Participating media

15-468, 15-668, 15-868
Physics-based Rendering

http://graphics.cs.cmu.edu/courses/15-468 Spring 2022, Lecture 12



Course announcements

Take-home quiz 5 posted, due Tuesday 3/2 at 23:59.
Programming assignment 3 posted, due Friday 3/11 at 23:59.
- How many of you have looked at/started/finished it?

- Any questions?

Suggest topics for third reading group this Friday, 3/4.



Overview of today’s lecture

Participating media.

Scattering material characterization.
Volume rendering equation.

Ray marching.

Volumetric path tracing.

Delta tracking.



Slide credits

Most of these slides were directly adapted from:

* Wojciech Jarosz (Dartmouth).





http://www.teehanlax.com

Clouds & Crepuscular rays

http://mev.fopf.mipt.ru




Fire




Underwater



http://www.dailypictures.info/free-pictures/8365/free-nature-pictures/underwater-wallpaper-16-.html

Surface or Volume?



http://www.flickr.com/photos/ironrodart/3904773382/

Jopues R JuaulaT] oIpn}s :221N0S


http://lernertandsander.com/cubes/

Antelope Canyon, Az.
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Aerial (Atmospheric) Perspective

Woijciech Jarosz

Henrik Wann Jensen
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Leonardo da Vinci (1480)

Thus, if one is to be five
times as distant, make it
five times bluer.

—Treatise on Painting, Leonardo Da
Vinci, pp 295, circa 1480.
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Nebula

T.A.Rector (NOAO/AURA/NSF) and the Hubble Heritage Team (STScl/AURA/NASA) 14



1SSION

E

http://wikipedia.org
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Absorption
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Scattering
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Defining Participating Media

Typically, we do not model particles of a medium explicitly
(wouldn’t fit in memory, completely impractical to ray trace)

The properties are described statistically using various
coefficients and densities

- Conceptually similar idea as microfacet models
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Defining Participating Media

Homogeneous:

Hﬁwg oYy LA

- Infinite or bounded by a surface or simple shape
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Defining Participating Media
Heterogeneous (spatially varying coefficients):

- Procedurally, e.g., using a noise function

- Simulation + volume discretization, e.g., a voxel grid
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Radiance
The main quantity we are interested in for rendering is radiance

Previously: radiance remains constant along rays between
surfaces
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Radiance

The main quantity we are interested in for rendering is
radiance

Now: radiance may change along rays between surfaces
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Participating Media



Differential Beam

A<

How much light is lost/gained along the differential beam
due to interactions of light with the medium?
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Differential Beam Segment

Outgoing light
W

Incoming light
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Absorption

= —0,(X)L(x,d)dz

O, (X) . absorption coefficient

m™]
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Out-scattering

dL(x,0) = —04(x)L(X,d)dz

O (X) : scattering coefficient [m_l]



In-scattering

0s(X)Ls(x,0)dz
O (X) . scattering coefficient

Ls(x,0) :in-scattered radiance

m™]
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dL(x,0) = 04(x)Le(x,0)dz

*Sometimes modeled without ( ) absorption coefficient
the absorption coefficient just .
by specifying a “source” term L.(x,0) :emitted radiance

m™]
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Radiative Transfer Equation (RTE)

Absorption Out-scattering

dL(x,©)

Losses

Gains

Emission In-scattering



Losses (Extinction)

Absorption Out-scattering
dL(x,0) = —0,(X)L(x,0)dz — 04(x)L(x,0)dz
—o4(x)L(x,J)dz

O¢ (X) : extinction coefficient [m_l]
. total loss of light per unit distance

What about a beam with a finite length?
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Extinction Along a Finite Beam

dL(x,0) = —04(X)L(x,0)dz
dL(x,0) B
L(x,&) 712
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Beer-Lambert Law

Expresses the remaining radiance after traveling a finite distance
through a medium with constant extinction coefficient

The fraction is referred to as the transmittance

Think of this as fractional visibility between points

Radiance at distance z

N

L,
— =€
L

-~ L

Radiance at the beginning
of the beam \
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Transmittance

Homogeneous volume:

T (x,y) = e Fx]

Heterogeneous volume (spatially varying o ):

_ OHX_YH o (t)dt

\

T.(x,y)=c¢

Optical thickness

1 T'r

0 distance



Transmittance

Homogeneous volume:

T,(x,y) = e =]

Heterogeneous volume (spatially varying o ):

—| [yl o, (t)dt

\

T.(x,y)=c¢

Optical thickness

Transmittance is multiplicative:

I (x,2) = T (x,y)T:(y, 2) /

X



Radiative Transfer Equation (RTE)

Absorption Out-scattering

Emission In-scattering



Volume Rendering Equation

L(x,0) =1T,(X,%X,)L(x,,0)

\

Reduced (background) surface radiance

A L, )
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Volume Rendering Equation

L(x,d)

_|_

T.(x,x,)L(x,,&)

/ Ty (x, %,)00 (x0) Lo (%1, ) dt
0

\

Accumulated emitted radiance
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Volume Rendering Equation

L(x,d)

_|_

_|_

T.(x,x,)L(x,,&)

/ T (x, %1)00 (x4) Lo (0, &) dt
0

/ T, (x, %0)7a (32) L (31, )t
0

\

Accumulated in-scattered radiance
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Volume Rendering Equation
L(x,0)="T,(x,X,)L(x,,x)

