Bidirectional path tracing

http://graphics.cs.cmu.edu/courses/15-468

15-468, 15-668, 15-868 Physics-based Rendering Spring 2022, Lecture 13

Course announcements

- Take-home quiz 6 posted, due Tuesday 3/15 at 23:59.
- Programming assignment 3 posted, due Friday 3/18 at 23:59. - How many of you have looked at/started/finished it? - Any questions?
 - Suggest topics for fourth reading group this Friday, 3/18.
- No lecture on Thursday 3/24! Vote on Piazza to reschedule: https://piazza.com/class/ky96bnus9u54ul?cid=103

Overview of today's lecture

- Types of light paths.
- Light tracing. •
- Bidirectional path tracing. •

3

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

Light Paths

Light Paths

have occurred

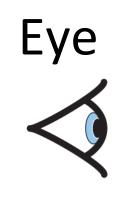
A light path is a chain of linear segments joined at event "vertices"

Express light paths in terms of the surface interactions that

Classification of "vertices":

- L : a light source
- E : the eye
- S : a specular reflection
- D : a diffuse reflection

classification by Paul Heckbert



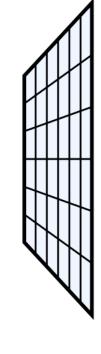
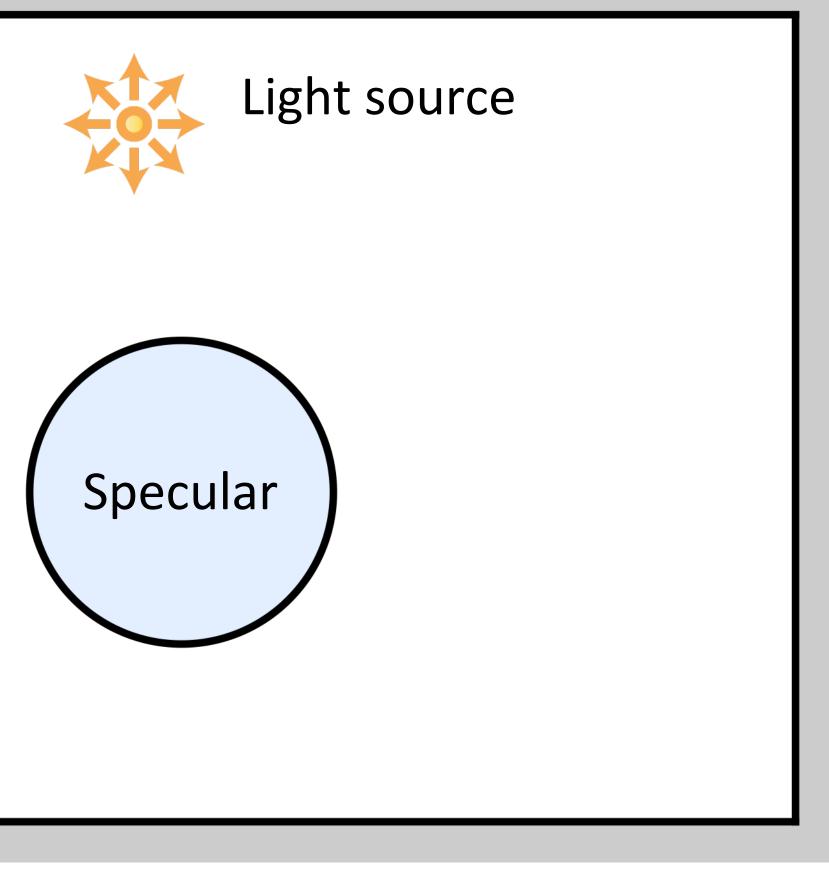
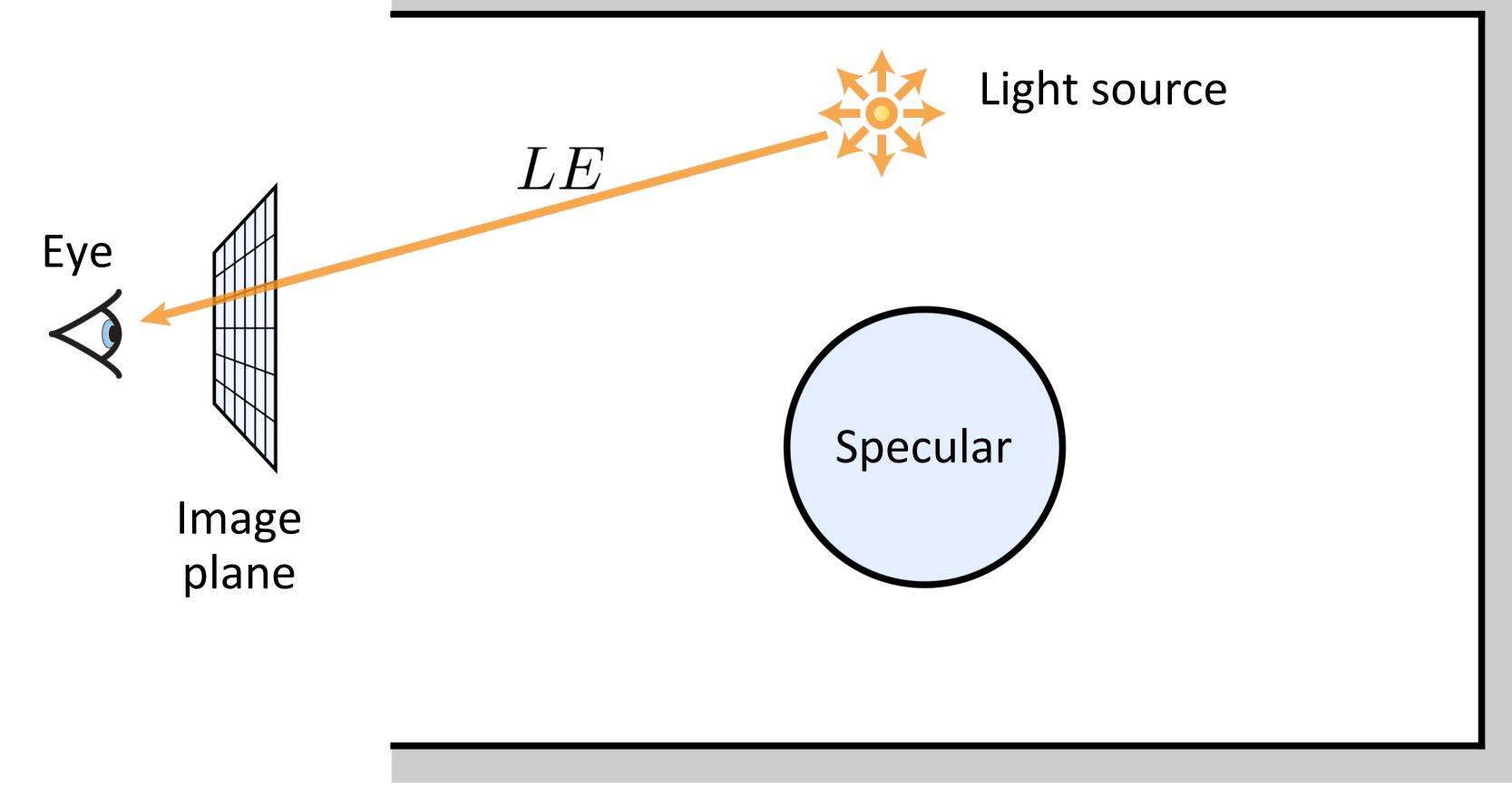
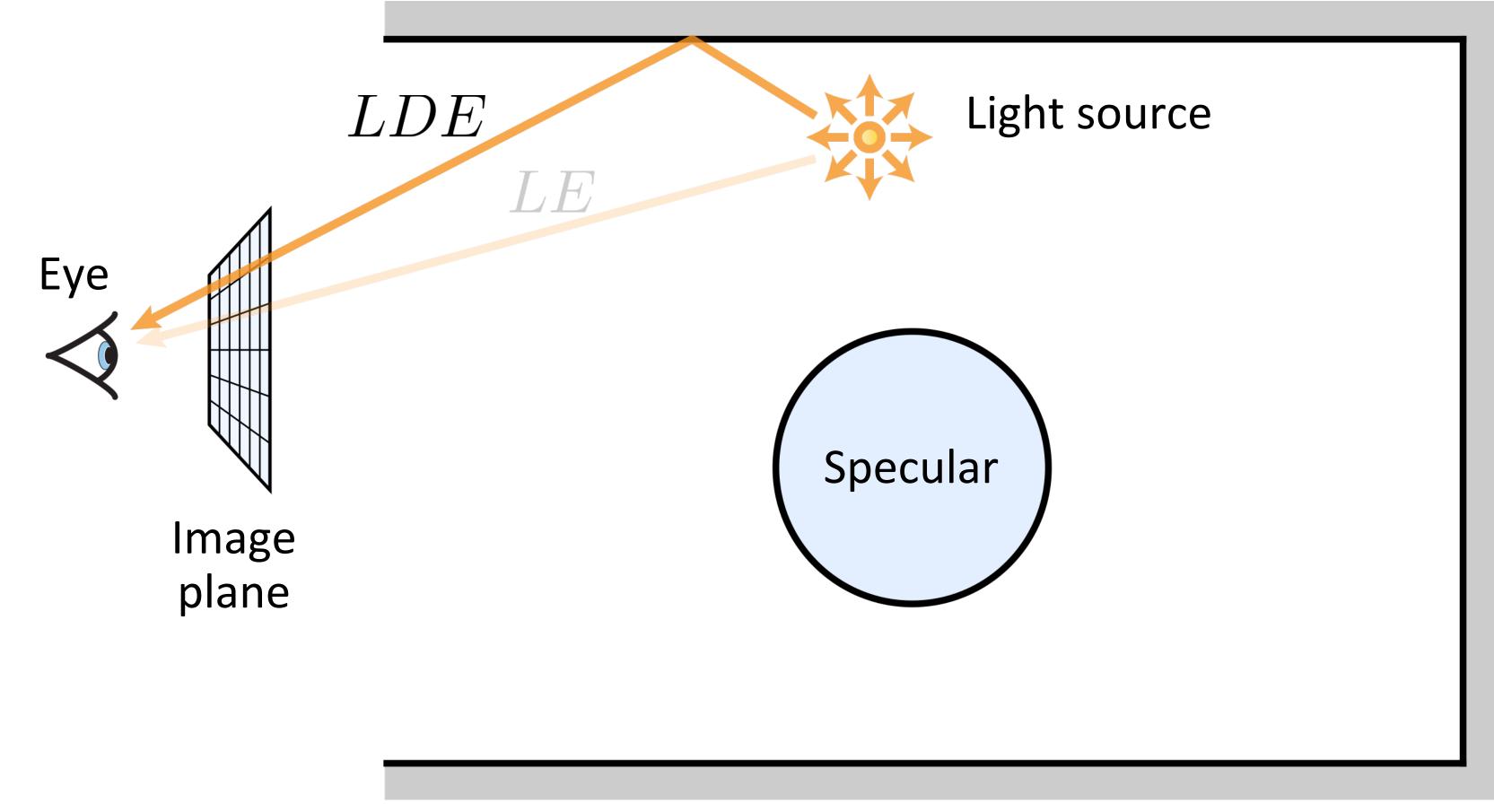
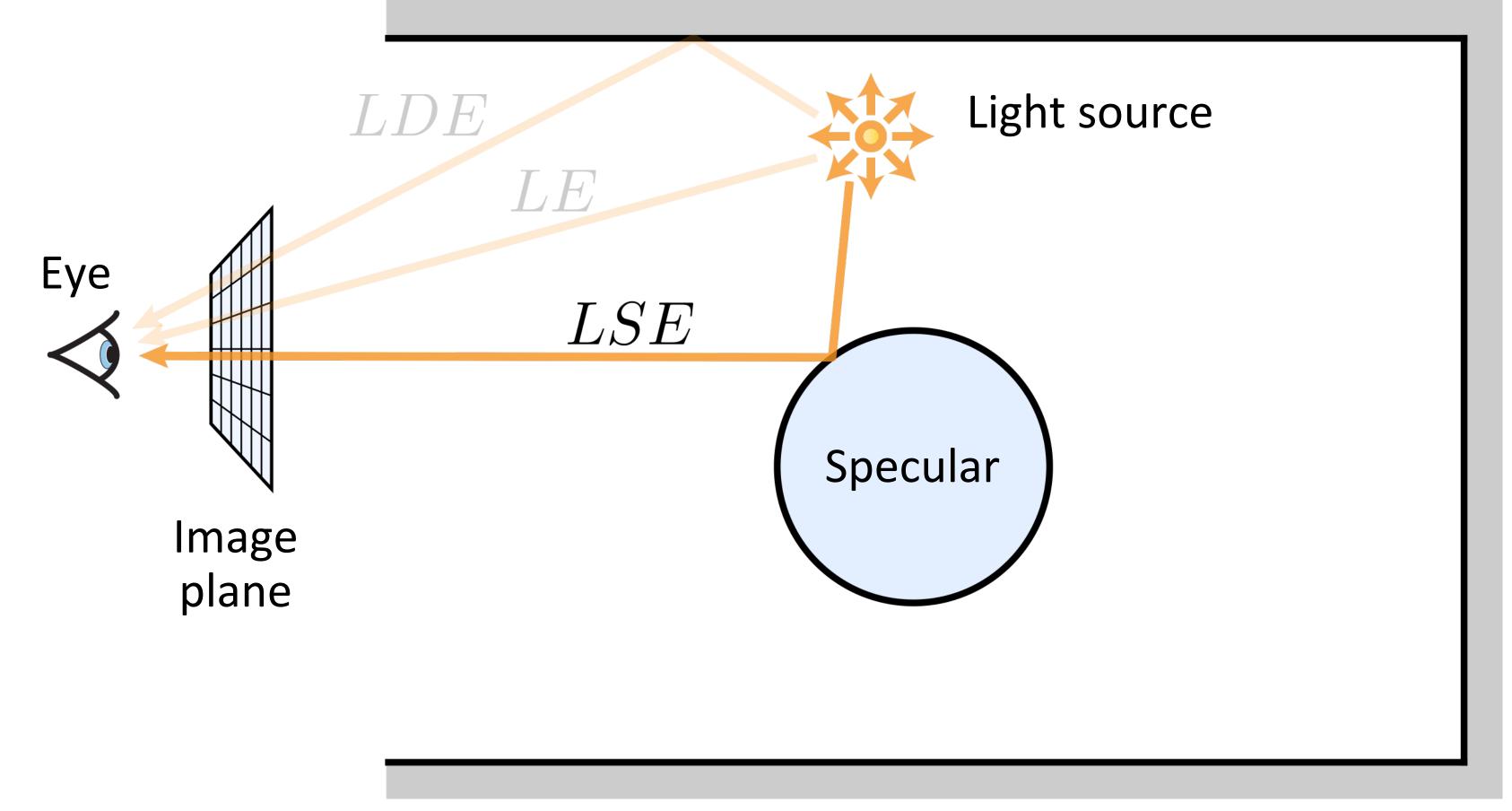


