 0 Real

s r

path, :u(path) - u*(path) = f (path)
light, = view,

14



Covariance rendering

Covariance = fu(path1) - u*(path,)

path,,path, .
u=ul e’ phase

15



Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,

18



Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,
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Covariance rendering
Iightzl Covariance = fu(path1) - u*(path,)

path,,path,
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Covariance rendering

”ghtZI Covariance = fu(path1)-u*(path2)

path,,path,
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A
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o O— Re
O
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Covariance rendering

“ghtzl Covariance
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path,,path,
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,

24



Covariance rendering

“ghtzl Covariance

- | u(patn,)- u(patny

path,,path,
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Validation: Wave Equation Covariances v.s. MC
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Summary

Efficient MC Rendering

Problem: Path-integral formulation
Coherent Scattering for speckle covariance I\J,-,.'\ \ ‘\;.'..';
:-\" 'i \' ¢
or o, b A
Speckle & + 3 - U&7, Covariance = | u(path,) - u*(path L2 .
oo Fy oy [ upathy) - v (path,) \ 7 A
RS ANE, path.path, Speckle S T
AT Covariance mﬁﬁ Ve

= =

Coherent
Laser Scattering

Beam Volume

Memory Effect Evaluation

1
08¢

06

04r

Potentially improve
imaging applications that 04 0.05
rely on speckle statistics
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memory-effect
range

Fix the
correlation

Seeing Through Scattering Layers

Cool Application by Ori Katz et al 2014

imaging
system Ideal image

camera image'’s
autocorrelation

reconstruction

Phase
Retrieval
scatt{?rlng [ =0%S
medium Katz et al 2014
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Coherent scattering andamemory effect (ME)

32
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Coherent scattering and@memory effect (ME)
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Problems with classical see-through approach

- Limited range: Only illuminators within the ME range can be recovered.
- Limited density: Only a small number of illuminators can be recovered.

- Unrealistic setup: Far-field imaging conditions do not apply to tissue imaging.

Sparse

Scattering Camera image Reconstruction
layer

- ™ .

.
.

! -
AY -
j N W . . »

Hidden Auto e A"
illuminators _ correliatnon + ; :
| phase ! :
P~ / retrieval /
Y %\ =Y ™ [Katz et al.
% SN Ty 2014]

o
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Our contributions 1
(i) Theoretical and rendering based analysis of
ME in near and far-field settings

0 Ai[pm] 16
(ii ) Develop a better algorithm for imaging though
scattering: 1. higher density 2. wider range 3. near sources

y o Y
o A v
. \ f Fu
; - ” e
' 4 )

(iii ) Real Lab experiments
in near and far fields




Theory and simulation analysis
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Problem setting and memory effect

lllumination Scattering sensor
plane tissue _
i2e Change illumination
JENRE
ﬁ

Far-field Near-field



ME correlation in near-field vs. far-field .

lo]0)
= 10
. . UV o
lllumination rﬂc 3
| S ER-2
piane (07 R
Bar et al. A Mont® Carlo Framework for
Rendering Speck&z Statistics in Scattering Media.
- SIGGRAPH, 2019.
- 2 g Bar et al. Renderﬂtg Near-Field Speckle Statistics
l © in Scattering Media.
e SIGGRAPH Asia®020.
O %
=
8
- Far-field has higher ME
‘ correlation than Near-field
‘o,
/'\ ° W
776/ €or. 0 = 30




Aligning ME correlation in the near and far fields

Illumination
plane

C
o
Q
)
HES)
(©
O
Vg

tissue
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1
Imaging
plane

- Theorem: ME range depends only on angular

displacement.
| LR

- Moving the illumination plane farther away,

scales the ME range to cover larger patterns.
[ T W

- Imaging-through-scattering is easier in far-

field than near-field

Ai |
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ME correlation in the near-field
A

Scattering
tissue

200[um], OD=4
500[um], OD=10

- As the thickness increases,
ME correlation decreases.