' / T, (%, %1)0 (30) Le (30, &)
0

' / T (3, %) (0) | (30, &L @) La (x4, &) At
0 S2

\

Accumulated in-scattered radiance
/\5 X "\
O




Volume Rendering Equation

L(x,0)=T.(x,x,)L(Xx,,0)

+ T (X, X¢)0q (Xt ) Le (X, @) dt

/0
+/ T (x,x¢)0s(x¢) | [fo(xe, ) 0)Li(x4,0")dd’ dt
0

S2
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Scattering in Media



Phase Function f,

Describes distribution of scattered light

Analog of BRDF but for scattering in media
Integrates to unity (unlike BRDF)

fo(x,0,0)dd" = 1 Why do we have this property?
S2

*We will use the same convention that phase function direction vectors always point away from the
shading point x. Many publications, however, use a different convention for phase functions, in which
direction vectors “follow” the light, i.e. one direction points towards x and the other away from x. When

reading papers, be sure to clarify the meaning of the vectors to avoid misinterpretation.
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|Isotropic Scattering

Uniform scattering, analogous to Lambertian BRDF

]_ 105° e 75°
=/ = 0.096
_ 120° 60°
fp (w,w) = —
0.080
47 :

150°

165°

Where does this value come from?

180°

195"

210°

240° 300°

255 sups 285

30°

15°

345°

2307
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Anisotropic Scattering

Quantifying anisotropy (g, “average cosine”):

g= [ [fo(x,&; &)cosbdd
82
where:
u—}»/
cosh = -G - &' 0
(0 X —

g = 0 :isotropic scattering (on average)
g > 0 : forward scattering
g < 0 : backward scattering
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Henyey-Greenstein Phase Function

Anisotropic scattering

1 1 — ¢°
A7 (1 + g2 — 2g cos 9)3/2

D £ <5

prG( )

46



fpac (0

90°

105° 75°
120° 60°
0.5
135° 45°
0.4
150° 0.3
0.2
165°
0/1
180°
195°
210°
225° 315°
240° 300°
255 270° 285

1

1—92

30°

15°

OD

345°

330°

150°

165

180°

195°

210°

" 4r 1 4+ g2 — 2g cosf)3/2

g=7_

105° 20 75°

120° ' 60°

[@»)
[en]
(o)
[0)]

0.080

30°

15°

345

330°

240° 300°

255 g 206

9

105°
120°
135°
150°
165°
180°
195"
21.9°
2Z9"
240°
255"

90°

4.0

3.2

2.4

1.6

0.8

Henyey-Greenstein Phase Function

Anisotropic scattering

ke

75°
60°

45°

30°

15°

= -

270"

345°

330°

315*

300°
285"

47



Henyey-Greenstein Phase Function

9

—0.99
Linear plot
1L.O5* el 75°
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Henyey-Greenstein Phase Function
Empirical phase function
Introduced for intergalactic dust

Very popular in graphics and other fields
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Schlick’s Phase Function
Empirical phase function

Faster approximation of HG

1 1 — k?

chlic 0) =
fpseticic(0) 47 (1 — k cos 0)?

k = 1.55g — 0.55¢”
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Schlick’s Phase Function

Empirical phase function

Faster approximation of HG
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Lorenz-Mie Scattering

If the diameter of scatterers is on the order of light
wavelength, we cannot neglect the wave nature of light

Solution to Maxwell’s equations for scattering from any
spherical dielectric particle

Explains many phenomena

Complicated:

- Solution is an infinite analytic series
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Linear plots

Sphere diameter = lum
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Data obtained from http://www.philiplaven.com/mieplot.htm
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http://www.philiplaven.com/mieplot.htm

Rainbows

54



Lorenz-Mie Approximations

Hazy atmosphere Murky atmosphere

8 32
fphazy (0) = i (5+ (1 -|-;3089) ) £ i (6) = ﬁ (17+ (1 —|-2(ZOSI9> )

90° 90°

105° 75° 105° 75°
0.48 o
120° 60° 120° 1.6 60°
1 o 040 4 o] 1 o 14 4 o]
35 5 35 ™ 5
0.32
1.0
150 — 30 150 » 30
0.16 0.6
165° 15° 165° 0.4 15°
0/08
0.2
180° 0° 180° 0°
195° 345° 195° 345°
210° 330° 210° 330°
225° 315° 225° 315°
240° 300° 240° 300°
255° 285° 255° 285°

270° 270°



Lorenz-Mie Approximations

Hazy atmosphere Murky atmosphere

1 1 + cosf ; 1 1 + cosb
fphazy(e) — E (5 =+ ( 9 ) ) fpmurky(e) — E (17—|— ( 9

J)
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Rayleigh Scattering

Approximation of Lorenz-Mie for tiny scatterers that are
typically smaller than 1/10th the wavelength of visible light

Used for atmospheric scattering, gasses, transparent solids

Highly wavelength dependent
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Rayleigh Phase Function

105° 20 73"

120° 0.14 60°

0.1.2
135° 45°

0.10

150° 0.08 30°

165°

180°

195°

210" 330°

223" 315°

240° 300°

255 s 285

prayleigh(Q) — 16

15"

345°

3

T

Scattering at right angles is half as
likely as scattering forward or
backward

(1 + cos® )
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Rayleigh Scattering

Wavelength
/ Index of refraction

27T5d6 n° — 1
O sRayleigh (A, d, 7, p) = p M\ 2+ 2

K K Density of scatterers
Diameter of scatterers

)2
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Rayleigh Scattering

272 O
34

JsRayleigh()\a d7 1, /O) — P

)
W

(U]

N
W

(\®)
T

Scattering cross-section [barns]

400 450 500 550 600 650
Wavelength [nanometers]

700

750
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Examples

ol

h

Dana Stephenson/Getty Images
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Examples

Steam

Forward scattering

r

Backward scattering
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Examples

|sotropic scattering
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Examples

Forward scattering
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Why is the Sky Blue?