Image plane



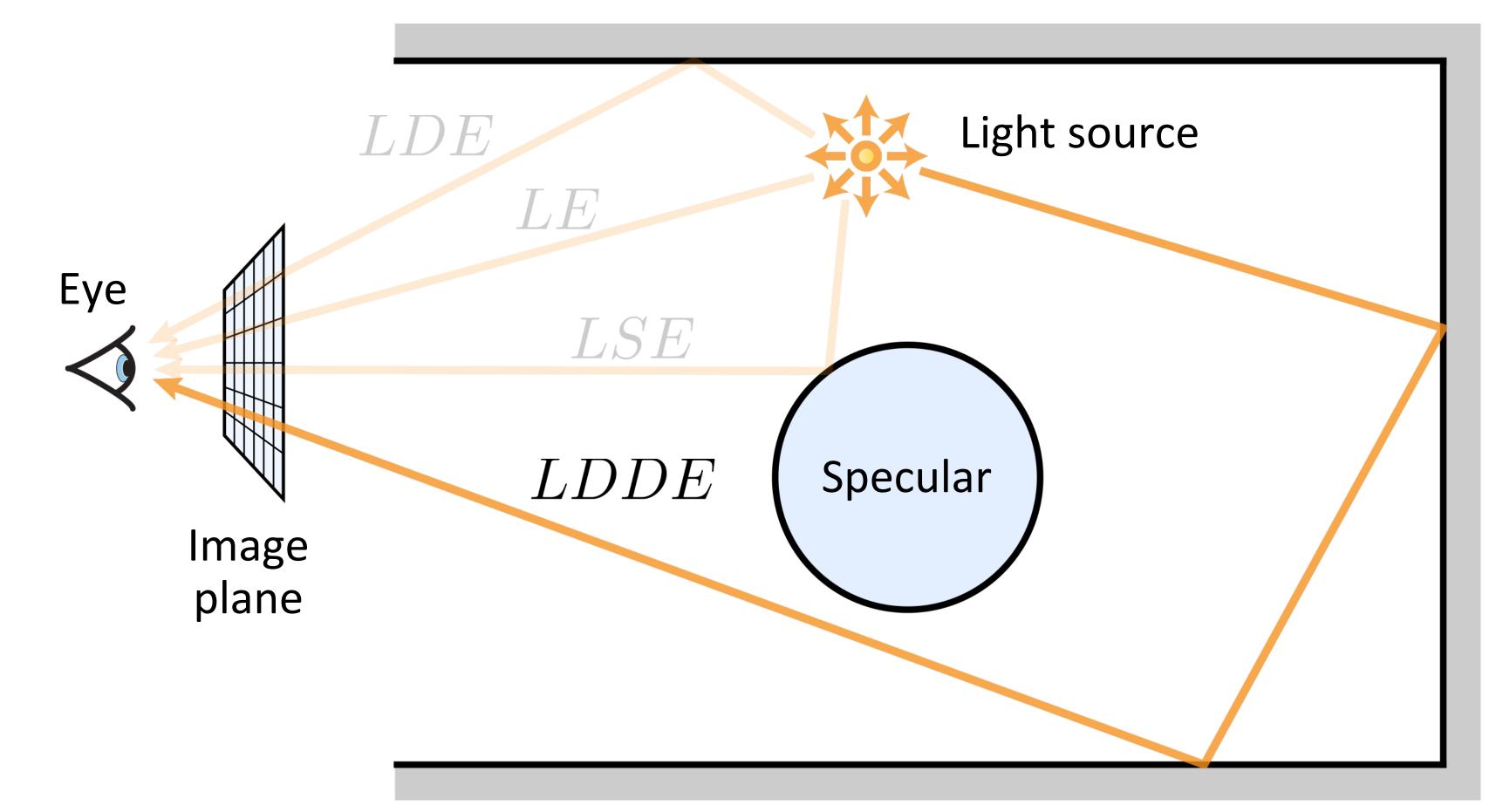






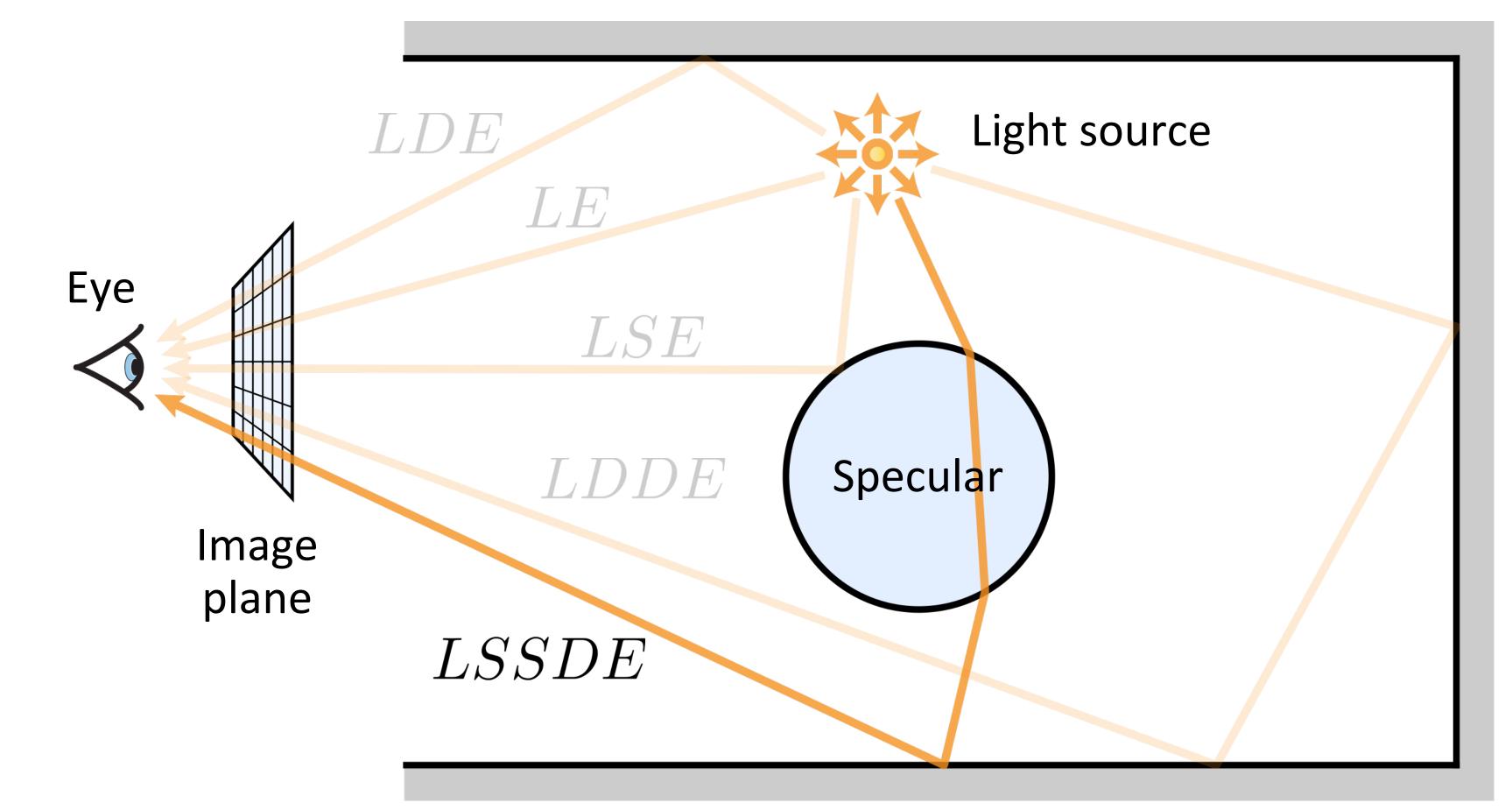
Diffuse

11



Diffuse

12



Can express arbitrary classes of paths using a regular expression type syntax:

- k^+ : one or more of event k
- k^* : zero or more of event k
- k? : zero or one k events
- (k|h) : a k or h event

Direct illumination: $L(D \mid S)E$

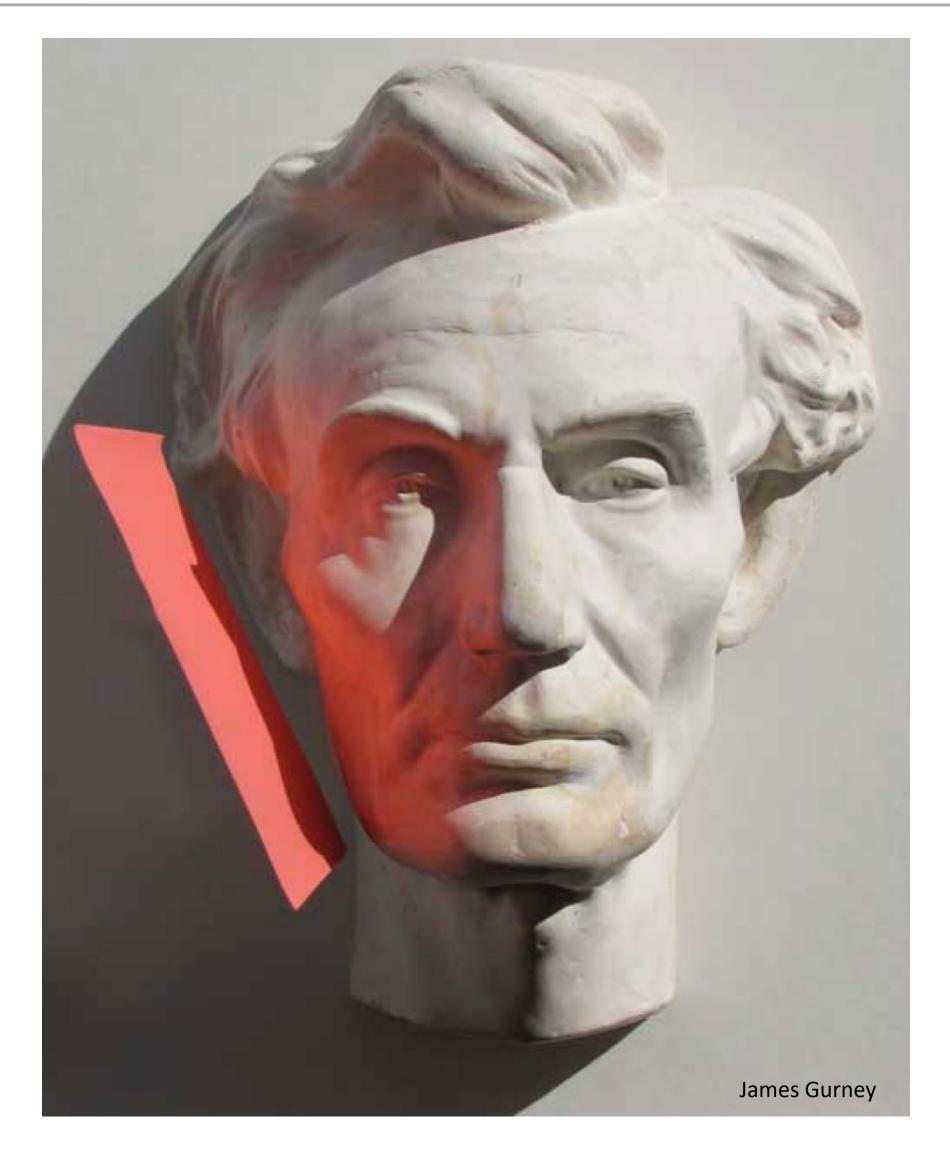
Indirect illumination: $L(D|S)(D|S)^{+}E$

15

Direct illumination: L(D | S)E

- Indirect illumination: $L(D|S)(D|S)^{+}E$
- Full global illumination: $L(D|S)^*E$