A; [um]
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Speckle Local Support

Tissue is forward Modest thickness Focusing on illumination

scattering
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Local support is key for enhancement of

seeing-through-scattering algorithms.




Summary of theoretical contributions

d settings
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o Correlation

Far-Fielq

Far-field has
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(i) Theoretical and rendering based analysis of
ME in near and far-fie

modest
thickness

po—

/ Local support

4
. S8
P

~ A
- &

mprove
ocality + ME

oy focusing

-~ f\




Our algorithm
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Seeing though scattering using ME
1

O

O

O

Scattering
layer

A"

1

=X 17 S

» b\
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L] ..‘

I 9
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. » p o I }
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Scatter free
Image

9,




Reconstruction using local speckle correlation

What illuminators Comeation(a)= 2 I
produce this image?

Previously:
sum over full E> Noisy

frame
Theorem:
Ours: order of
sum over E> magnitude
local window increase in
SNR




Optimization with local support

Full-frame
algorithm

minzH
0

All local windows\_
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Local vs. global correlation

Ground truth

Input

Full frame

auto-correlation

Local correlation: less noisy and reveals

some information about the desired shape

47

Local auto-
correlation



Lab Results
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Lab setup
Far-field <. I
Sensor
Light ObJeCt Slice of
source chicken
Near-field breast. ~_

A 1%

=
V) Tube Tube S%v\

lens lens

49



Chicken breast
thickness 200 um

Ground truth

Dense

L
" -

Lab results: far-field

Our local
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Chicken breast
thickness 340 um

Ground truth Input Full frame Our local
Dense Q’ : 1
13 )
p ’ 7 2
4 12 mm ./'

Lab results: far-field

Thicker sample 2
Smaller ME range

91



Dense

Ground truth

Lab results: far-field

Input

Full frame

Our local

what range car

it recover?

Really small range

|
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Chicken breast

thickness 170 um

Ground truth

Lab results: far-field

Input

Full frame

Our local
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Chicken breast

thickness 140 um

Lab results: near-field

Ground truth Input Full frame Our local
- r N -
s 4 .
/ o & / '
Dense .
/ , / /
», W - ¢ »
m lll .
ﬁ -
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- -
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Chicken breast
thickness 140 um

Dense

Sparse

Ground truth

Cm

r 5\

-
.
‘

Lab results: near-field

Input

Our local

Full frame
..
L ] ’

95



Chicken breast
thickness 200 um

Ground truth

Numbers

Input

Lab results: near-field

g
PR

9 ‘v,‘:"‘ ¥

Ak e,

- )
% dch .

3
Vi raglie s
“' 2y

¥
%
' L)

'
X et
e

Full frame

3 s B LA "".
N o DR I Sy B

pve "3 l [ .
: : o 3354 - sl | o =
gl St -t‘...».-..;an--xtw', '.

y
i » [ .
P 2 . .
- 8 M .
o Ss0 .
. . . . ® @
. . .
: P — - ® ® Y
- .
. ® e o
- \ .
.- - e 4 S 'l' . . .
[ Ao AN
. & Vi AN J,J‘p v - & =
- o - ) ' et ) . T ERIE L . e M
2 Sy W B P 9 T g e - ®
" ¥ A v g W, 4 A i . .
B ey -5 Y - M . v .
oee : Al e B L L 3 . e sem e .
o Dty NN N Wal T ®s -
oy A vl vea s
. .
-\ -, > T & e ® . .
.
s -
. » . "
.
g e .
L . s o

Letters




Chicken breast Lab results: near-field
thickness 200 um
Ground truth Full frame Our local
Dense . e .
s s s & = Fa s ka B &

Sparse : . s s %0 % o - of
1:2 ; "
Sparse | * ) i : 1 .
1:8 :

S7



Chicken breast Lab results: near-field
thickness 100 um

Ground truth Input Full frame Our local

L] . - .l .
..,'
y ¥ '
I : -

Beads

Reconstructing
fluorescent beads

Thanks to Dr. Lucien Weiss from Schechtman lab
for preparing the fluorescent samples
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