Atmosphere

%/_\\
Earth



Why is the Sunset Red?

Atmosphere

/Ea_rth\g
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Rayleigh Scattering
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Media Properties (Recap)

Given:

- Absorption coefficient

- Scattering coefficient

Phase function

Derived:

Extinction coefficient
Albedo
Mean-free path

Transmittance
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Homogeneous Isotropic Medium

Given:

- Absorption coefficient Ja [m_l]

- Scattering coefficient O s [m_l:

- Phase function S st
47 '

Derived:

- Extinction coefficient Ot = 0q + 0 :m_l:

- Albedo a=0s/0 none

- Mean-free path 1/oy m|

- Transmittance T, (x,y) = e otllx=yll ‘none]
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What is this?

70


http://en.wikipedia.org/wiki/File:Anticrepuscular_Rays.jpg

Crepuscular Rays
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http://en.wikipedia.org/wiki/File:Crepuscular_Rays_Panorama_HD_-_Copy.jpg

Anti-Crepuscular Rays
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http://en.wikipedia.org/wiki/File:Anticrepuscular_Rays.jpg

Crepuscular rays from space

/3


http://en.wikipedia.org/wiki/File:Anticrepuscular_Rays.jpg

Solving the
Volume Rendering Equation



Complexity Progression
homogeneous vs. heterogeneous

scattering

- none

- fake ambient
- single

- multiple



Volume Rendering Equation

/ Attenuated background radiance

Accumulated emitted radiance
L(x.,6) [

T,,. (X,X¢)00(X¢) Le(X¢,0)dt

c\c\ﬁ

Tr (X, X¢)0s(X¢) Lg(x¢,0)dt

\

Accumulated in-scattered radiance
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Purely absorbing media

/ Attenuated background radiance

L(x,0) =|T,(X,%X,)L(x,,0)




Fog



http://anordinarymom.wordpress.com/2009/01/29/fog/

Participating Media

(X X¢)| 05

(x¢)|L; (x¢,0) dt + Th- (x> Xg)L(xs,

T (X X;)

—tO’t
€ L’L (Xta

L,,; (Xt, u_}) dit -+

T (x> Xg)

W) dt +e %

L(Xs, &)
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Fog

S

e "% L;(x¢,d) dt + e % L(x,, D)

31


http://anordinarymom.wordpress.com/2009/01/29/fog/

Homogeneous Ambient Media

Assume in-scattered radiance is an ambient constant:

S

L(x,0) = asfe_t"t
0

L’IJ (Xta u_j)

dt + e °? L(xg, W)
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Homogeneous Ambient Media

Assume in-scattered radiance is an ambient constant:
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OpenGL Fog
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OpenGL Clear Day
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- http://anordinarymom.wordpress.com
.,



http://anordinarymom.wordpress.com/2009/01/29/fog/

e e
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http://www.96dpi.de

Andreas Levers


http://www.96dpi.de

Volume Rendering Equation

Accumulated in-scattered radiance
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In-scattered Radiance

L(x,0) = /OZ T (x,x¢)0s(X¢ ) Ls(x¢,00)dt

Single scattering

Ls(Xtau—j) — fp(Xtawgﬁ)Li(Xh@”)dﬁ/

82

- L; arrives directly from a light source (direct illum.)

l.e.:

L’i (Xa Jj)

Multiple scattering

=T, (x,7(X,0)) Le(r(x,0), —&)

- L; arrives through multiple bounces (indirect illum.)
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Single Scattering
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Single Scattering

L(x,0) :/ T (x,x4)0s(x¢) | [p(Xe, & 0) T (Xy, Xe ) Le (Xe, —@ ) ddd dt
0 S2

<
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Single Scattering

L(x,0) :/ T, (x, Xt)O'S(Xt)/ fo(X¢, 5 O) T (X, Xe ) Le (X, =& ) did dt
0 S2
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Single Scattering

r

L(x,0) =

98



Single Scattering

L) = | Tolxx)ou(xe) [ f(c8lD)T, (x0x) Lo, )i d
0 S2

(Semi-)analytic solutions:
- Sun et al. [2005]
- Pegoraro et al. [2009, 2010]

Numerical solutions:
- Ray-marching

- Equiangular sampling



Analytic Single Scattering

L) = | Tolxx)ou(xe) [ f(c8lD)T, (x0x) Lo, )i d
0 S2

Assumptions:

- Homogeneous medium

- Point or spot light

- Relatively simple phase function

- No occlusion
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OpenGL Fog

101



Analytic Single Scattering

102



Analytic Single Scattering




Andreas Levers

o



http://www.96dpi.de

Andreas Levers


http://www.96dpi.de

Analytic Single Scattering

—Hv

Ks % (xa—xn) = = e k
Lnl(x,ﬂ:xb?m) — > pM\FtaTxh)n Z c(n) Zd(n,k)/ (1’2—|— l)n—{—lv dv
n=0 k=0 Va

o . 1 m=lq m—1-+1 min{m—1—In} n am_l_g_k
CE T 21( m—1 )( L )\ mo 1= E@vm o=+ k)
k