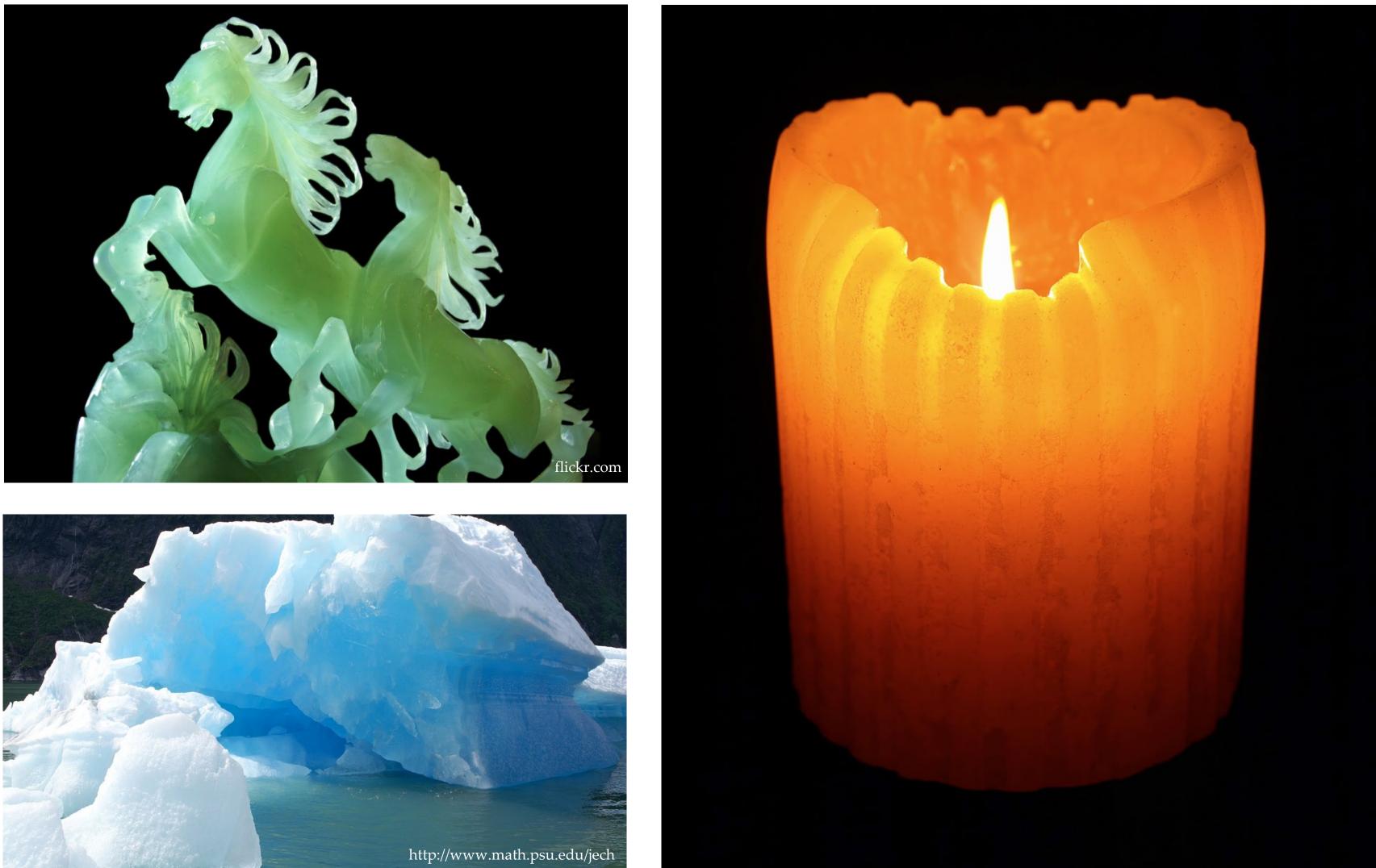
Diffuse inter-reflections: *LDD*+*E*

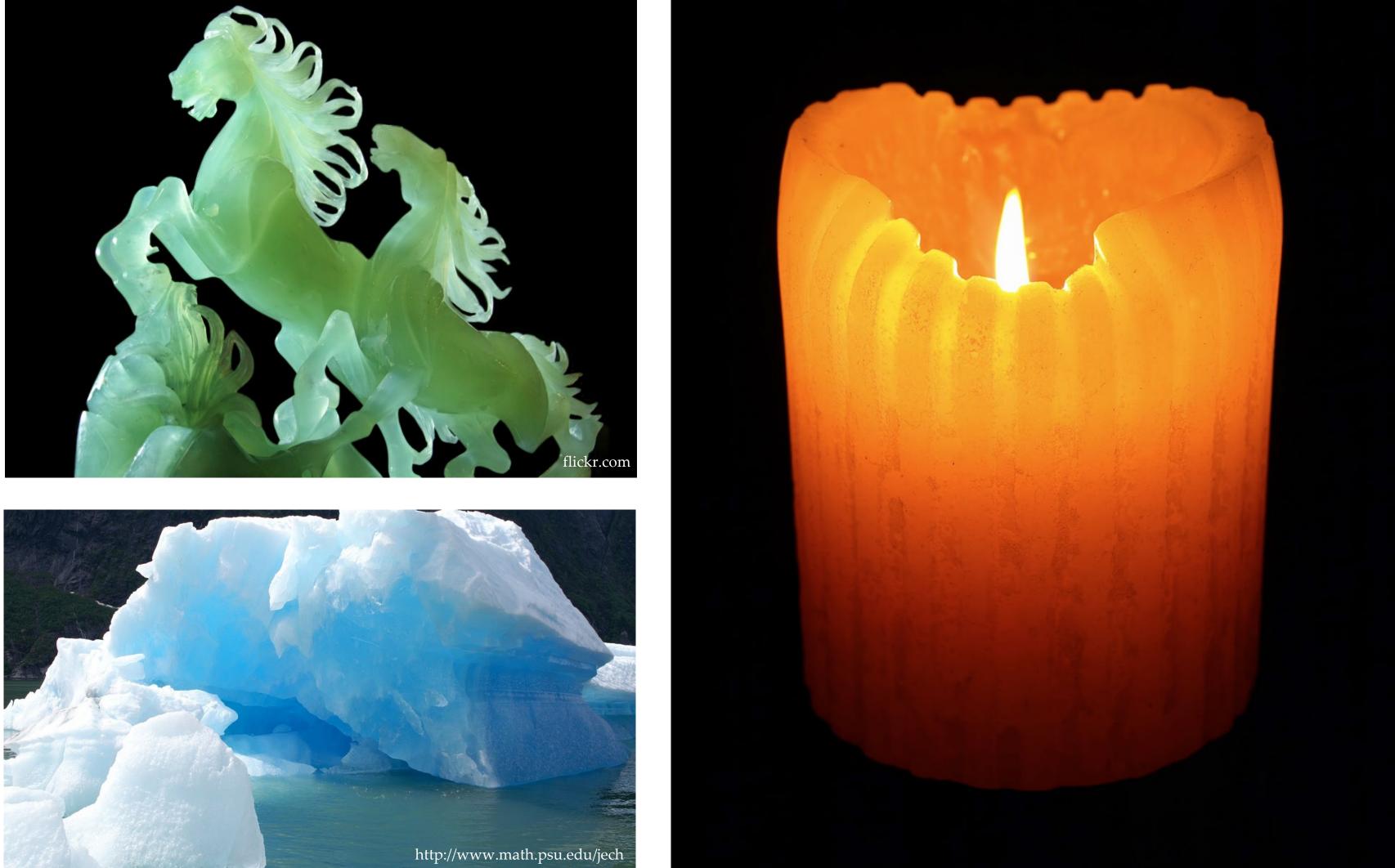


Caustics: LS+DE

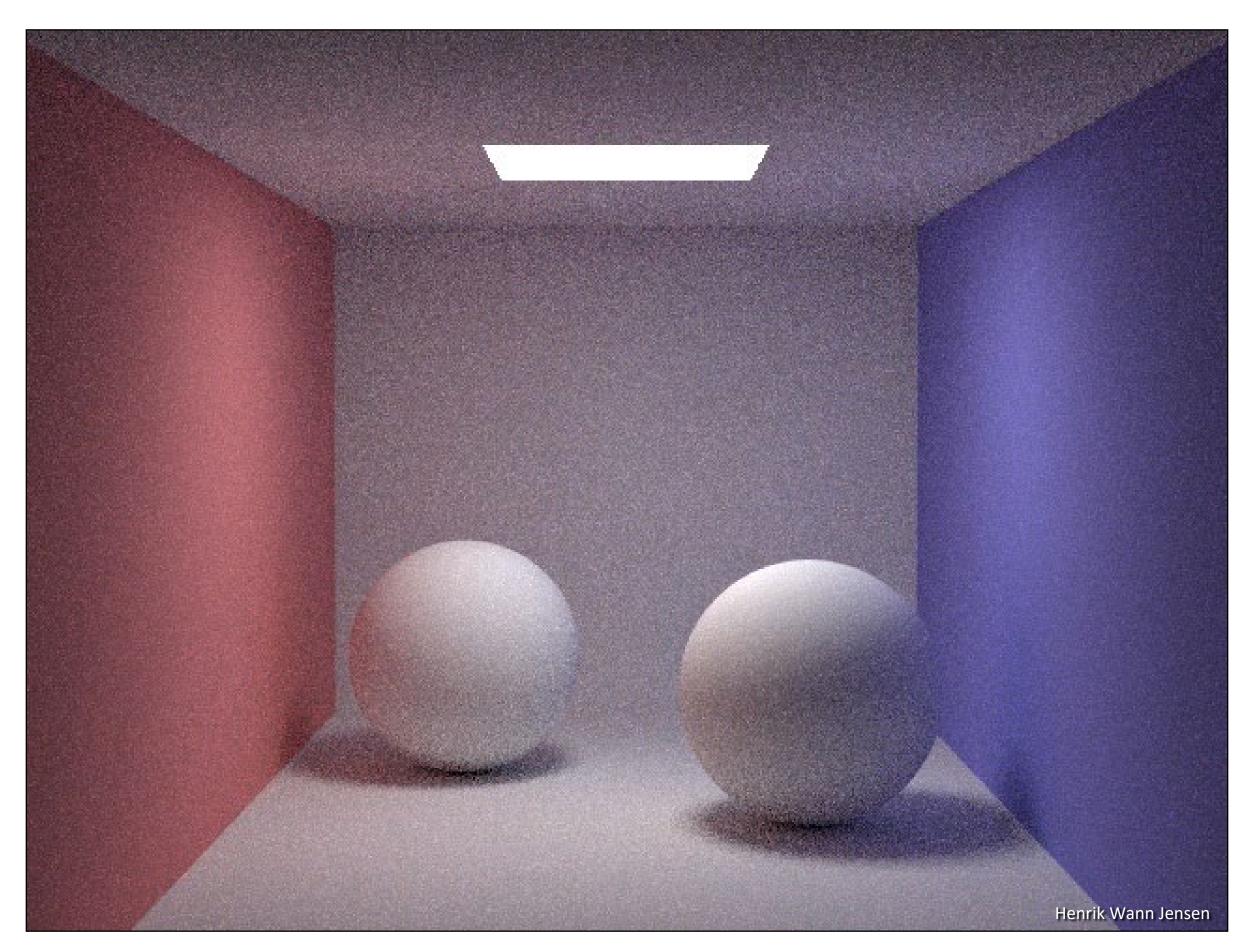
source: Flickr

Subsurface Scattering



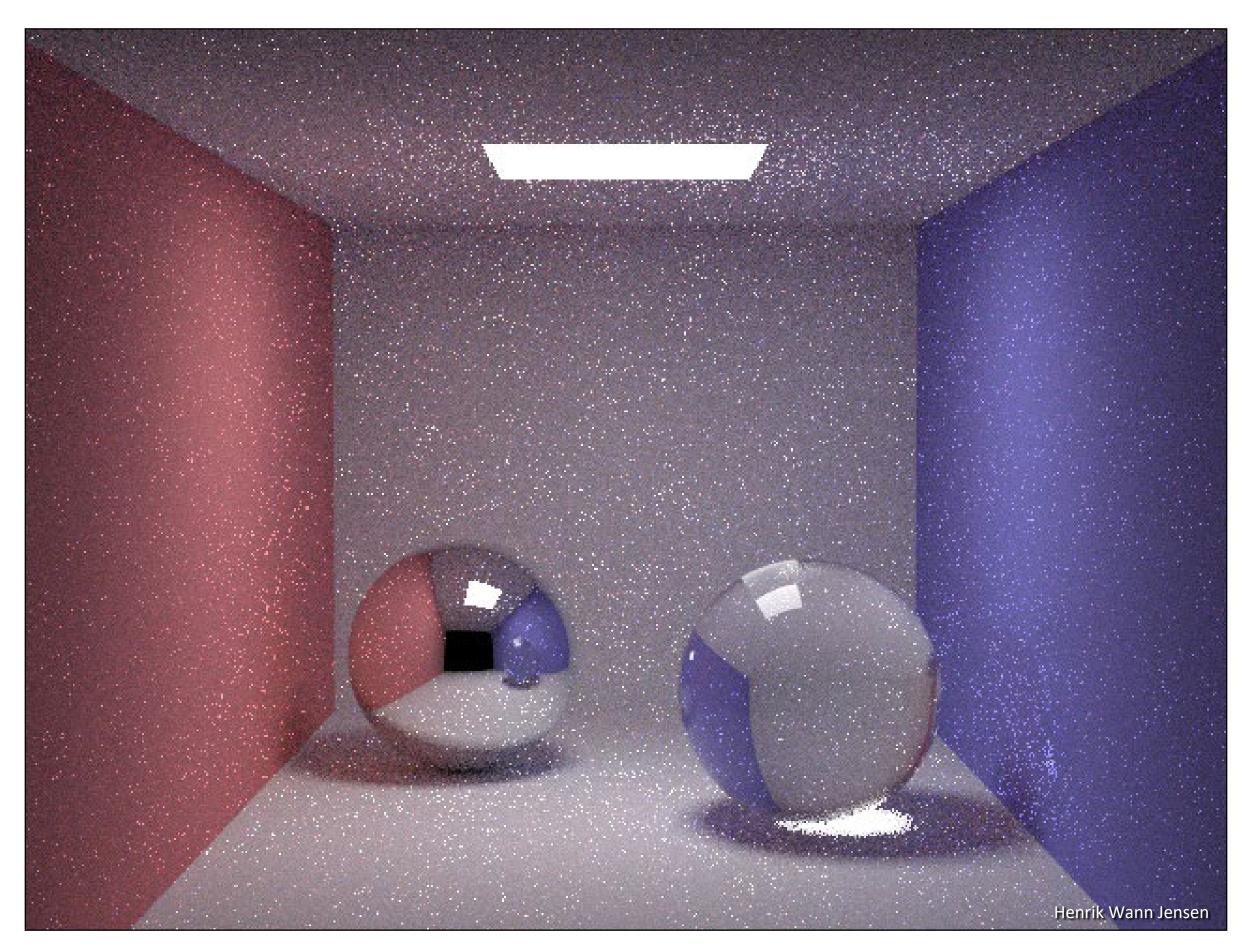


A Simple Scene

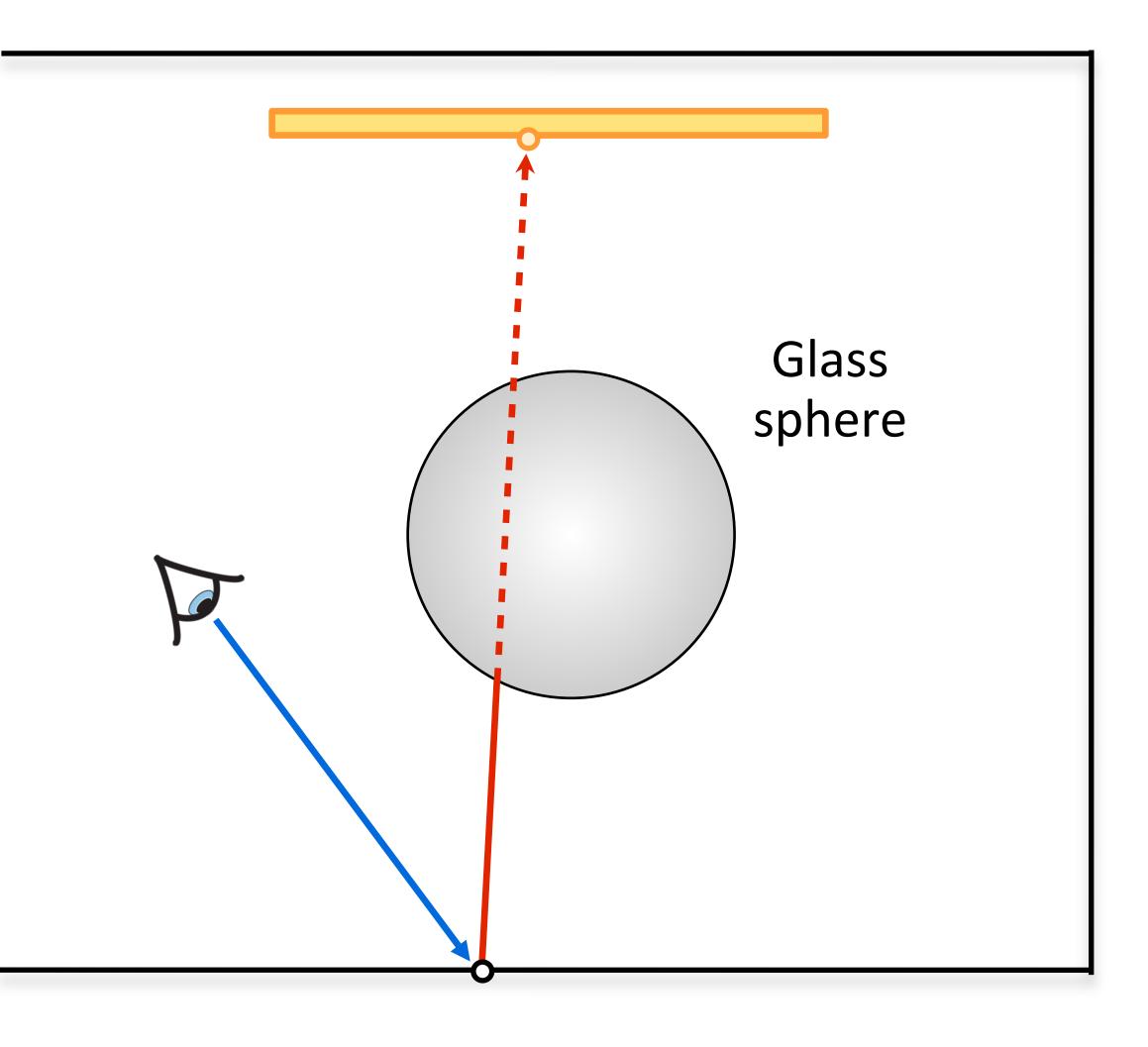


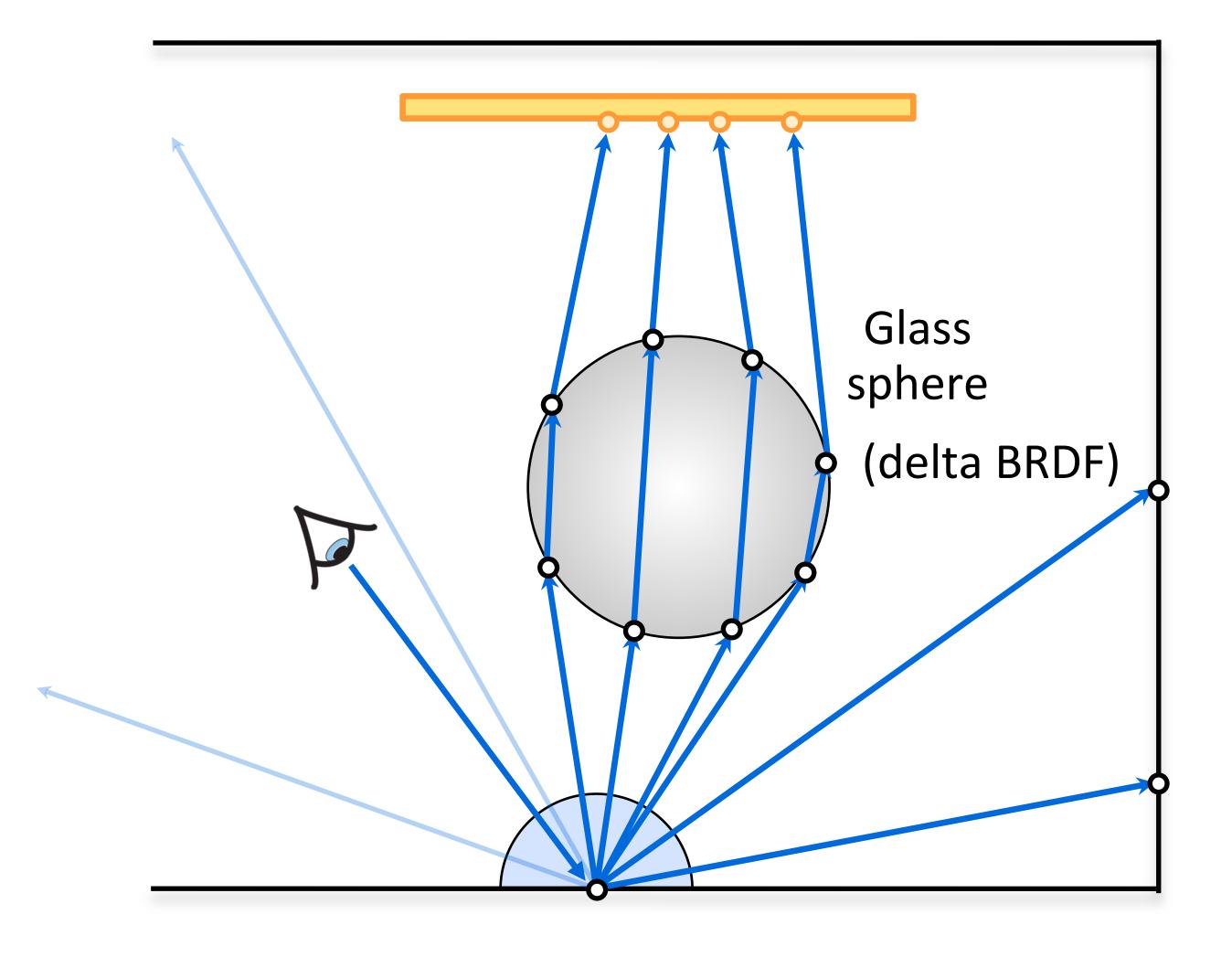
10 paths/pixel

+ Glass/Mirror Material

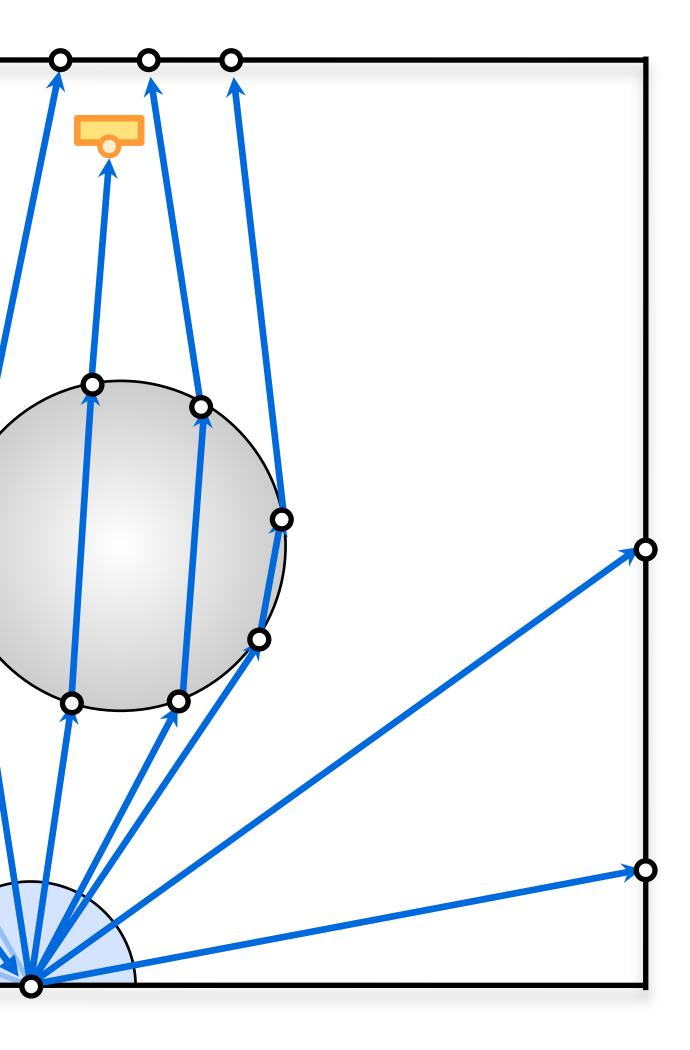


10 paths/pixel

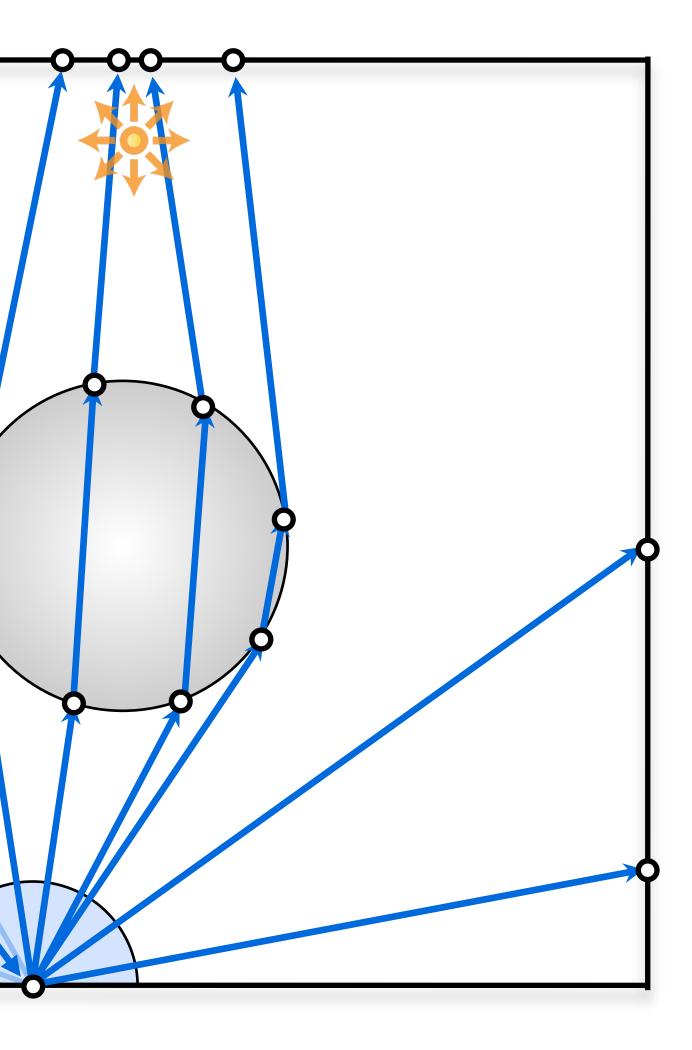




Random sampling of hemisphere will rarely hit the light source



Random sampling of hemisphere will **never** hit the light source



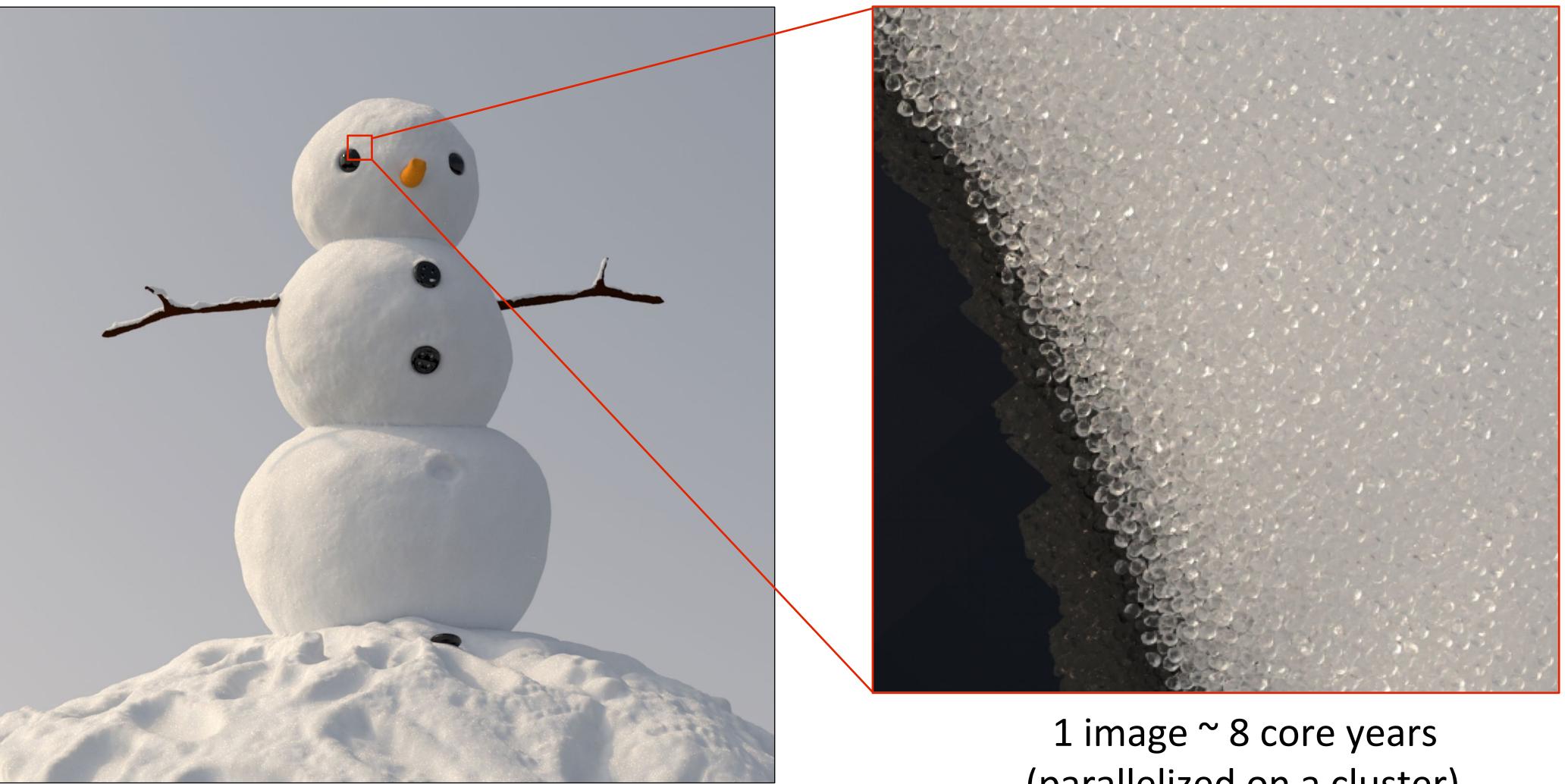
Let's just give it more time... Nature ~ 2 × 10³³ / second Fastest GPU ray tracer ~ 2 × 10⁸ / second

.. if we'd rendered [Gravity] on a single processor instead of having a room full of computers, we would have had to start rendering in 5000 BC to finish in time to deliver the film. At the dawn of Egyptian civilisation.

[Gravity, Framestore]

Tim Webber, Gravity VFX supervisor

Let's just give it more time...



(parallelized on a cluster)

Path Tracing - Summary

- ✓ Full solution to the rendering equation
- ✓ Simple to implement
- X Slow convergence
 - requires 4x more samples to half the error
- X Robustness issues
- X No reuse or caching of computation
- X General sampling issue
 - makes only locally good decisions

- does not handle some light paths well (or not at all), e.g. caustics (LS^+DE)

Today's agenda

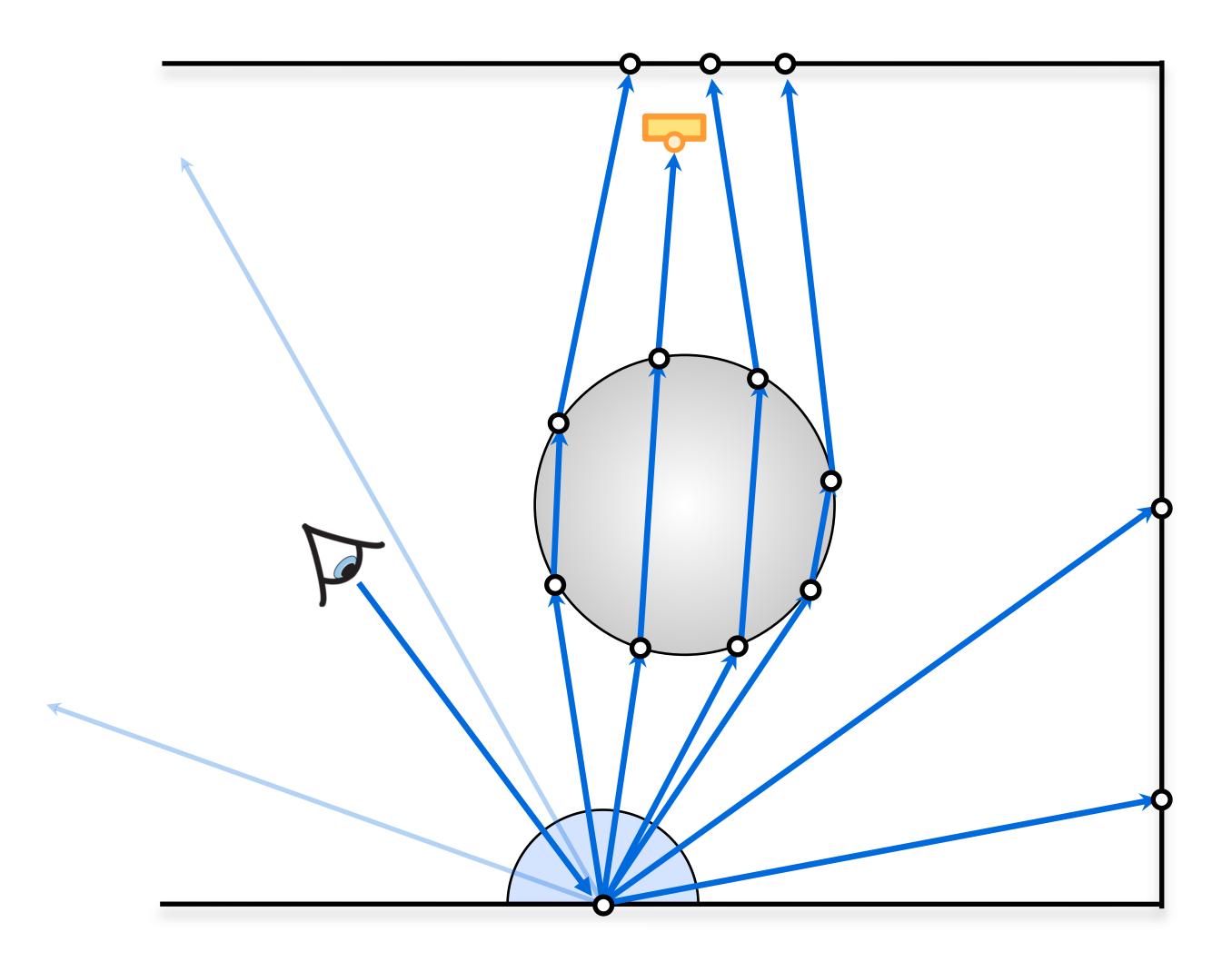
Measurement Equation

Path Integral Framework

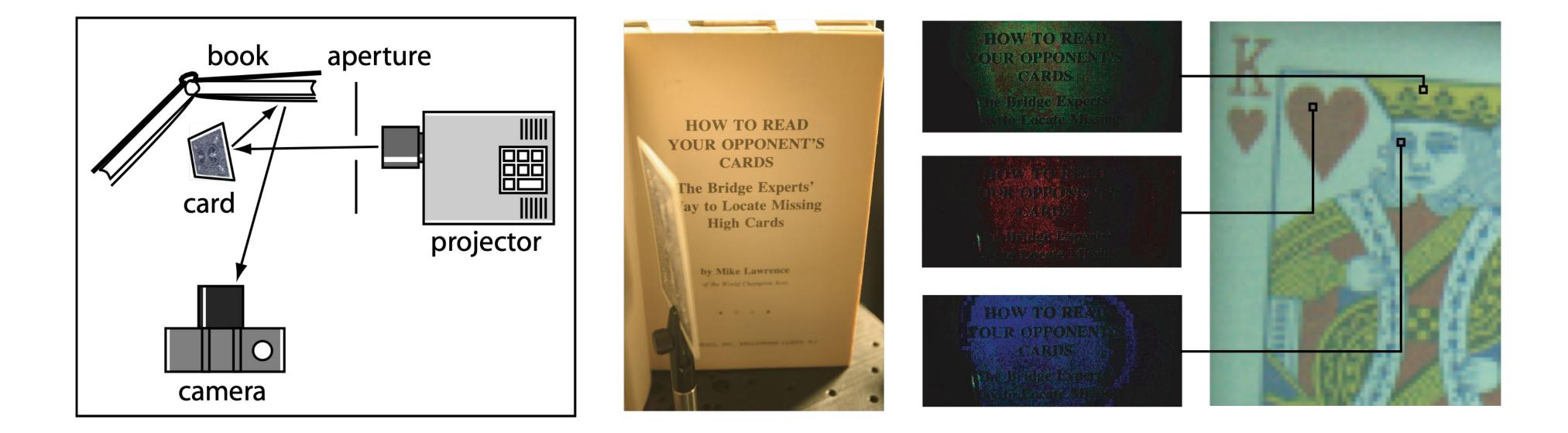
Solving the Rendering Equation

- Light tracing
- Bidirectional path tracing

Can we simulate this better?



Light transport is symmetric



Dual Photography [Sen et al. 2005]

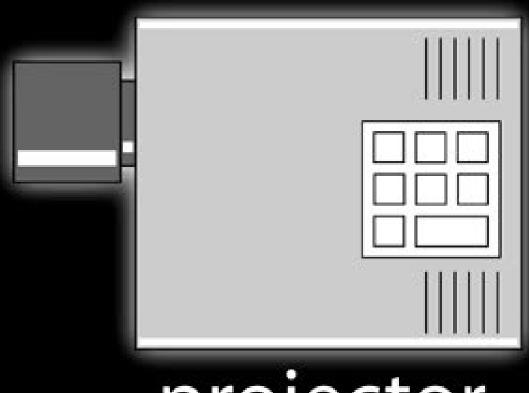
Dual Photography

*Stanford University

Pradeep Sen* Billy Chen* Gaurav Garg* Stephen R. Marschner* Mark Horowitz* Marc Levoy* Hendrik P.A. Lensch*

[†]Cornell University

SIGGRAPH2005



projector

Duality of Radiance and Importance

Measurement Equation

$$L_o(\mathbf{x}, \vec{\omega}_o) = L_e(\mathbf{x}, \vec{\omega}_o) +$$

$$I_{j} = \int_{A_{\mathrm{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega})$$

response
to radia
(often response)

- Rendering equation describes radiative equilibrium at point x:
 - $\int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$
- We are interested in the total radiance contributing to pixel *j*:

$L_i(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}$

se of the sensor at film location X nce arriving from direction $\vec{\omega}$ referred to as *emitted importance*)

Radiometry as Measurements

Weighted integral of 5D radiance function

 $\int_V \int_{H^2} W_e(\mathbf{x},\vec{\omega}) L(\mathbf{x},\vec{\omega}) \, \mathrm{d}\vec{\omega} \, \mathrm{d}\mathbf{x}$ Other radiometric quantities are measurements

