
Photon mapping
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Spring 2022, Lecture 14http://graphics.cs.cmu.edu/courses/15-468
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Course announcements

• Programming assignment 4 posted, due Friday 4/1 at 23:59.
- How many of you have looked at/started/finished it?
- Any questions?

• Take-home quiz 8 will be posted tonight.

• Suggest topics for this week’s reading group.

• No lecture on Thursday! Vote for when to reschedule.

• Talk by Nathan Matsuda in graphics lab meeting.

• Presentation by Yannis in imaging reading group.
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Overview of today’s lecture

• Photon mapping.
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Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).
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Today’s Menu
Difficult light paths

Photon Mapping
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Henrik Wann Jensen

Specular-Diffuse-Specular Paths



Specular-Diffuse-Specular Paths
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Bidirectional PTReference

Images courtesy of J. Křivánek



Specular-Diffuse-Specular Paths
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SDS paths are difficult for unbiased techniques



Specular-Diffuse-Specular Paths
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Path tracing
Path misses 
light source



Specular-Diffuse-Specular Paths
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delta BSDF
(zero value)

Path tracing with NEE



Specular-Diffuse-Specular Paths

14

delta BSDF
(zero value)

Bidirectional Path tracing



Specular-Diffuse-Specular Paths
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points do not “meet”

What now?

Bidirectional Path tracing



Specular-Diffuse-Specular Paths
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density estimation

Regularize delta functions (path points):
e.g., by employing kernel density estimation (blurring in space)



“Backward” Ray 
Tracing

(predecessor of photon mapping)



“Backward” Ray Tracing
James Arvo. In Developments in Ray Tracing, SIGGRAPH ‘86
Course Notes

Emit photons from light sources and store them in illumination 
maps

Illumination map = texture for accumulating irradiance

Note on the name of the technique: In retrospect, Arvo regretted using the term “backward” to refer to tracing light paths since many later publications use it in the 
opposite sense, i.e. tracing eye paths. To avoid confusion, he recommends terms such as light tracing and eye tracing as they are unambiguous.
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“Backward” Ray Tracing
Preprocess:
- shoot light from light sources
- deposit photon energy in illumination maps
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Irradiance: “number of 
photons hitting a small 
patch of a wall per 
second, divided by size 
of patch”



“Backward” Ray Tracing
For each shading point
- compute direct lighting
- lookup indirect lighting from illumination maps
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“Backward” Ray Tracing

21"Backward Ray Tracing", by James Arvo. In Developments in Ray Tracing, SIGGRAPH `86 Course Notes, Volume 12.

Jim Arvo



“Backward” Ray Tracing
✓One of the first techniques to simulate caustics!

✘Requires parametrizing surfaces or meshing
- Difficult to handle complex or procedural geometry

✘Hard to choose illumination map resolution
- high resolution with few photons: high-frequency noise
- low resolution with many photons: blurred illumination
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Photon Mapping



Path Tracing
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100 paths/pixel (5 minutes)

Henrik Wann Jensen



Photon Mapping
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10 rays/pixel (5 seconds)

Henrik Wann Jensen



Path Tracing

26

1000 paths/pixel

Henrik Wann Jensen



Photon Mapping
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Photon Mapping
A two-pass algorithm:
- Pass 1: Tracing photons from light sources, 

and caching them in a photon map

- Pass 2: Tracing from the eye and approximating indirect 
illumination using the photons

Similar to “backward” ray tracing, but different way of storing 
photons & computing density
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Photon Mapping
A two-pass algorithm:
- Pass 1: Tracing photons from light sources, 

and caching them in a photon map
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Photon Tracing
1) Emit photons

2) Scatter photons

3) Store photons
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Photon Tracing
1) Emit photons

2) Scatter photons

3) Store photons
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Photon Tracing
1) Emit photons

2) Scatter photons

3) Store photons
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Visualization of the Photon Map
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Henrik Wann Jensen



Photon Emission
Photons carry power (flux) not radiance!
- not a physical photon

- just a fraction of the light source power

- in most practical implementations, each photon carries multiple 
wavelengths (e.g. RGB)
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Define initial:
- 𝐱𝐱𝑝𝑝: position

- 𝜔𝜔
⃗
𝑝𝑝: direction

- Φ𝑝𝑝: photon power

General recipe:
- Sample position on surface area of light with 𝑝𝑝(𝐱𝐱𝑝𝑝)

- Sample direction with 𝑝𝑝(𝜔𝜔
⃗
𝑝𝑝 ∣ 𝐱𝐱𝑝𝑝)

Photon Emission

# of emitted photons



Photon Emission
Interesting derivation:
- if PDFs are proportional to the emission:

- then:
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If you perfectly importance sample the emitted radiance, 
just take the total power and divide by # of emitted photons.