=0 k=0
_Eavm_lz_‘g_ (j— 1)! am—l—f—k—j if (_l)m—n—e‘!2+k—j+f (j) vf)
—1=]— 2 | .
= (m—1-1—k)! (v2+1)J i=(m—n—I-+k—j) mod 2 I
i+=2

P <n—m-+I n n—m-+Il—k (H—I’H—Fl- k)' 1 <J — mHl+k— j+i j i
T a )3 (k) L L (—a)r—mHi=k=J. L =1 i)’

i=(—m+I+k—j) mod 2
i+=2

No shadows, implementation nightmare, computationally intensive...
Let’s try brute force!
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Ray-l\/larching

/ T (x,X:)0s(X¢) Lg(X¢,0)dt
0

Approximate with Riemann sum

108



Ray-Marching

109



Ray-Marching

L(Xa (*‘_j) ~ Z Tr (X, Xt,i)as (Xt,i)Ls (Xt,ia @)At
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Ray-Marching

L(Xa C‘_j) ~ Z: T’r' (X, Xt,i)as (Xt,i)Ls (Xt,ia Q)At
1=1

—0t||%,%¢,i

Homogeneous volume: T5.(X,X; ;) = €
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Ray-Marching

L(Xa C‘_j) ~ Z: Tr (X, Xt,i)as (Xt,i)Ls (Xt,ia Q)At
1=1

Heterogeneous volume: T).(x,X; ;) = T (X, X4 ;1) e~ Ot(Xe,i) At

Assume constant extinction
along each segment
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Ray-Marching
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Ray-Marching

Lol ) = [ fylo, 310 Lilx0, ')
8’2

4
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Ray-Marching

M S
- 1 f (Xtv ‘7("")) )
Ls(Xtaw) Z - ’

X

4
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Ray-Marching

Single scattering:
Li(Xta (-3) — Tr(Xta Xe) Le(Xea —03)

1
4
X€

Another ray-marching needed to estimate the

- transmittance along the connection ray (in
® b heterogeneous media)
o <5
F
o
Xt
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Ray-Marching in Heterogeneous Media

Marching towards the light source
- Connections are expensive, many, and uniformly distributed along

the primary ray
' /M\\
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Decoupled Transmittance and In-scattering
1. Ray-march and cache transmittance

- Choose step-size w.r.t. frequency content to accurately capture
variations

Piece-wise approximation of

T’I" (Xy Xt)
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Decoupled Transmittance and In-scattering

2. Estimate in-scattering using MC integration

- Distribute samples & (part of) the integrand

4
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Decoupled Transmittance and In-scattering

2. Estimate in-scattering using MC integration

- Distribute samples X (part of) the integrand
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Decoupled Transmittance and In-scattering

2. Estimate in-scattering using MC integration

- Distribute samples X (part of) the integrand

d : distance to light
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Decoupled Transmittance and In-scattering

2. Estimate in-scattering using MC integration

- Distribute samples X (part of) the integrand

<

d : distance to light
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Decoupled Transmittance and In-scattering

2. Estimate in-scattering using MC integration

- Distribute samples X (part of) the integrand

d : distance to light
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Decoupled Transmittance and In-scattering

2. Estimate in-scattering using MC integration

- Distribute samples X (part of) the integrand

SN
5 .l.l.'l.l.l'i\

o
H ﬂ 'd . distance to light

124



Decoupled Transmittance and In-scattering

Ray-marching Equiangular sampling

Images courtesy of Kulla and Fajardo 125



Multiple Bounces

Same concept as in recursive Monte Carlo ray tracing, but
taking into account volumetric scattering

Exponential growth:

126



Visual Break

Single scattering Multiple scattering




Volumetric Path
Tracing



Volumetric Path Tracing

Motivation:

- Same as with standard path tracing: avoid the exponential growth

Paths can:
- Reflect/refract off surfaces

- Scatter inside a volume

129



Volume Rendering Equation

/Accumulated emitted radiance

L(x, @) = /OZ Ty (x, x¢)0a (Xt ) Le(x¢, ) dt

Z
—I—/O T, (x, x¢)0s(x¢ ) Ls(x¢, @) dt

+ T, (x,%x;)L(x5, @)\
\

Accumulated in-scattered radiance

Attenuated background radiance
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Volume Rendering Equation

/Accumulated emitted + in-scattered radiance

/OZ T, (x, x¢)

02 (xt) Lo (xt, @) + Us(xt)LS(xt,(Z’)):

dt

T, (x,x;)L(x5, @)

\

Attenuated background radiance
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Volume Rendering Equation

L(x, @) = /OZ T, (x, x¢) :aa(xt)Le(xt,(I’)) + 05(x¢) Ls (xt,d’)): dt

132



1-Sample Monte Carlo Estimator

t) - probability density of distance ¢

S
N

P(z) - probability of exceeding distance z
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1-Sample Monte Carlo Estimator

. T, (x, ~ @, ;)L(x¢, @
(L(x,@)) = r;(o)zt;(t) 0a2(x¢) Le(X¢, @) —I—(TS(xt)fp( Pzzﬁg i)
L 1
I (x, .
I rl(?)EZXZ)L(Xz/W)
p(t) - probability density of distance ¢

P(z) - probability of exceeding distance z

p((f)i) - probability density of direction (Z’)i

134



Volumetric Path Tracing

1. Sample distance to next interaction

2. Scatter in the volume or bounce off a surface

135



Volumetric Path Tracing with NEE

é
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Sampling the Phase Function

|sotropic:

- Uniform sphere sampling

Henyey-Greenstein:

- Using the inversion method we can derive

1 1 — g :
cosf=— |1+ 2—( )
29( 71 -g+268) )

¢ = 2m&2
- PDF is the value of the HG phase function
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Free-path Sampling
Free-path (or free-flight distance):

- Distance to the next interaction within the medium
- Dense media (e.g. milk): short mean-free path

- Thin media (e.g. atmosphere): long mean-free path

ldeally, we want to sample proportional to (part of) integrand,
e.g. transmittance:

p(x:|(x,0)) o< T (X, X¢)

)simplified notation for brevity
p(t) o< T:-(t)
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Free-path Sampling

Homogeneous media: T.(t) = e~
- PDF: »p(t) xe 7
—O'tt
p(t) € — O.te—O'tt

foo e~ 0tSds
0
¢

- CDF: P(t) — / ore 7t5ds = 1 — o Ott
0
In(1 —¢)

Ot

- Inverted CDF: P~ (§) =
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Free-path Sampling
Homogeneous media: T.(t) = et
Recipe:

- Generate random number ¢

- Sample distance ;- 21 =9

oF;

- Compute PDF p(t) = et
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Free-path Sampling
Homogeneous media: T.(t) = et
Recipe:

- Generate random number §

- Sample distance t:}(%) _

_ L —o;t __—04S Note: This is now a probability, not
COmPUte PDF p(t) — 0 — € ~— a probability density!
M
X X .
S ——
S Surface hit before reaching ¢
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Volumetric PT for Homogeneous Volumes

Color vPT(Xx, w)

tmax = nearestSurface(x, w)

t = -log(l - randf()) / ot // Sample free path

ift < tmax: // Volume 1interaction

X += (*x W

pdf t = ot * exp(-ot * )

(w’>, pdf w’) = samplePF(w)

return Tr(t) / pdf t x (0a * Le(X, w) + 0s * PF(w, w’) * VvPT(X, w’) / pdf w’)
else: // Surface interaction

X += tmax *x w

Pr tmax = exp(-ot * tmax)

(w’>, pdf w’) = sampleBRDF(n, w)

return Tr (tmax) / Pr tmax * (Le(X, w) + BRDF(w, w’) * vPT(X, w’) / pdf w’)




Volumetric PT for Homogeneous Volumes

Color vPT(Xx, w)
tmax = nearestSurface(x, w)

t = -log(l - randf()) / ot

// Sample free path

ift < tmax: // Volume 1interaction
X += t*x W

pdf t = ot * exp(-ot * t)

(w”, pdf_w’)
// Note: transmittance and PF cancel out with PDFs except for a constant factor 1/ot

return Tr(t) / pdf t x (0a * Le(X, w) + 0s * PF(w, w’) * VvPT(X, w’) / pdf w’)

else:

Pr tmax = exp(-ot * tmax)

samp lePF (w)

// Surface interaction
X += fmax * w

(W, pdf_ w’)

// Note: transmittance and prob of sampling the distance cancel out
return Tr (tmax) / Pr tmax * (Le(X, w) + BRDF(w, w’) * vPT(X, w’) / pdf w’)

fol, @

sampleBRDF(n, w)

g (xt)Le(xt/ (f)) + O (xt)

N——

L(Xt, a—jl) -

P

(

(0

1

)




Volumetric PT for Homogeneous Volumes

Color vPT(Xx, w)
tmax = nearestSurface(x, w)

t = -log(l - randf()) / ot

// Sample free path

ift < tmax: // Volume 1interaction
X += t*x W

pdf t = ot * exp(-ot * t)

(w”, pdf_w’)
// Note: transmittance and PF cancel out with PDFs except for a constant factor 1/ot
return oca/ot * Le(X, W) + os/ot * VPT(X, w?’)
// Surface interaction

X += fmax * w

else:

Pr tmax = exp(-ot * tmax)

(W, pdf_ w’)

// Note: transmittance and prob of sampling the distance cancel out

samp lePF (w)

sampleBRDF(n, w)

return Le(X, w) + BRDF(w, w’) * vPT(x, w’) / pdf w’

g (xt)Le(xt/ (f)) + O (xt)

fol, @

N——

L(Xt, a—jl) -

P

(

(0

1

)




What about heterogeneous media?
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Free-path Sampling
Heterogeneous media:  T,.(t) = eJo ~o:(s)ds
- Closed-form solutions exist only for simple media

e e.g. linearly or exponentially varying extinction
- Other solutions:

e Regular tracking (3D DDA)

e Ray marching

e Delta tracking

146



Free-path Sampling

How to sample the flight distance to the next interaction?