- expressing *irradiance* in terms of radiance: $\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = E(\mathbf{x})$ Integrate radiance over hemisphere
- expressing *flux/power* in terms of radiance:

 $\int_{H^2} L(\mathbf{x},\vec{\omega}) \cos\theta \, d\vec{\omega} dA(\mathbf{x}) = \Phi(A) \quad \text{Integrate radiance ov} \\ \text{hemisphere and area}$ Integrate radiance over

Radiance vs. Importance

Radiance

- emitted from light sources
- describes amount of light traveling within a differential beam

Importance

- "emitted" from sensors
- differential beam

- describes the response of the sensor to radiance traveling within a

 $I_j = \int_{A_{\text{film}}} \int_{H^2} W_e(\mathbf{x}, \vec{\omega}) L_i(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}$

Let's expand L_o and consider direct illumination only

Let's swap the inner and outer integral

- $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{x}$
- $\mathbf{y})L_o(\mathbf{y},\mathbf{x})\,d\mathbf{y}d\mathbf{x}$

 $\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{z} d\mathbf{y} d\mathbf{x}$

- itted quantities with dentical measure

$$\begin{split} I_{j} &= \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \mathbf{x}) \\ &= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{film}}} \int_{A} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) \\ &= \int_{A} \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A} \int_{A} \int_{A} \int_{A} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) \\ &= \int_{A} \int_{A}$$

- $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{x}$
- $\mathbf{y})L_o(\mathbf{y},\mathbf{x})\,d\mathbf{y}d\mathbf{x}$
- $\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{z} d\mathbf{y} d\mathbf{x}$

 $\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{x} d\mathbf{y} d\mathbf{z}$

symmetric functions

$$\begin{split} I_{j} &= \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \mathbf{x}) \\ &= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{film}}} \int_{A} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A} \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A} \int_{A} \int_{A} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A} \int$$

- $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{x}$
- $\mathbf{y})L_o(\mathbf{y},\mathbf{x})\,d\mathbf{y}d\mathbf{x}$
- $\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{z} d\mathbf{y} d\mathbf{x}$

 $\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{x} d\mathbf{y} d\mathbf{z}$

symmetric functions

$$\begin{split} I_{j} &= \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \mathbf{x}) \\ &= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{film}}} \int_{A} \int_{A} \int_{A_{\text{light}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} \int_{A_{\text{film}}} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{A} W_{o}(\mathbf{y}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) \end{split}$$