Total power of
the light source



Photon Emission Examples
Isotropic point light:
- Generate uniform random direction over sphere

Spotlight:
- Generate uniform random direction within spherical cap

Diffuse area light:
- Generate uniform random position on surface

- Generate cosine-weighted direction over hemisphere

38



void generatePhotonMap()

repeat:
(l, Probl) = chooseRandomLight()
(x, ω, Φ) = emitPhotonFromLight(l)
tracePhoton(x, ω, Φ / Probl)
until we have enough photons;
divide all photon powers by number of emitted photons

void tracePhoton(x, ω, Φ)

Pseudocode
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void tracePhoton(x, ω, Φ)
(x’, n) = nearestSurfaceHit(x, ω)
possiblyStorePhoton(x’, ω, Φ)
(ω’, pdf) = sampleBSDF(x’, -ω)
Φ’ = Φ * absDot(n, ω’) * BSDF(x’, -ω, ω’) / pdf
tracePhoton(x’, ω’, Φ’)

Pseudocode
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Storing Photons
Store only on diffuse (or moderately glossy) surfaces
- Specular surfaces need to be handled using path tracing from the camera

Stored data: [36 bytes]

struct Photon
{

float position[3];

float power[3];

float direction[3];

};
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Storing Photons
Store only on diffuse (or moderately glossy) surfaces
- Specular surfaces need to be handled using path tracing from the camera

Stored data:

struct Photon
{

float position[3];

char power[4]; // Packed RGBE format

char phi, theta; // Packed direction

};
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Scattering of Photons
Photons can be:

- absorbed or scattered (reflected or refracted)

- BSDF sampling chooses either reflection or refraction

- the power of the scattered photon is lowered to account for absorption

Problem: 

- as photons bounce they carry less and less power

- ideally all stored photons would have the same power

- also, when should we terminate the recursion?

Solution: Russian roulette
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Pseudocode

void tracePhoton(x, ω, Φ)

(x’, n) = nearestSurfaceHit(x, ω)

possiblyStorePhoton(x’, ω, Φ)

(ω’, pdf) = sampleBSDF(x’, -ω)

Φ’ = Φ * absDot(n, ω’) * BSDF(x’, -ω, ω’) / pdf

tracePhoton(x’, ω’, Φ’)
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Pseudocode

void tracePhoton(x, ω, Φ)

(x’, n) = nearestSurfaceHit(x, ω)

possiblyStorePhoton(x’, ω, Φ)

(ω’, pdf) = sampleBSDF(x’, -ω)

Φ’ = Φ * absDot(n, ω’) * BSDF(x’, -ω, ω’) / pdf

if survivedRussianRoulette(Φ, Φ’)

tracePhoton(x’, ω’, Φ’)
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Photon Path Termination
Probabilistically terminate the photon walk using Russian 
roulette (continue with prob. p)

Option 1: local termination probability:
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Photon Path Termination
bool survivedRussianRoulette(Φ, Φ’)

p = min(1, Φ’/Φ)

if rand() > p:

// terminate

return false

else:

// continue with re-weighted power

Φ’/= p

return true

47

if Φ’/Φ is smaller than 1, then Φ’= Φ’/p = Φ
i.e., the scattered photon has the same power!



Photon Path Termination
Probabilistically terminate the photon walk using Russian 
roulette (continue with prob. p)

Option 1: local termination probability:

Option 2: history-aware termination probability:
- try to keep each photon same power
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Pseudocode

void tracePhoton(x, ω, Φ)

(x’, n) = nearestSurfaceHit(x, ω)

possiblyStorePhoton(x’, ω, Φ)

(ω’, pdf) = sampleBSDF(x’, -ω)

Φ’ = Φ * absDot(n, ω’) * BSDF(x’, -ω, ω’) / pdf

if survivedRussianRoulette(Φ, Φ’)

tracePhoton(x’, ω’, Φ’, Φ)
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Pseudocode

void tracePhoton(x, ω, Φ, Φorig)

(x’, n) = nearestSurfaceHit(x, ω)

possiblyStorePhoton(x’, ω, Φ)