Random variable representing flight distance

T(t) =e h®ds = p(xX'> t) o
P(X < 1) = F{t)

Partition of unity

Ft)=1-T(t)
~— Recipe for generating samples
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Free-path Sampling
Cumulative distribution function (CDF)
Ft)=1-T(t)=1—e ¥

Probability density function (PDF)

CdE(t)  d o e
plt) = == = + (1—e ) — 0i(t)e

Inverted cumulative distr. function (CDF!)
F=1— o T(1) Approaches for finding t:
‘Solve for t 1) ANALYTIC (closed-form CDF-1)

t 2) SEMI-ANALYTIC (regular tracking)
/0 ot(s)ds = —In(1 —¢) 3) APPROXIMATE (ray marching)
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Regular Tracking (Semi-Analytic)

For piecewise-si ' '
o simple (e.g. piecewise-constant), summation replaces integration

/0 0i(s)ds = —In(1 —¢)

k
) 0iAj=—In(1—¢)
1=1

Regular tracking:

1) Draw a random number &

2) While LHS < RHS
move to the next intersection

3) Find the exact location
in the last segment analytically

(Hierarchical) voxel grid

~ LHS > RHS

_ Sampled
Start collision
LHS=RHS
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Ray Marching

Find the collision distance approximately

/0 0i(s)ds = —In(1 —¢)
T

Z oA = —In(1—¢)

\ Constant step

Ray marching:

1) Draw a random number &
2) While LHS < RHS
make a (fixed-size) step

3) Find the exact location
in the last segment analytically

Start

(Hierarchical) voxel grid

LHS > RHS

— Sampled
collision

LHS=RHS
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Ray Marching

Find the collision distance approximately

/0 0i(s)ds = —In(1 —¢)
$|~

Z(th — —In(1 —¢)

K Constant step

Ray marching:

1) Draw a random number &
2) While LHS < RHS
make a (fixed-size) step

3) Find the exact location
in the last segment analytically

Start

General volume

LHS > RHS

< Sampled
collision
LHS=RHS
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Ray Marching

Find the collision distance approximately

/0 0i(s)ds = —In(1 —¢)

k ™ General volume
) 0yiA =—In(1—¢) —
=1
Constant step e
> RHS
Ray marching:
1) Draw a random number 3 Sambled
2) While LHS < RHS o
_ , Start collision
make a (fixed-size) step | HS=
. . HS=RHS
3) Find the exact location “
1 the last segment analytically &
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Free-path Sampling

ANALYTIC CDF-1 REGULAR TRACKING RAY MARCHING
> Efficient & simple, > |terative, inefficient if > Iterative, inaccurate (or
limited to few volumes free paths cross many inefficient) for media
boundaries with high frequencies
> Simple volumes > Piecewise-simple > Any volume
(e.g. homogeneous) volumes
> Unbiased > Unbiased > Biased

Common approach: sample optical thickness, find corresponding distance
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Delta Tracking

(a.k.a. Woodcock tracking, pseudo scattering, hole tracking, null-collision method,..



Delta tracking idea
Add FICTITIOUS MATTER to homogenize medium

- albedo: a(X) =1

- - - -

- phase function: f,(w, w") = §(w — w")

Incident Outgoing
light light

Presence of fictitious matter
does not impact light transport

Fictitious particle
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Homogenization

_Volume
bounds

I’a

Real
particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

Volume
~bounds

Fictitious
~ particle

Real
~ particle
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Homogenization

_Volume
bounds

I’a

Real
particle
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Stochastic Sampling

Volume
«— __bounds

Real
~“medium
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Stochastic Sampling

Fictitious
medium

Majorant 5 — at(x) + an(x)

areeaoll i um—/
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Stochastic Sampling

P(x) = = Po(x) = ‘7“(_5")

Majorant 0 = 0t(x) + 0n(X)

Extinction

Distance

\"’fnu_— )




Stochastic Sampling

P(x) = = Po(x) = ‘7“(_5")

MajOrant 5’ — O't(X) O'H(X)

Extinction

~_ A ~___A IStance
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Stochastic Sampling

P(x) = = Po(x) = ‘7“(_5")

MajOrant 5’ — O't(X) O'H(X)

Extinction

~N A~ A ~ A IStance
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Stochastic Sampling

Real
collision

Extinction

>

— > Distance
Sampled free path
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Impact of Majorant

Majorant 5 — (Tt(x) (Tn(x)

Extinction

>

- > Distance
Sampled free path
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Impact of Majorant

Extinction

Majorant 5 — (Tt(x) 4+ (Tn(x)

Tight majorant = GOOD
(few rejected collisions)

= i > Distance *
Sampled free path
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Impact of Majorant

Majorant 5 — (Tt(x) (Tn(x)

Extinction

Loose majorant = BAD
(many expensive rejected collisions)

— — — Distance *
Sampled free path
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Delta Tracking

voild preprocess()

majorant = findMaximumExtinction()

void sampleFreePath(x, w)

t = 0

do:

// Sample distance to next tentative collision
t += -1In(1 - randf()) / majorant

// Compute probability of a real collision

Pr = getExtinction(x + txw) / majorant

while Pr < randf ()

return ¢
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Delta Tracking Summary

Unbiased, see [Coleman 68] for a proof

NUCLEAR SCIENCE AND ENGINEERING: 32, 76-81 (1968)

Mathematical Verification of a Certain Monte Carlo
Sampling Technique and Applications of the
Technique to Radiation Transport Problems

W. A. Coleman
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

Received September 27, 1967
Revised November 10, 1967

The first section of this paper is amathematical construction of a certain Monte
Carlo procedure for sampling from the distribution

FX) = X 2(x) expl - §F Zlo) dv ldx, 0=X .

The construction begins by defining a particular random variable A. The distribu-
tion function of A is developed and found to be identical to F(X), The definition of
A describes the sampling procedure, Depending on the behavior of I(x), it may be
more efficient to sample from F(X) by obtaining realizations of A than by the more
conventional procedure described in the paper.