- $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{x}$
- $\mathbf{y})L_o(\mathbf{y},\mathbf{x})\,d\mathbf{y}d\mathbf{x}$
- $\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{z} d\mathbf{y} d\mathbf{x}$
- $\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{x} d\mathbf{y} d\mathbf{z}$
- $\mathbf{y})L_e(\mathbf{z},\mathbf{y})\,d\mathbf{y}d\mathbf{z}$

$$\begin{split} I_{j} &= \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \mathbf{x}) \\ &= \int_{A_{\text{film}}} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{x}) \\ &= \int_{A_{\text{film}}} \int_{A} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{x}) \\ &= \int_{A_{\text{light}}} \int_{A} \int_{A} W_{e}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{x}) \\ &= \int_{A_{\text{light}}} \int_{A} W_{o}(\mathbf{y}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) \\ &= \int_{A_{\text{light}}} \int_{H^{2}} W_{i}(\mathbf{z}, \vec{\omega}) L_{e}(\mathbf{z}, \mathbf{x}) \\ \end{split}$$

- $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{x}$
- $\mathbf{y})L_o(\mathbf{y},\mathbf{x})\,d\mathbf{y}d\mathbf{x}$
- $\mathbf{x}, \mathbf{y}) f(\mathbf{y}, \mathbf{z}, \mathbf{x}) G(\mathbf{y}, \mathbf{z}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{z} d\mathbf{y} d\mathbf{x}$
- $\mathbf{y}, \mathbf{x}) f(\mathbf{y}, \mathbf{x}, \mathbf{z}) G(\mathbf{z}, \mathbf{y}) L_e(\mathbf{z}, \mathbf{y}) d\mathbf{x} d\mathbf{y} d\mathbf{z}$
- $\mathbf{y})L_e(\mathbf{z},\mathbf{y})\,d\mathbf{y}d\mathbf{z}$
- $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{z}$

 $I_{j} = \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{x}$ $= \int_{A_{\text{light}}} \int_{H^2} W_i(\mathbf{z}, \vec{\omega}) L_e(\mathbf{z}, \vec{\omega}) \cos \theta \, d\vec{\omega} d\mathbf{z}$

- emitted *importance*
 - /incident *radiance*

 - ~emitted *radiance*
- incident *importance*

Path tracing start from *film*, search for *radiance* at light

$$I_{j} = \int_{A_{\text{film}}} \int_{H^{2}} W_{e}(\mathbf{x}, \vec{\omega}) L_{i}(\mathbf{x}, \vec{\omega})$$
$$= \int_{A_{\text{light}}} \int_{H^{2}} W_{i}(\mathbf{z}, \vec{\omega}) L_{e}(\mathbf{z}, \vec{\omega})$$
Light tracin start from *light*, search for *imp*

 $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{x}$

 $\vec{\omega}$) cos $\theta \, d\vec{\omega} d\mathbf{z}$

g

portance at sensor

Light Tracing

Light Tracing

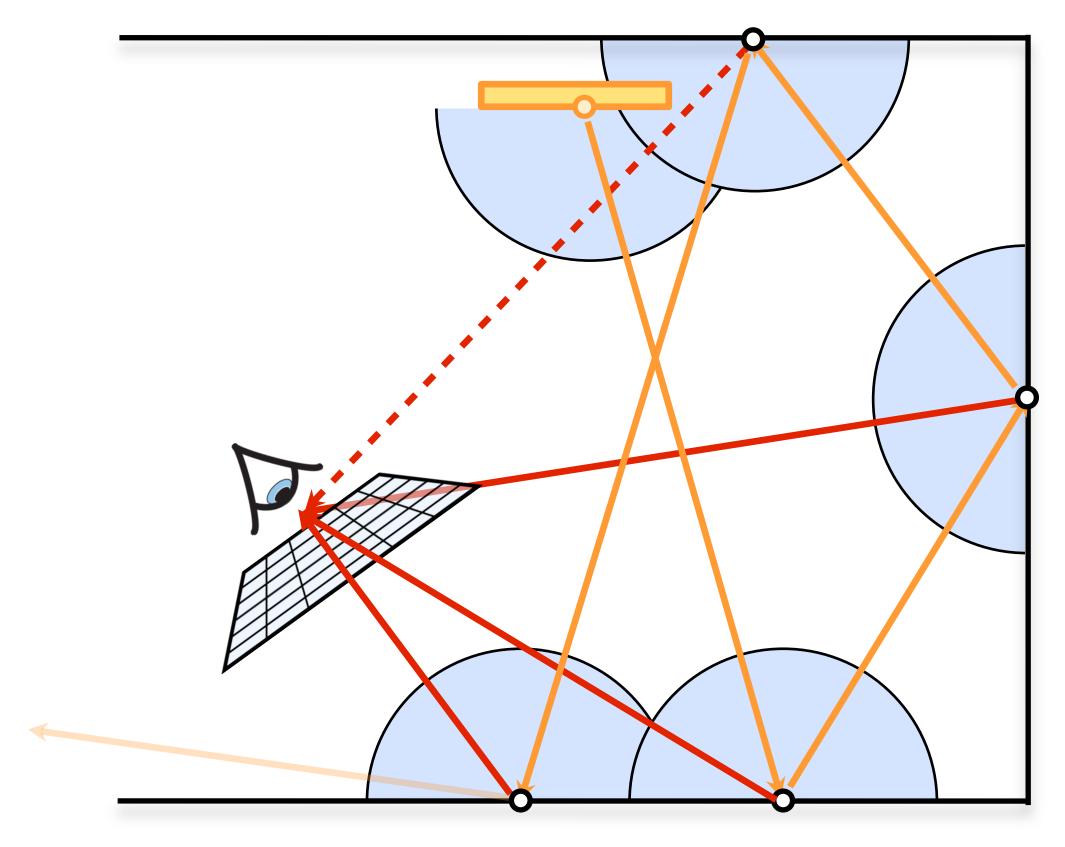
the sensor

event estimation (a.k.a. shadow rays in PT)

Shoot multiple paths from light sources hoping to randomly hit

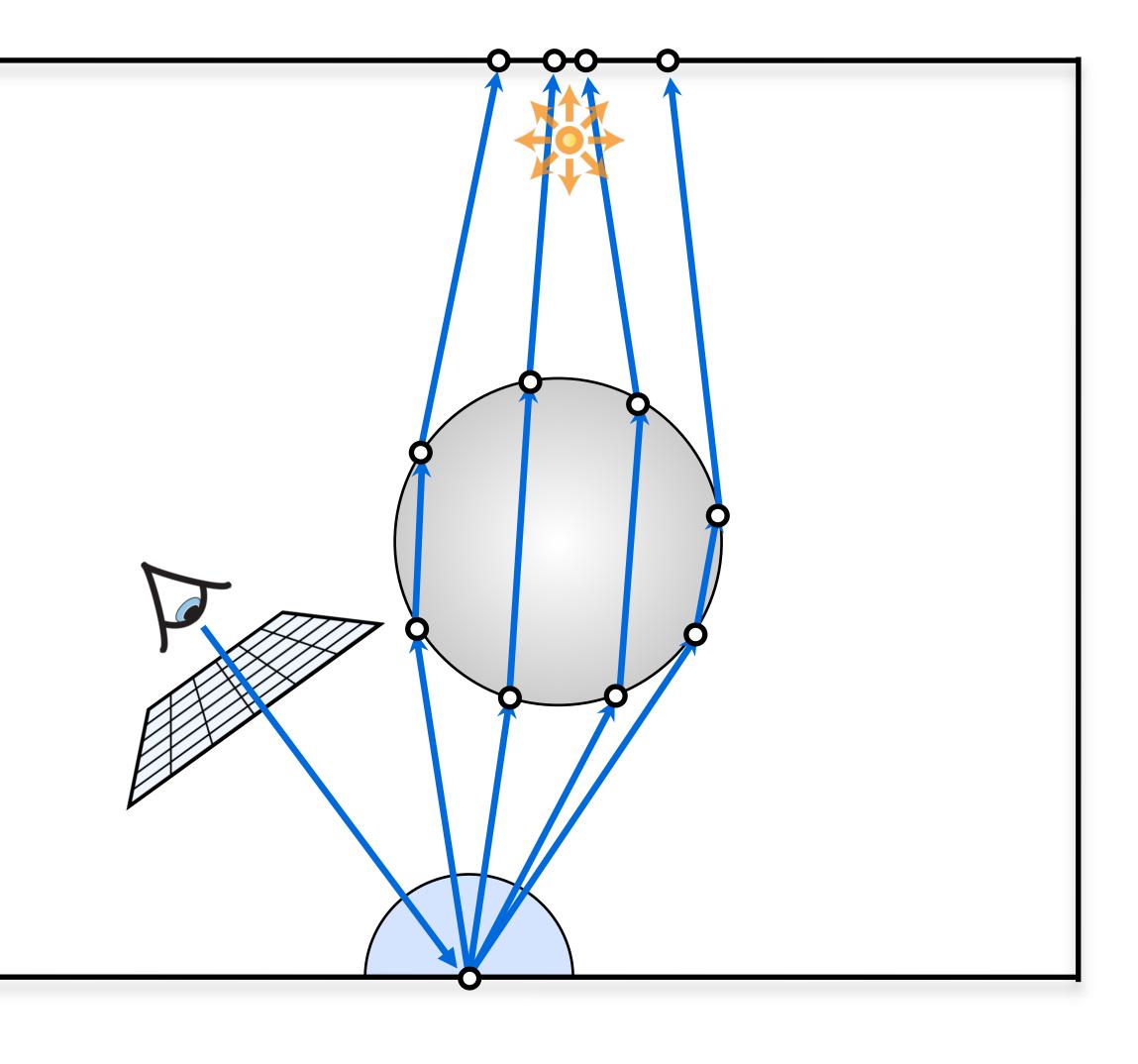
- Optionally: at each path vertex, connect to the image using next-