(ω’, pdf) = sampleBSDF(x’, -ω)

Φ’ = Φ * absDot(n, ω’) * BSDF(x’, -ω, ω’) / pdf

if survivedRussianRoulette(Φorig, Φ’)

tracePhoton(x’, ω’, Φ’, Φorig)
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Russian Roulette Example
300 photons with power 1.0 W hit a surface with reflectance 
50%

Instead of reflecting 300 photons with power 0.5 W, RR will 
make ~150 photons continue with power 1.0 W

Very important!
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Photon Mapping
A two-pass algorithm:
- Pass 1: Tracing of photons from light sources, 

and caching them in a photon map
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Photon Mapping
A two-pass algorithm:

- Pass 2: Tracing from the eye and approximating indirect 
illumination using the photons
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Rendering

For each shading point:
- Find the k closest photons 

- Approx. radiance using density of photons
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Rendering

For each shading point:
- Find the k closest photons 

- Approx. radiance using density of photons
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The Radiance Estimate

56

Based on kernel density estimation
- Non-parametric way of estimating the probability density of a 

random variable (photon density)



The Radiance Estimate
Based on kernel density estimation
- Non-parametric way of estimating the probability density of a 

random variable (photon density)
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The Radiance Estimate
Approach 1: first define area, then find photons
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The Radiance Estimate
Approach 1: first define area, then find photons

# of photons within disk

Assuming a disk 
region of radius   
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The Radiance Estimate
Approach 2: first find k nearest photons, then define area
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The Radiance Estimate
Approach 2: first find k nearest photons, then define area
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Distance to the
k-th photon

Ignore the k-th photon
[García et al. 2012]



The Radiance Estimate
Using a non-constant kernel:
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The Photon Map Data Structure
Requirements:
- Compact (we want many photons)
- Fast nearest neighbor search

KD-tree
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Photon Mapping

64

Henrik Wann Jensen

200 photons / 50 photons in radiance estimate



Photon Mapping
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Henrik Wann Jensen

100,000 photons / 50 photons in radiance estimate



Photon Mapping
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Henrik Wann Jensen

500,000 photons / 500 photons in radiance estimate



Path Tracing
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Photon Mapping

68

Henrik Wann Jensen

500,000 photons / 500 photons in radiance estimate

Bias!

Splotches!

Overblurring



Photon Mapping
Radiance estimate contains error/bias
- Produces darker/brighter, blotchy, blurry appearance

- Requires many photons for high quality

Split up lighting computation into components:
- Direct lighting

- Caustics (caustic photon map)

- Remaining indirect illumination (global photon map)
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Improving Caustics
Higher quality photon map for caustics
- Only stores LS+D paths
- Many photons shot directly at specular objects
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Improving Remaining Indirect
Original approach: direct density estimation
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Improving Remaining Indirect
Improved approach: using final gather (i.e., path trace until 
second non-specular surface from camera)
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Improved Photon Mapping
Camera tracing

- Trace camera paths until they hit the first non-specular surface point x

At x we sum:

- Emission

- Direct illumination: trace shadow rays to lights

- Caustics: density estimation at x using only the caustic photon map

- Remaining indirect: continue path tracing until next non-specular vertex y, 
perform density estimation from global photon map at y
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Photon Mapping

76

Henrik Wann Jensen

500000 photons / 500 photons in radiance estimate



Photon Mapping (Improved)
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final gather + global photon map (200000) + caustic photon map (50000)



Path Tracing
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Validation Tests
Test idea 1:
- store only direct photons

- visualize photon map directly

- compare to standard direct illumination

- should look identical with many photons

Test idea 2:
- create a perfectly transparent sphere (IOR = 1.0)

- store only caustic photons

- render direct illumination + caustics

- shadow should disappear

79



path throughput

Recall: Path Integral Measurement Eq.
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• Monte Carlo estimator:

joint PDF of path vertices



Photon Mapping

81

light subpath/photon “power”

split path contribution into two parts
eye subpath

connect with density estimation



Light Sources in the Real World
Complex shape

Covered with transparent materials

Only a small part emits light
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Light Sources in CG
Simple shape

Bare light source

Entire part emits light
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Why?
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Scene with “Realistic” Lights

85Images courtesy of T. Hachisuka



Path Tracing

86Images courtesy of T. Hachisuka



Bidirectional Path Tracing

87Images courtesy of T. Hachisuka



Robustness of Rendering Methods
None of these unbiased methods can handle real light sources 
well:
- Path Tracing