Section II is a discussion of applications of the technique to problems in radia-
tion transport where F(X) is frequently encountered as the distribution function for
nuclear collisions. The first application is in charged particle transport where
Z(x) is essentially a continuous function of X, An application in complex geometries
where Z(x) is a step function, and changes values numerous times over a mean
path, is also cited. Finally, it is pointed out that the technique has been used to
improve the efficiency of estimating certain guantities, such as the number of
absorptions in a material,

INTRODUCTION Restriction (a) ensures that F(x) is a nondecreas-
ing function of x, while (b) ensures that F(«) = 1,
One scheme for obtaining realizations of a
random variable having the distribution F(X) is as
follows. Consider the random variable n which

has distribution

In certain Monte Carlo problems it is neces-
sary to obtain realizations (sample values) of a
random variable having a distribution function®

given by
X x
FX) = Z(x) exp[- v)dv ] dx 0<sX v _
L J; i (13 Fy(Y) = fo e’dv, 0sY
where Z(x) is any real valued function having the  por each value of 1 define
properties: i
) 6=9¢""(n) ,
(a) 0 < Z(x) for 0 < x,
() lim [’ Z(x) dx =.
¥ =00 -I;’ 7}':@(9): j;ﬁ E(u)du

(c) Z(x) is bounded; there is an M >0 with 0 <
Z(x) < M for all x.

where

The random variable 6 has the distribution F(X)

given in Eq. (1). To obtain a realization of ¢ one
alf F(X) is a distribution function it is nondecreasing,  might first sample from F,{Y), realizing m. Then

F(-») = 0, and F(eo) = 1, Many authors refer to such

functions as cumulative distribution functions. 6y = ¢"H(m) . 2)
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Sampling from F,}( Y) is common practice in Monte
Carlo calculations, However, the solution of Eq.
(2) for #,, given m;, may be rather laborious.

In practice it is often easier to obtain realiza-
tions from Eg. (1) by another procedure. This
procedure is described in Sec. I in terms of
the definition of a certain random variable A,
whose distribution is identical to that given in Eq.
(1). In most applications it is fairly easy to argue
that A must be distributed according to Eq. (1) for
physical reasons., The development in Sec. I is
intended to provide a mathematical perspective
for understanding existing applications and to
encourage recognition of new applications. Section
Il is a summary of three current applications.

. DEVELOPING THE DISTRIBUTION FUNCTION
FOR

The purpose of this section is to construct the
distribution function of a random variable A whose
values are the termination points of a certain
random walk to be described presently. The
construction is based on the following hypotheses:

A. Let Z(x) be as described in conjunction with
the distribution in Eq. (1).

B. Let (&), &2, ..., &, .. .) denote an infinite
sequence of totally independent random variables
having a common distribution funection,

PlE < x)= Rx)= [m e ax,

0=sXx; i=1,2,...
where M is a fixed upper bound of Z(x).

C. Define o(x) = Z(x)/M and a(x) = 1 - olx),
where 0 = x, to simplify notation.

D. Let (py, p2, . - ., P, . . .) denote an infinite
sequence of totally independent random variables
having a common uniform distribution function,

P(pi <R)= F{R)= R, 0< R<1;
e 11 it 41 4]

E. Let (¢4, €5 . . ., €., . . .) denote the infinite
sequence of random variables which are the cum-
ulative sums of the £;:

g1 = 2% HELITReRE 1 €01 I el R (AL LY 11 S
j=1

Co=£6=0 .
F. Denote the minimum value of n for which
ol =1a(El] S| s =13 200 18 R ),
by N.

G. Let A denote the random variable £y. The
values of A are defined as those values of the £,
for which » takes on the value N.

The hypotheses A through G form a construc-
tive definition of A, They describe explicitly the
procedure for obtaining realizations of A. Let x;,
¥i, 2i, and L denote realizations of §;, p;, {;, and
A, respectively. Using this notation, the procedure
is as follows:

1) Assign i the value 1, zo the value 0.

2) Generate x; and 7;.

3) Calculate 2; = 2;-; + x; .

4) I »; < o(z;), stop and assign I the value z;;
otherwise increment i by 1 and proceed to step 2.

For brevity in all of the discussion that follows,
the procedure outlined above will be referred to
as the A procedure. The distribution function for
A will now be constructed using the hypotheses A
through G.

Denote the event for which N=1and A < Z by

Ei={py <0(ty), &y < 2}

where Z is an arbitrary fixed value in the range of
A. Similarly denote the event for which N= 2 and
A< Z by

E: = {p>0@)), p2<ol), L < 2} .
This notation is extended to describe the events
for general N >land A < Z:

E, = {ps >o(ty), p2 > ola), . . ., ppoy >0l ),
Pn s 08,), 8 < 2}
The event {2 < Z} can occur in any of the mutually

exclusive ways Ey, Ea, ..., E, ... Hence, the
distribution function for A may be written as

(=]
Pr<2Z]= F(2)= 22 PE,) . (3)
n=1
Each of the joint probabilities P(E,), n=1, 2, . . .,
may be expressed in terms of the random walk
increments £;, i = 1,2, ...