Light Tracing with NEE

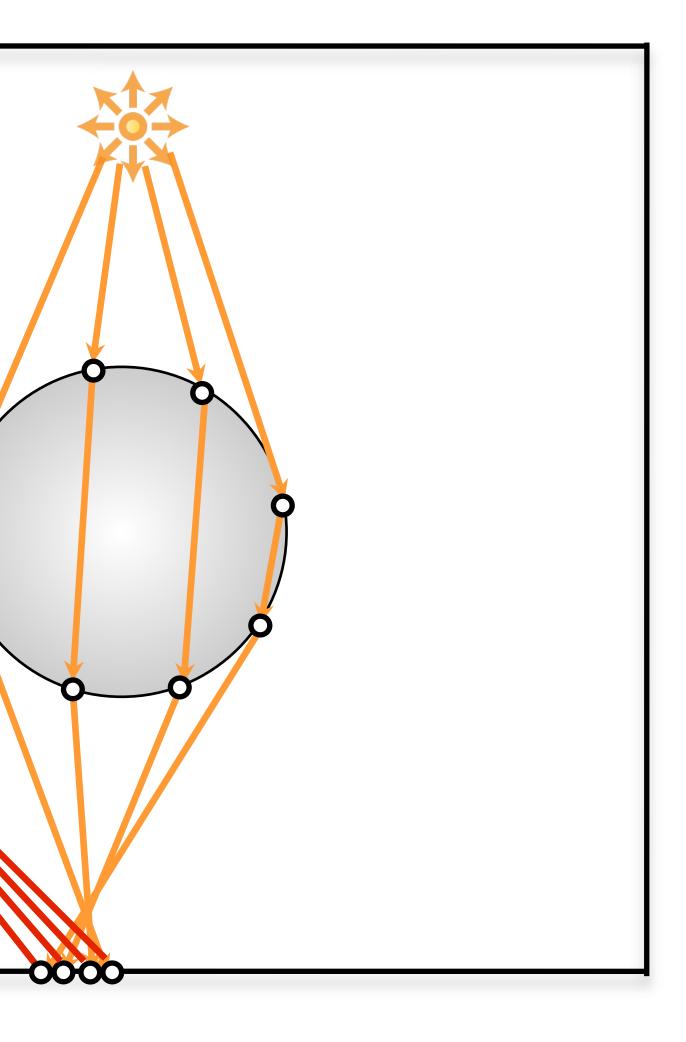


Splat to the image at each vertex

Path Tracing Caustics

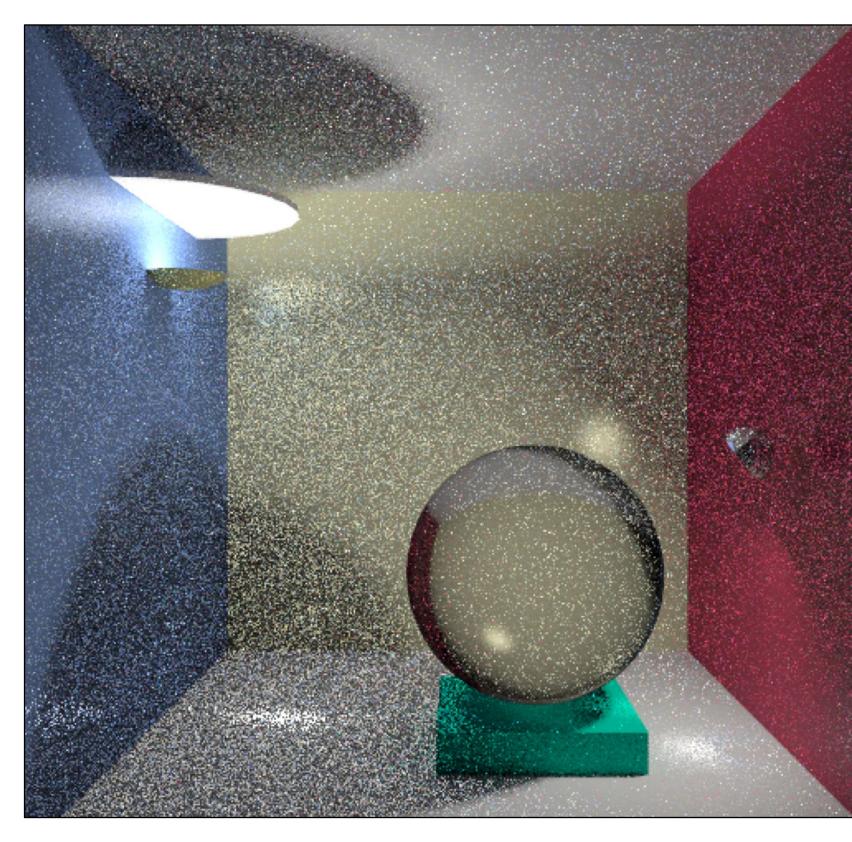


Light Tracing Caustics

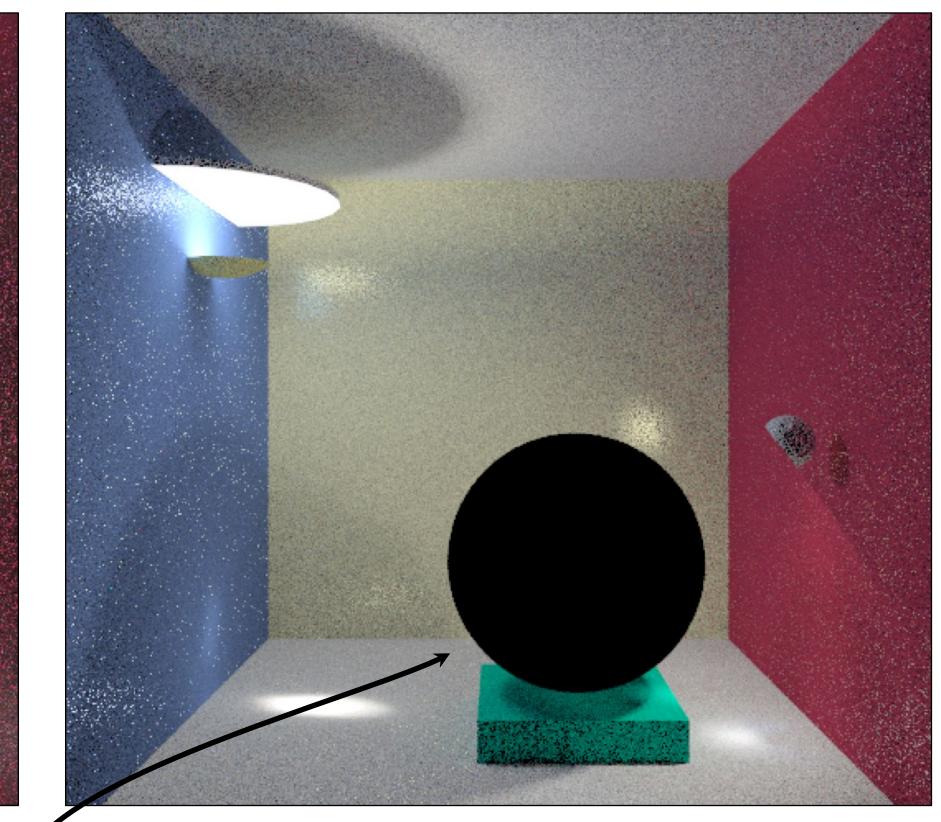


Path vs. Light Tracing

Path tracing



Light tracing

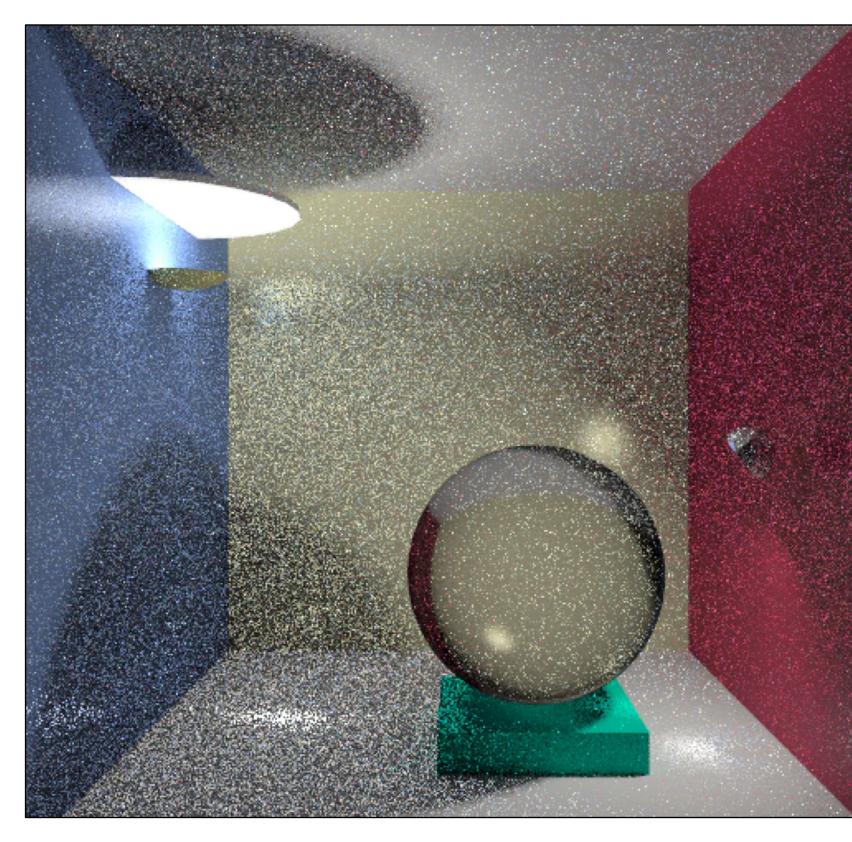


Images courtesy of F. Suykens

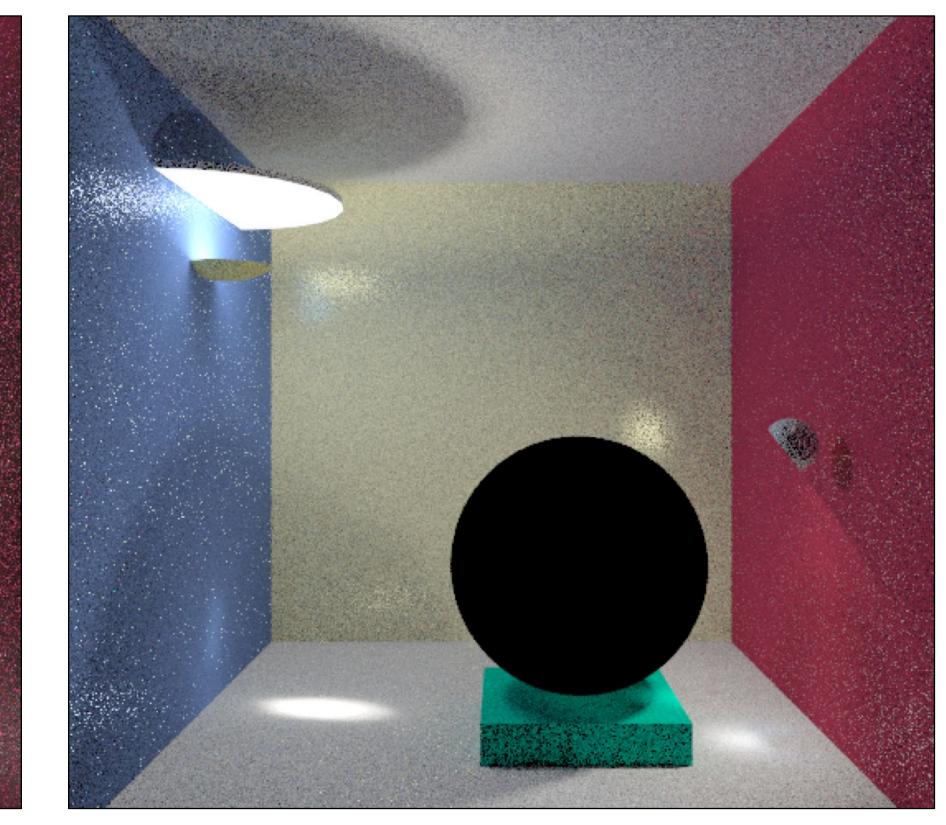
Why is this glass sphere black?

Path vs. Light Tracing

Path tracing



Light tracing



Images courtesy of F. Suykens

Can we <u>combine</u> them?

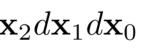
Path Integral Framework

Measurement Equation

$$\begin{split} I_{j} &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{1}, \mathbf{x}_{0}) \, d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) + \int_{A} f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}) G(\mathbf{x}_{1}, \mathbf{x}_{2}) L_{o}(\mathbf{x}_{2}, \mathbf{x}_{1}) d\mathbf{x}_{2} d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) + \int_{A} f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}) G(\mathbf{x}_{1}, \mathbf{x}_{2}) L_{o}(\mathbf{x}_{2}, \mathbf{x}_{1}) d\mathbf{x}_{2} d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) + \int_{A} f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}) G(\mathbf{x}_{1}, \mathbf{x}_{2}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) + \int_{A} f(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{1}) G(\mathbf{x}_{2}, \mathbf{x}_{3}) L_{e}(\mathbf{x}_{3}, \mathbf{x}_{2}) + \int_{A} \cdots d\mathbf{x}_{4} d\mathbf{x}_{3} d\mathbf{x}_{3}$$

Hard to concisely express arbitrary light transport with all the nested integrals

Let's find a better way



$$\begin{split} I_{j} &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{1}, \mathbf{x}_{0}) d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &= \underbrace{\int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) d\mathbf{x}_{1} d\mathbf{x}_{0} \\ &+ \underbrace{\int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{0}) G(\mathbf{x}_{1}, \mathbf{x}_{2}) d\mathbf{x}_{2} d\mathbf{x}_{1} d\mathbf{x}_{0} + \cdots \\ &+ \underbrace{\int_{A} \cdots \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) \prod_{j=1}^{k-1} f(\mathbf{x}_{j}, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}) G(\mathbf{x}_{j}, \mathbf{x}_{j+1}) d\mathbf{x}_{k} \cdots d\mathbf{x}_{0} + \cdots \end{split}$$

introduce: $\mathcal{P}_k = \{ ar{\mathbf{x}} = \mathbf{x}_0 \cdots \}$ space of all paths with

$$egin{array}{ll} \mathbf{x}_k; \ \mathbf{x}_0 \cdots \mathbf{x}_k \in A \ k & ext{segments} \end{array}$$

introduce:
$$T(\bar{\mathbf{x}}_k) = G(\mathbf{x}_0, \mathbf{x}_1) \prod_{j=1}^{k-1} f(\mathbf{x}_j, \mathbf{x}_{j+1}, \mathbf{x}_{j-1}) G(\mathbf{x}_j, \mathbf{x}_{j+1})$$

throughput of path \mathbf{x}_k

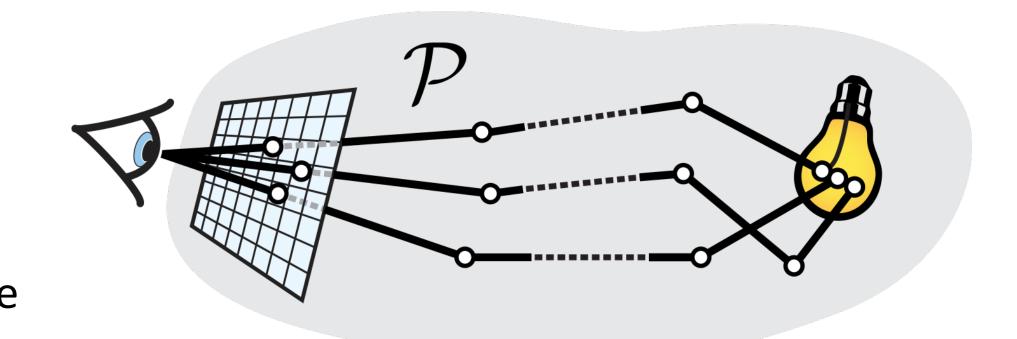
$$\begin{split} I_{j} &= \int_{A} \int_{A} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) G(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{o}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{1}, \mathbf{x}_{0}) T(\bar{\mathbf{x}}_{1}) d\bar{\mathbf{x}}_{1} \\ &+ \int_{\mathcal{P}_{1}} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{2}, \mathbf{x}_{1}) T(\bar{\mathbf{x}}_{2}) d\bar{\mathbf{x}}_{2} + \cdots \\ &+ \int_{\mathcal{P}_{2}} W_{e}(\mathbf{x}_{0}, \mathbf{x}_{1}) L_{e}(\mathbf{x}_{k}, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}_{k}) d\bar{\mathbf{x}}_{k} + \cdots \end{split}$$

introduce:
$$\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$$

the *path space*, i.e. the space of all paths of all lengths

 $L_o(\mathbf{x}_1,\mathbf{x}_0) d\mathbf{x}_1 d\mathbf{x}_0$

 $+ \cdots$



$$I_j = \int_A \int_A W_e(\mathbf{x}_0, \mathbf{x}_1) G(\mathbf{x}_0, \mathbf{x}_1)$$

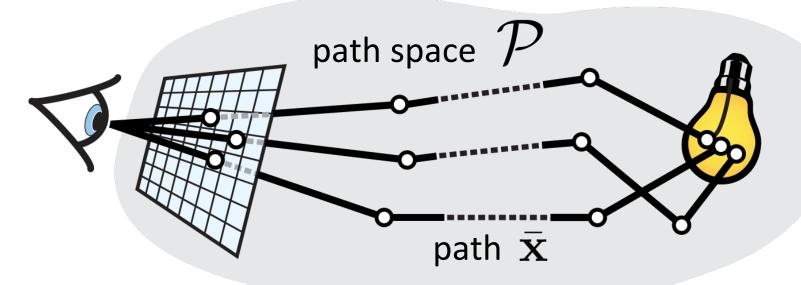
global illumination (all paths of all lengths)

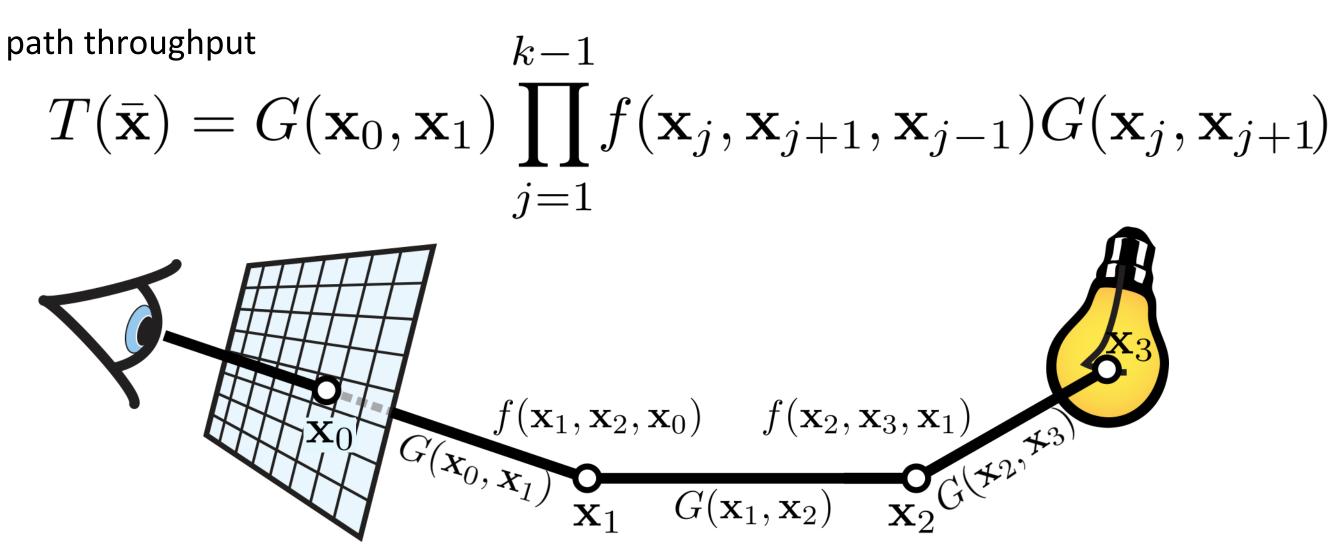
$$= \int_{\mathcal{P}} W_e(\mathbf{x}_0, \mathbf{x}_1) L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) L_e(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_{k-1}) L_e(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_{k-1}) L_e(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_{k-1}) L_e(\mathbf{x}_k, \mathbf{x}_k, \mathbf{x}_k) L_e(\mathbf{x}_k, \mathbf$$

 $_{1}L_{o}(\mathbf{x}_{1},\mathbf{x}_{0}) d\mathbf{x}_{1} d\mathbf{x}_{0}$

 $_1)T(\bar{\mathbf{x}})\,d\bar{\mathbf{x}}$

 $I_j = \int_{\mathcal{D}} W_e(\mathbf{x}_0, \mathbf{x}_1) L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$





$$I_j = \int_{\mathcal{P}} W_e(\mathbf{x}_0, \mathbf{x})$$

Advantages:

- no recursion, no "nasty" nested integrals
- emphasizes symmetry of light transport
- easy to relate different rendering algorithms
- focuses on path geometry, independent of strategy for constructing paths
- MC estimator on path space looks much simpler

 $L_1 L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$

$$I_j = \int_{\mathcal{P}} W_e(\mathbf{x}_0, \mathbf{x})$$

Monte Carlo estimator:

$$I_j \approx \frac{1}{N} \sum_{i=1}^N \frac{W_e(\mathbf{x}_{i,0})}{W_{i=1}}$$

$$p(\bar{\mathbf{x}}) = p(\mathbf{x}_0)$$

path PDF

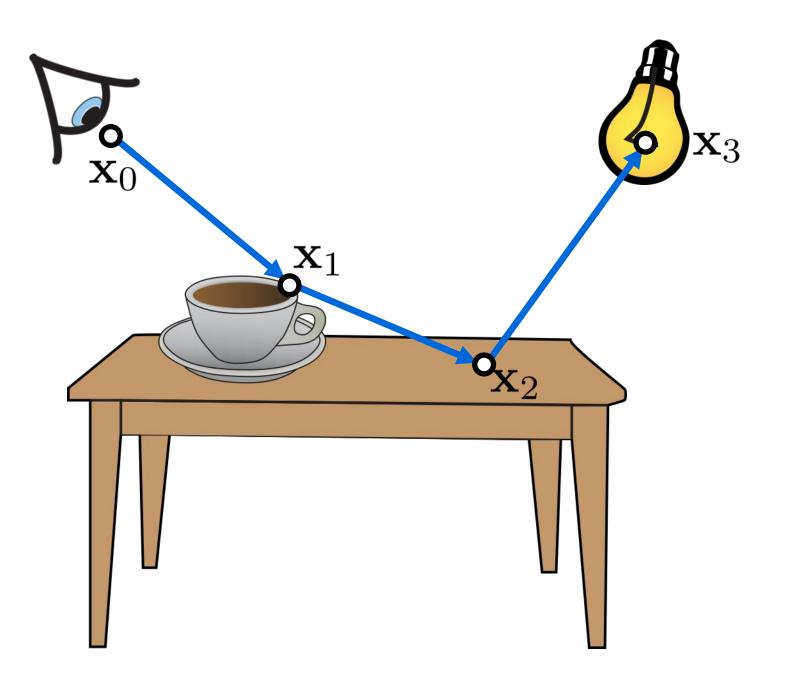
 $L_1 L_e(\mathbf{x}_k, \mathbf{x}_{k-1}) T(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$

 $p(\mathbf{x}_{i,1})L_e(\mathbf{x}_{i,k},\mathbf{x}_{i,k-1})T(\bar{\mathbf{x}}_i)$ $p(\bar{\mathbf{x}}_i)$

 $(\mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$ joint PDF of path vertices