- Bidirectional Path Tracing

Photon Mapping?
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Photon Mapping

90Images courtesy of T. Hachisuka



Photon Mapping

91Images courtesy of T. Hachisuka



Advantages
- Handles difficult paths more robustly than unbiased algorithms

- Consistent estimator

- Reuse of computation (photons)

Disadvantages
- Bias shows up in many different forms

- Requires additional data structure (KD-tree)

- No progressive rendering

- Large memory footprint
Non-intuitive hyperparameter fine-tuning

Photon Mapping - Summary
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Characteristics of Estimators
Unbiased estimator
- expected value equals the true value being estimated   

- variance (noise) is the only error

- averaging infinitely many estimates (each with finite number of 
samples) also yields the correct answer
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Characteristics of Estimators
Bias of an estimator
- difference between the expected value of the estimator and the 

true value being estimated

- expected average difference

- averaging infinitely many estimates yields the correct answer plus 
the bias 
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Characteristics of Estimators
Consistent estimator
- bias disappears in the limit

Consistent estimators and unbiased estimators are 
asymptotically equivalent
- both need an infinite number of samples to reduce the error to 

zero
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Characteristics of Estimators
Mean Squared Error (MSE) of an estimator
- combines variance and squared bias

Root Mean Squared Error (RMSE)
- has the same units as the quantity being estimated

- for unbiased estimators equal to std. deviation
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Rendering Techniques
Examples of unbiased methods

- Path tracing

- Light tracing

- Bidirectional path tracing

Examples of biased/consistent methods

- (Progressive) photon mapping

- Many-light methods
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Consistency of Photon Mapping
Result converges to the correct solution

Conditions for convergence:
- Infinitesimally small radius

- Infinite number of nearby photons

• Infinite storage requirement!
98Images courtesy of T. Hachisuka



Progressive Photon 
Mapping



Key Idea
Progressively shrink the density estimation kernel

Knaus & Zwicker 2011
- no statistics, just render independent images with smaller and 

smaller radius, and average
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Different kernel radii

Images courtesy of C. Knaus and M. Zwicker



Progressive Radius Reduction
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Image 1, r = 20
Images courtesy of C. Knaus and M. Zwicker



Progressive Radius Reduction
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Image 10, r = 11.87
Images courtesy of C. Knaus and M. Zwicker



Progressive Radius Reduction
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Image 100, r = 6.71
Images courtesy of C. Knaus and M. Zwicker



Progressive Radius Reduction
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Image 1000, r = 3.78
Images courtesy of C. Knaus and M. Zwicker

Kernel size Kernel size



Running Average
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Image 1
Images courtesy of C. Knaus and M. Zwicker



Running Average
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Average of Images 1-10
Images courtesy of C. Knaus and M. Zwicker



Running Average
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Average of Images 1-100
Images courtesy of C. Knaus and M. Zwicker



Running Average
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Average of Images 1-1000
Images courtesy of C. Knaus and M. Zwicker

Kernel size Kernel size



Running average

Individual iterations

Images courtesy of C. Knaus and M. Zwicker



Radius Reduction
Given:
- Iteration 

- Kernel radius

- Parameter                    for controlling the shrinking

The radius for the next iteration is:

111

See [Knaus & Zwicker 2011] for derivation



Trivially parallelizable by iteration

Step 1:

- Photon tracing: emit, scatter, store photons 

Step 2:

- Trace camera paths

- Evaluate radiance estimate using radius 

Display running average

Compute new radius                            and repeat...

Algorithm
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Path Tracing

114Images courtesy of C. Knaus and M. Zwicker



Bidirectional Path Tracing

115Images courtesy of T. Hachisuka



Metropolis Light Transport

116Images courtesy of T. Hachisuka



Progressive Photon Mapping

117Images courtesy of T. Hachisuka



Photon Mapping

118Images courtesy of T. Hachisuka



Glass Lantern

119Images courtesy of T. Hachisuka



Torus in Cube (LS+D*+E)

120Images courtesy of T. Hachisuka

Path Tracing Bidirectional Path Tracing Progressive Photon Mapping



Progressive PM - Summary
Reduces memory footprint
- Converges without requiring infinite memory

Renders progressively (user-friendly)

Data structure does not need to be as sophisticated

No need to bother using a caustic map, just use a single 
photon map for everything
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More On Photon Mapping
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