P(E)) = Plpy < olty), & < Z]

78 COLEMAN

The probability that p, <o(£,) and £, € Z may be expressed as the integral of the conditional probability
that p, < o(¢,) given &, = x, with respect to the marginal distribution’ F¢(x,):

z -
P(E,) = LZ Plp, < o(&y) 1€ = x1] ng(-h) = j; alx) Me g, (4)
Similarly,
z P Z-‘E‘,l X n=1
P(E,) = J; J; 1 fo =t Plpy>olEy), ..., Pu-s >U{,§1 g,-} ,
Py < "{EIEI} &= %1, ..., &= xn] dFe, .. 6, (x1y 0y x) . (5)
1=
Fe, o« 80Xy, . . ., %) denotes the joint distribution function of the variables ,, . . ., £,. The integral
limits in Eq. (5) are determined by first noting that 0 < §;, and, hence {;, < ¢;,7 =1,2,.,.. For the
event E, to occur, it is necessary that {, < Z, which implies £, <. .. <{, < Z. In terms of §;, it is

i-1
necessary that §; <Z - X §jfori =2,3,..., n
o

i
Since pi, P . . . , P are totally independent, the integrand in Eq. (5) is equal to

n=1
p[91>0(51) lgI: xl.] . e Pl:pﬂ-l_>c{ E g:}l'g:‘. = Xiy o ov ooy En-l = xn-l]

i=1

X _PI:,O,,E* U{E &:}151 = Xy . '-s&r’xn]
i=1

Also &4, . . ., &, are totally independent and have a common distribution function, so that
Fy o6,y 00 x) = Flxl) oo F(x,) = F(x) .. . Fe(x) .

Substituting these relations into Eq. (5) gives

n=1

PE)= [F [T [FET Ploy > o)l = 1))

0

e P[Pn-1>0{§15-} |§1: X1y oy Eni1 = Xnoy ]

X P|:p” = U%Z”; &,} |£1= X1y o 0 0y E,, = x,,} dFe(xl) e e ng(x,,)
i=1

S TR o)

e j:l - 0’{”5 x,-}] O‘{Ai x,} Me =M1 Me~MEn

It is convenient to proceed with the probabilities expressed in terms of the variables &, . . ., ¢,.
The transformations from £, ..., &, are direct. Introducing o(x) for brevity, the expressions for
P(E,) and P(E,), n = 2, become

P(E)) = foz o(z)) Me ™ dz,
and
—Mz z 2z z
P(E,) = /;Z dz,M" o(z,) e Mz j‘; "dz,,_l alz,_,) fo " ldz,,_g . L 2f:izl alz,)
= [7 azyo(z) M"e™ [T dz, alz,) 2 [ dznatz) (6)

'See for example, WILLIAM FELLER, An Introduction lo Probability Theory and its Applications, Vol. I, p. 154
ff (1966).

MONTE CARLO SAMPLING TECHNIQUE 9

It will now be proved that

[j:l a(v) d’v]ﬂ-l

ot 22 *n-1 _
j; dZQ ﬂ'(zz) j; . s j; dz,; a'(aﬂ) = (?2 - 1)! )

Equation (7) is true for n = 2 by inspection. For n =3,

d [Lzz G(z}dl]z i [j:l G{z)dz:lz

dz: 2 21

2<n . (7)

[ dzaalzn) [ dzgalzs) = ) de.

Assuming Eq. (7) to be true for arbitrary =, it can be shown to hold for # + 1 by multiplying Eq. (7) by
@(z,) and integrating from 0 to 2,
z n=1
U; ' a(v)dv]

%no
_f dz, a(z,) j:la'zz. .. _}; " dz, ofz,) j: dzy alzy)

(n - 1)1
/] 'z "
. g T ewa]” [ ewa]
X L da dz, n! B n!
It follows that Eq. (7) holds for arbitrary n = 2,
Substituting the identity [Eq. (7)]into Eq. (6) gives
n=1

2 o [J;zl alv) du]

P(Eu)= j'; dZI.U(Zl) M'e EL (n_l)] 7 2=n

Equation (3) becomes

U:i ﬂ‘(v)dv]"_1

P <2) (n-1)!

x w0
2 P(E)=PE)+ L _’;Z dz,0(z1) M" e M=t
n=1 P

[M Lzl a(v}dv}u

n!

"i:;o foz dzy0(zy) M e ™ML
: fﬂz dasole) Mot axp [M .1:1 a(v) dv] = j;z dz1 Mo(z,) exp [’ Lzlmc(v)dj

= f7 X(z)e!q)[- Ia E(v)dv] dz

Hence A has the distribution function given in Eq. (1).

II. APPLICATIONS OF THE TECHNIQUE TO
RADIATION TRANSPORT PROBLEMS

and the kinetic energy FE of the incident particle.
The kinetic energy of a charged particle varies
between nuclear events due to interactions with
electrons. For the more massive charged par-
ticles, such as protons and alphas, the kinetic
energy is usually assumed to be a continuous,
decreasing function of position. Consider a ma-
terial composed uniformly of one nuclear species
N. Assume the kinetic energy E, of a particular
type of particle p at a position zo, = 0 is known,
The kinetic energy E of p at an arbitrary point
z >z is a function of z.

E=fp,.\',£u(z) .

The macroscopic cross section for a particle Each of the variables p, N, and Eo, has been fixed.
of type p undergoing a nonelastic collision with a  Denote the macroscopic nonelastic cross section,
stationary nucleus of type N depends upon p, N, under these conditions, by Zi(z). The distance

The A procedure described in Sec. I is useful
as a Monte Carlo technique in solving certain
transport problems. This section is a summary
of three situations in which the A procedure has
been utilized. In each case Z(z) is a nuclear
cross section and z is a relative position variable
to be determined. The value of Z(z) determines
the relative frequency of nuclear collisions per
unit of particle track length.

High-Enevgy Chavged Particle Transport
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Delta Tracking Summary
Unbiased, see [Coleman 68] for a proof

Majorant extinction
- defines the combined homogeneous volume
- must bound the real extinction

- loose majorants lead to many fictitious collisions
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