 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$

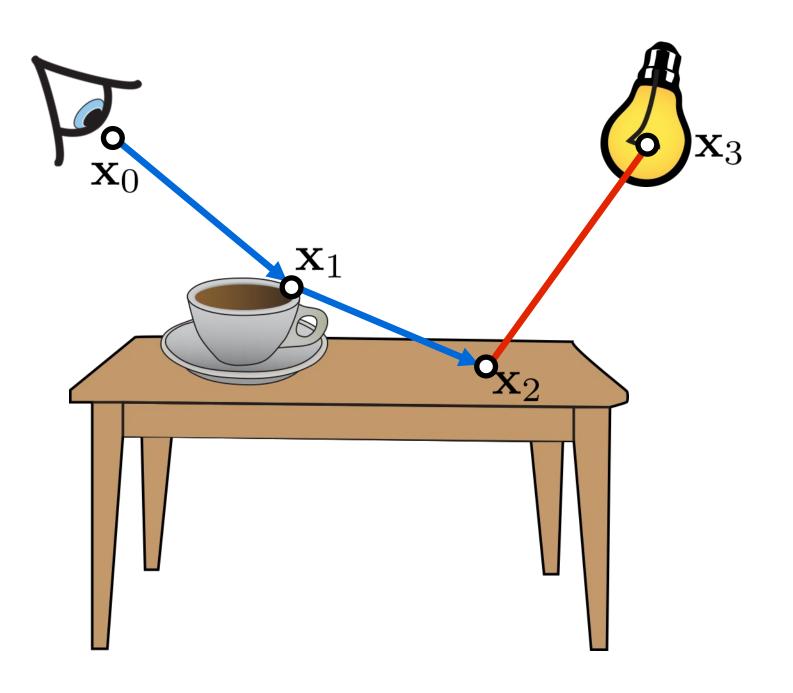
Path tracing w/o NEE



 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0)$ $\times p(\mathbf{x}_1 | \mathbf{x}_0)$ $\times p(\mathbf{x}_2 | \mathbf{x}_0 \mathbf{x}_1)$ $\times p(\mathbf{x}_3 | \mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2)$

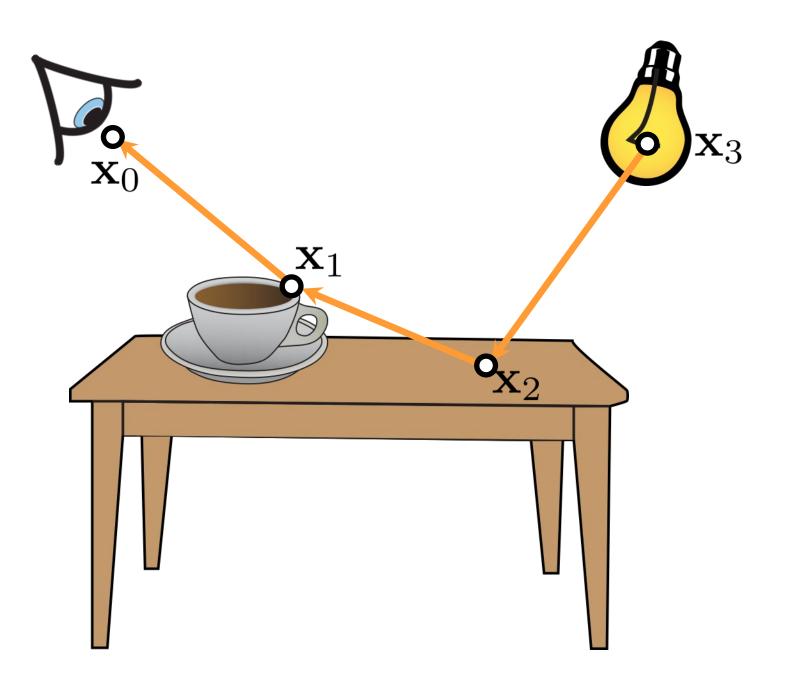
 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$

Path tracing with NEE



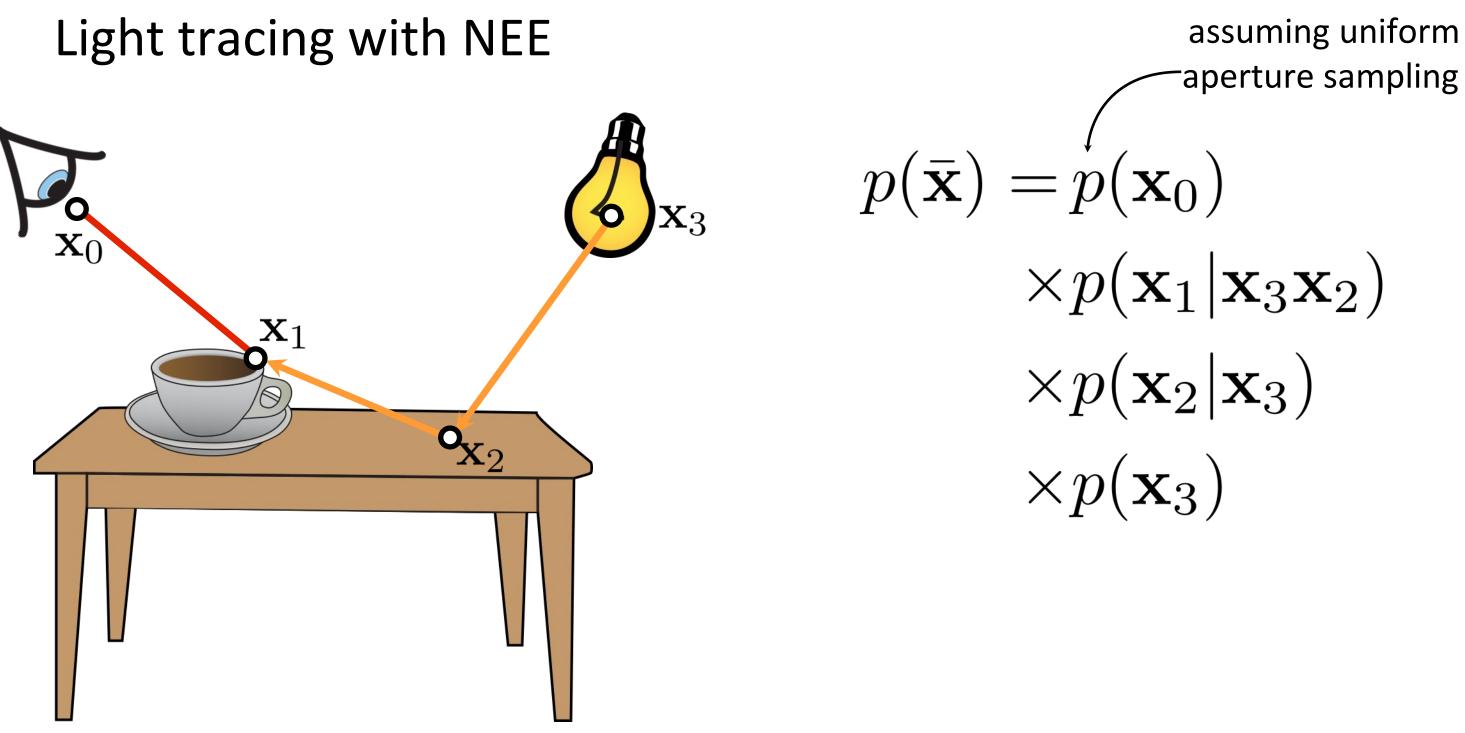
 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$

Light tracing



 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0 | \mathbf{x}_3 \mathbf{x}_2 \mathbf{x}_1)$ $\times p(\mathbf{x}_1 | \mathbf{x}_3 \mathbf{x}_2)$ $\times p(\mathbf{x}_2 | \mathbf{x}_3)$ $\times p(\mathbf{x}_3)$

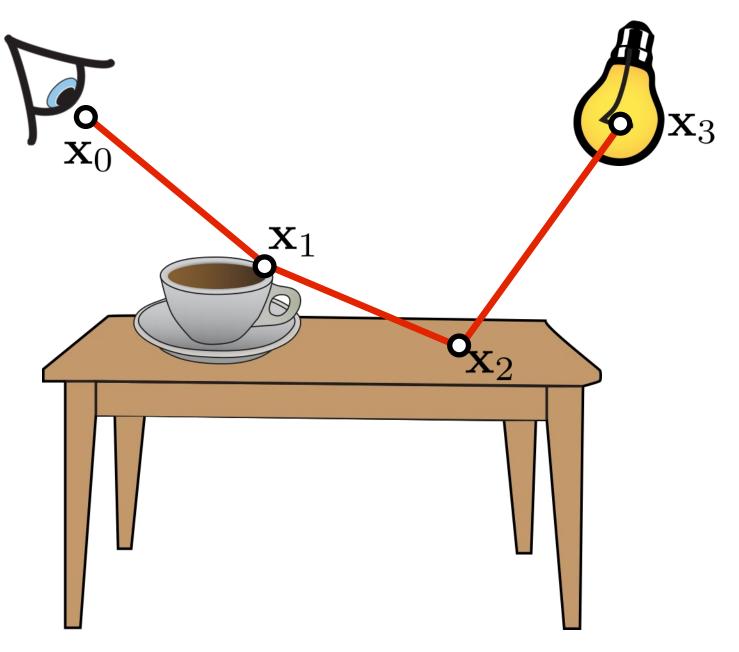
 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$



 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{k-1}, \mathbf{x}_k)$

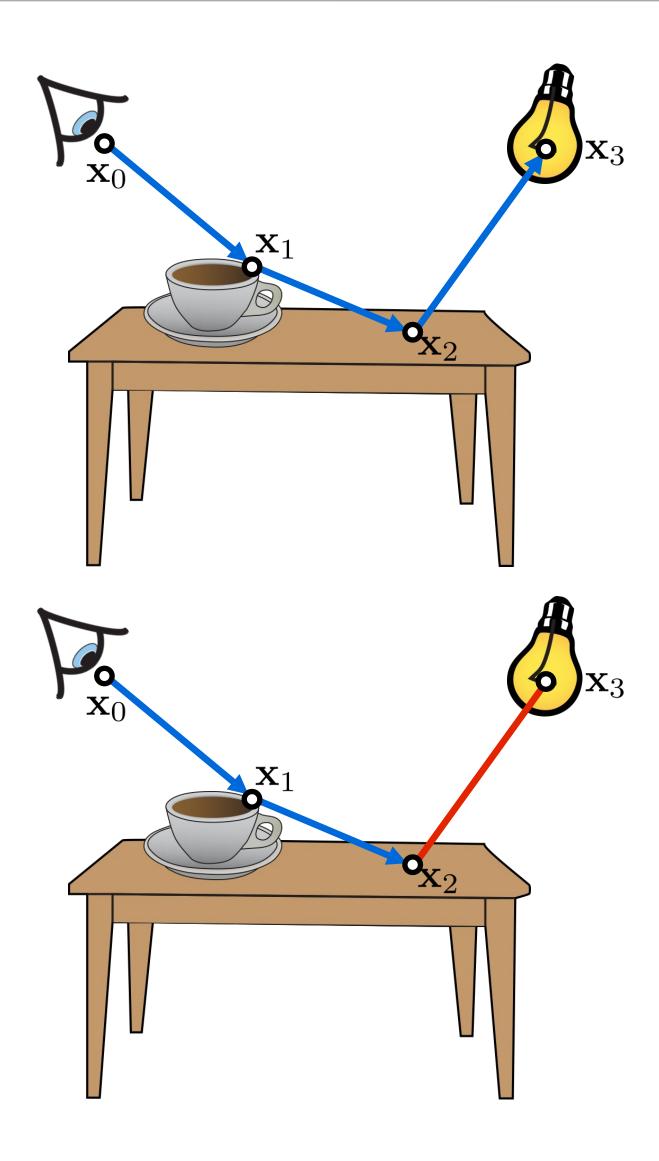
Independent sampling of path vertices

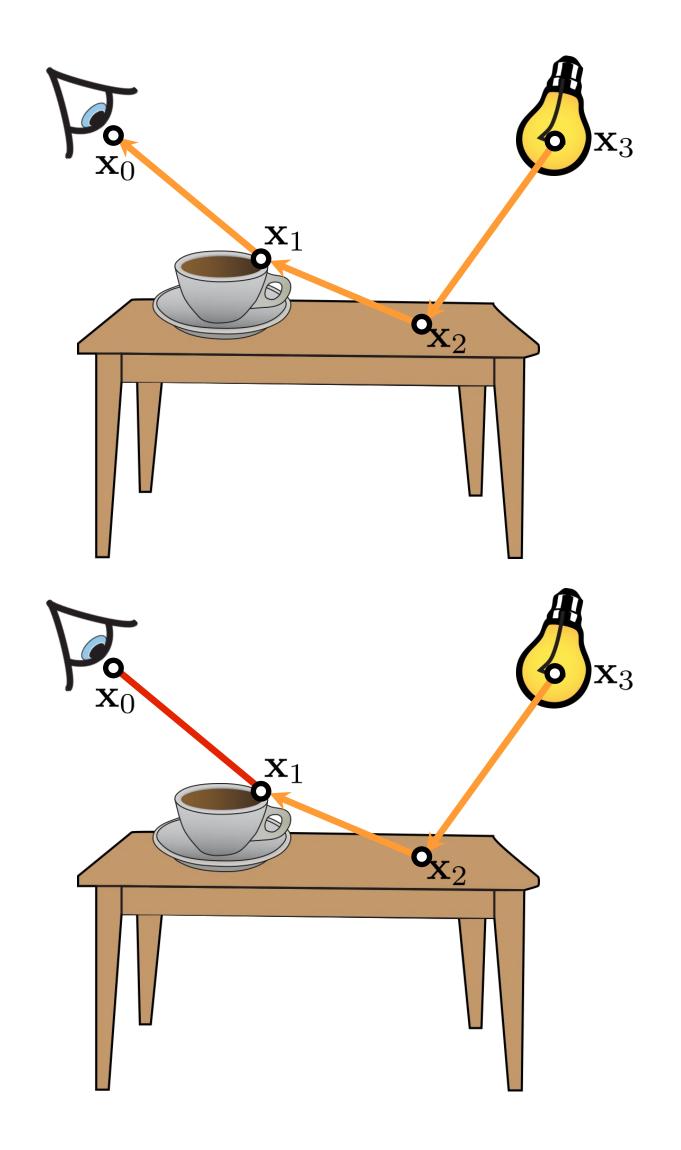
(not very practical though)

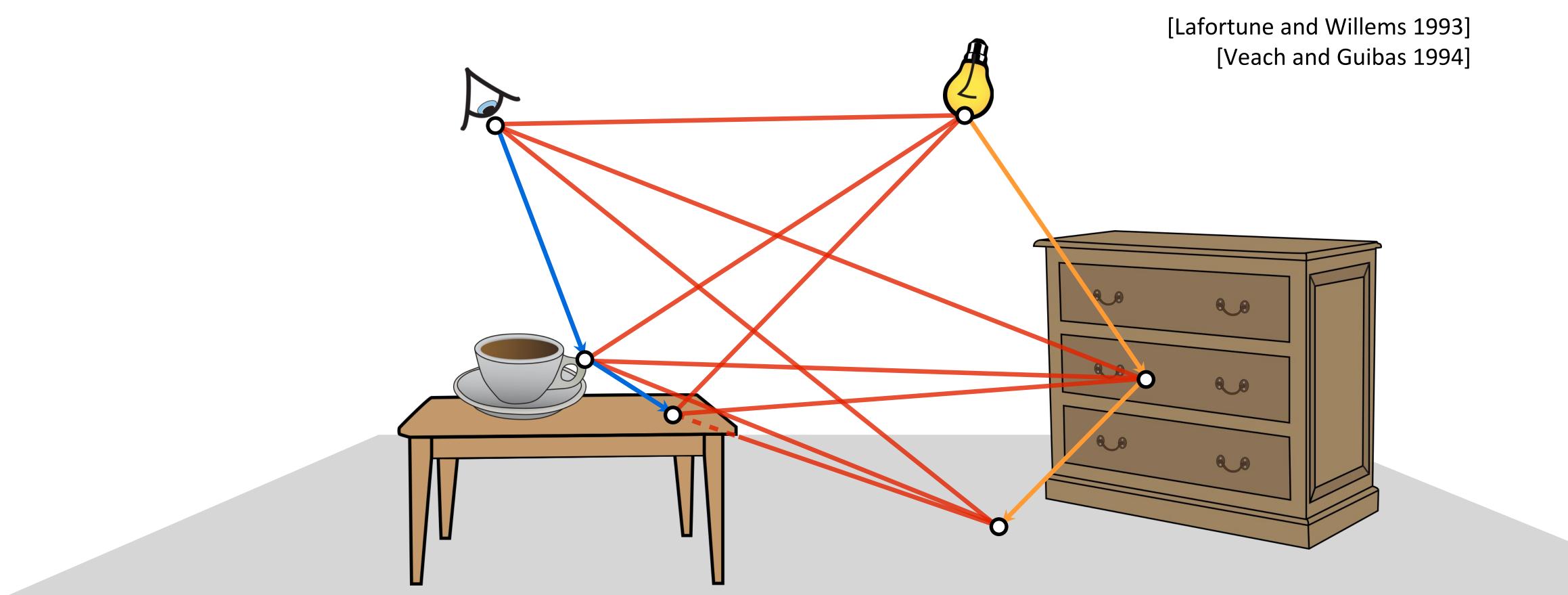


 $p(\bar{\mathbf{x}}) = p(\mathbf{x}_0)$ $\times p(\mathbf{x}_1)$ $\times p(\mathbf{x}_2)$ $\times p(\mathbf{x}_3)$

Can we combine them?







ts - # connections

- t # vertices on camera subpath
- S- # vertices on light subpath

color estimate (point x)

- lp = sample light subpath cp = sample camera subpath for image point x

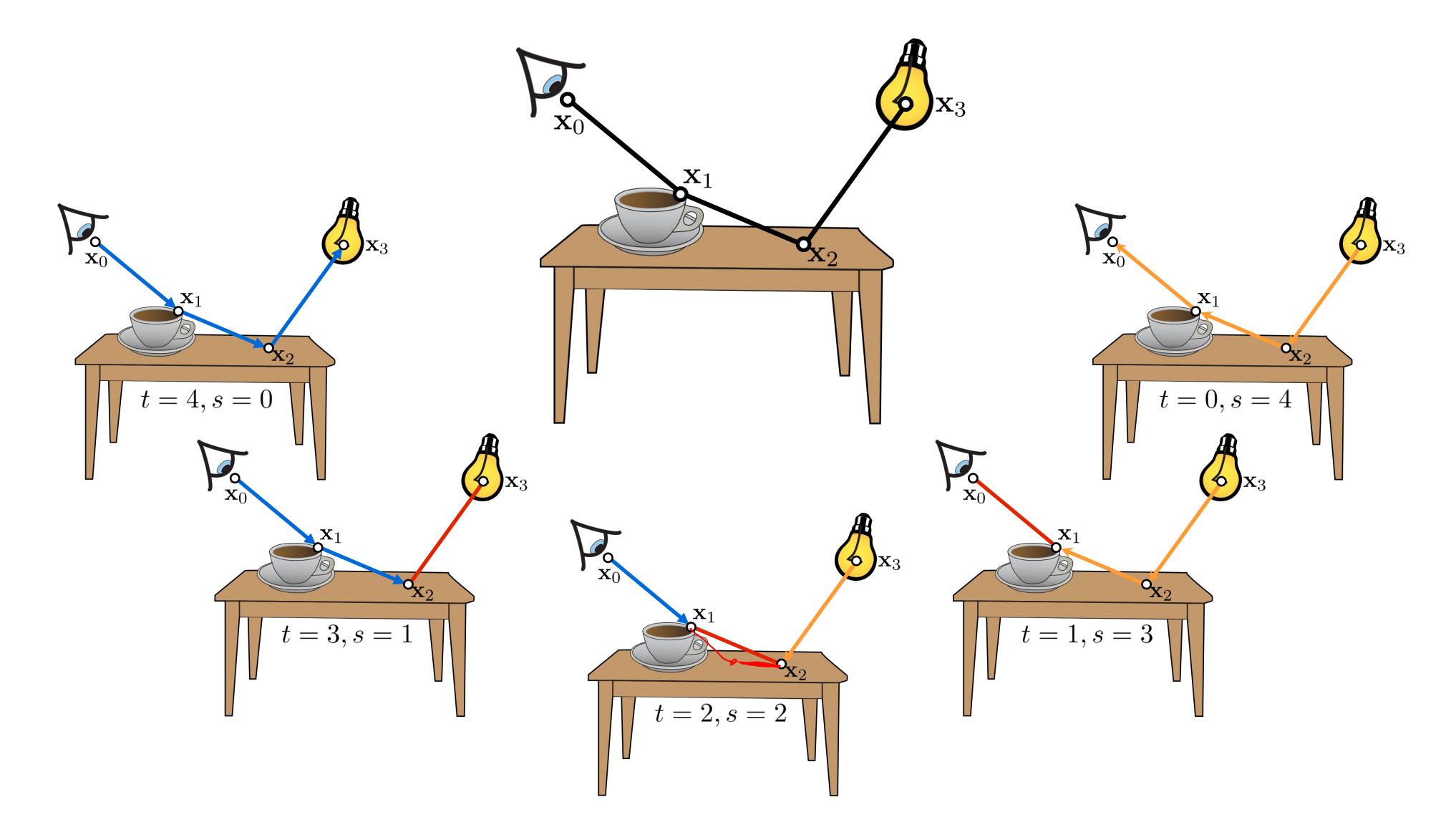
for each vertex s in lp for each vertex t in cp splat(fullPath.screenPos, fullPath.contrib)

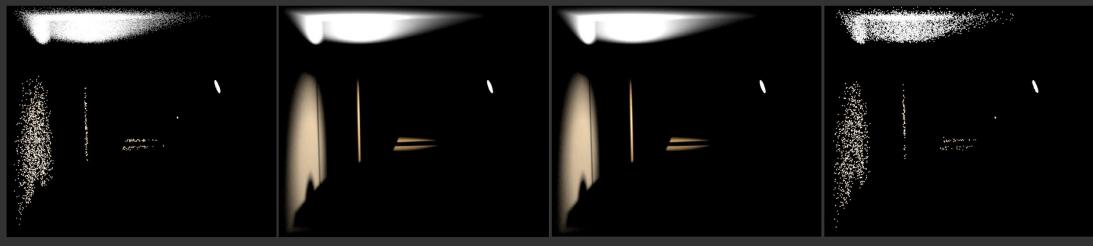
fullPath = join(cp[0..s], lp[0..t])

Key observations:

- Every path (formed by connecting camera sub-path to light sub-path) with k vertices can be constructed using k+1 strategies
- For a particular path length, all strategies estimate the same integral
- Each strategy has a different PDF, i.e., each strategy has different strengths and weaknesses
- Let's combine them using MIS!

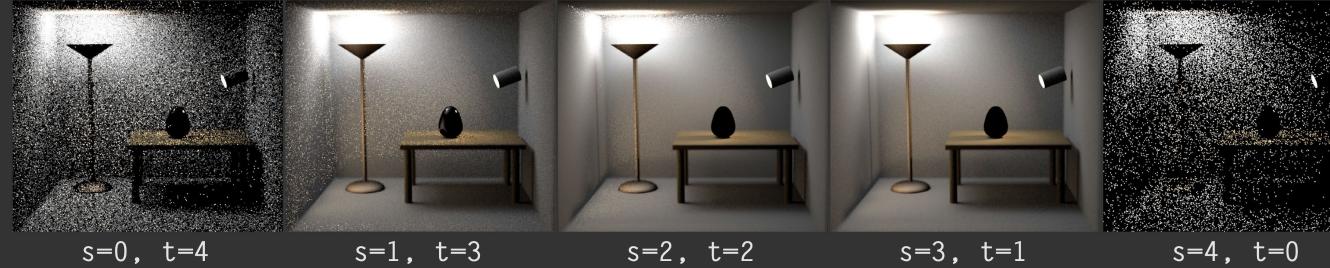
72





s=0, t=3

s=1, t=2



s=0, t=5

s=1, t=4

s=2, t=1 s=3, t=0

s=2, t=2

- s=3, t=2
- s=4, t=1

s=5, t=0

Images courtesy of W. Jakob

Bidirectional Path Tracing (MIS)

s=0, t=3

s=0, t=4



s=0, t=5 s=1, t=4 s=2, t=3

s=2, t=1 s=3, t=0

s=2, t=2

s=3, t=1

s=4, t=0

s=3, t=2

s=5, t=0

Images courtesy of W. Jakob

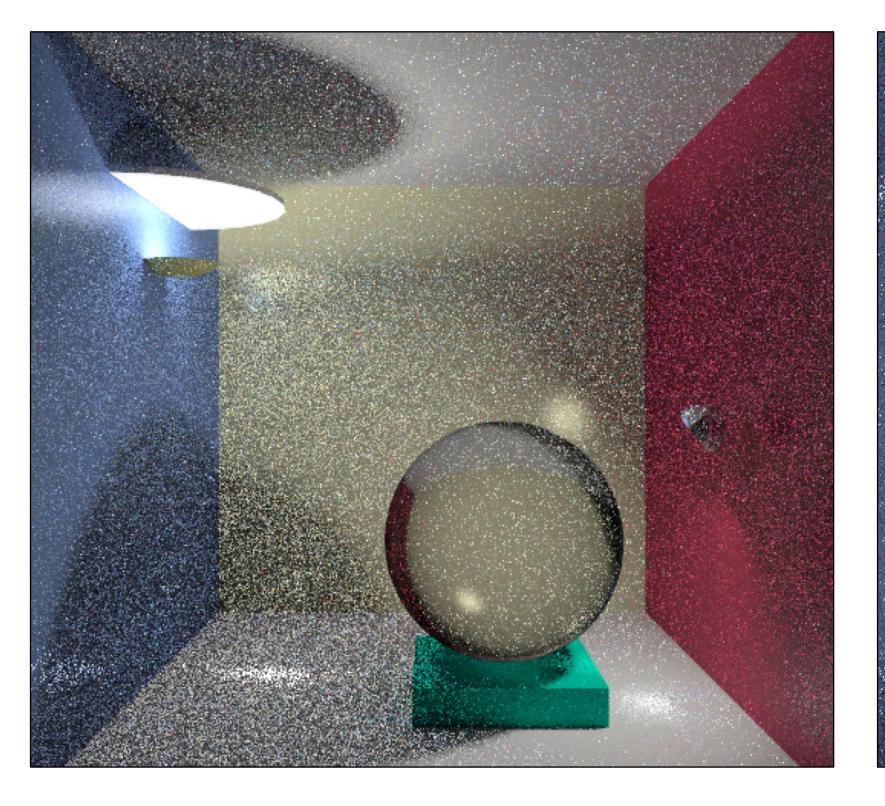
(Unidirectional) path tracing

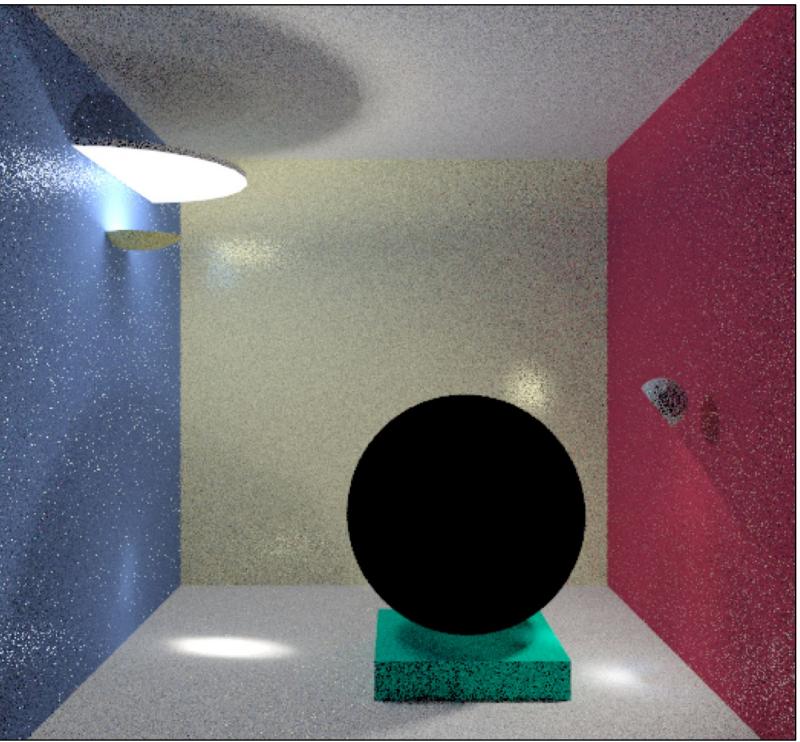
Bidirectional path tracing

Images courtesy of W. Jakob

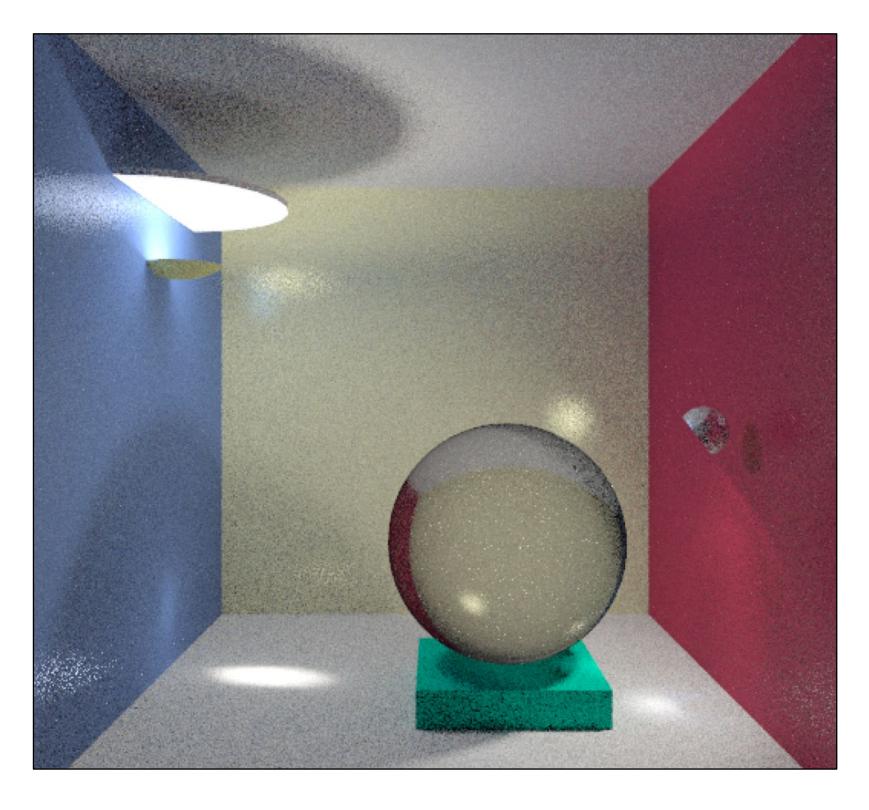
Path tracing

Light tracing





Bidirectional PT



Images courtesy of F. Suykens

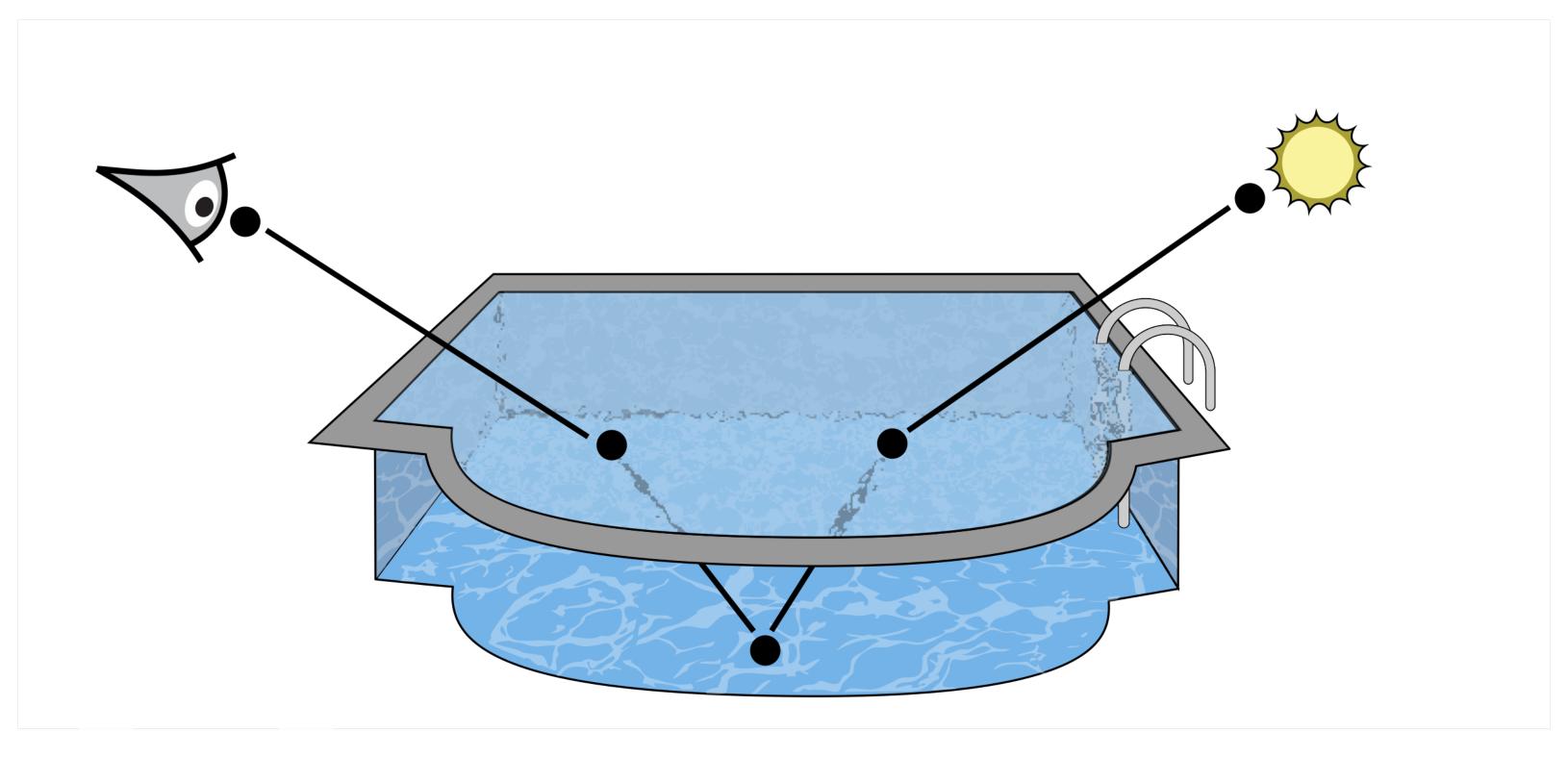
Still not robust enough...

Reference

Bidirectional PT

Images courtesy of J. Křivánek

Still not robust enough...



LSDSE

paths are difficult for any unbiased method

Still not robust enough...

Extensions

- Combination with photon mapping
 - Unified Path Sampling [Hachisuka et al. 2012]
 - Vertex Connection Merging [Georgiev et al. 2012]
- Metropolis sampling (global PDF)
- Path-space regularization [Kaplanyan et al. 2013]
- Path guiding (learn global PDF)

