

http://graphics.cs.cmu.edu/courses/15-468

15-468, 15-668, 15-868 Physics-based Rendering Spring 2021, Lecture 8

1

Course announcements

- Take-home quiz 3 will be posted today.
- Programming assignment 2 posted, due Friday 3/12 at 23:59. - How many of you have looked at/started/finished it? - Any questions?
- Second reading group on Friday 3/5, 3-5 pm. - Suggest topics on Piazza.
- Please participate in the discussion on take-home quiz solutions on Piazza: https://piazza.com/class/kklw0l5me2or4?cid=64

Overview of today's lecture

- Radiometric quantitites.
- A little bit about color.
- Reflectance equation.
- Standard reflectance functions revisited.

3

Slide credits

Most of these slides were directly adapted from:

• Wojciech Jarosz (Dartmouth).

Assumptions

separately at each wavelength

Geometric/ray optics

No polarization

No fluorescence, phosphorescence, ...

Light sources, reflectance spectra, sensor sensitivity modeled

5

Quantifying Light

Radiometry studies the measurement of electromagnetic radiation, including visible light.

Assume light consists of photons with:

- X: Position
- $-\vec{\omega}$: Direction of travel
- $-\lambda$: Wavelength
- Each photon has an energy of: $\frac{h c}{\lambda}$ $h \approx 6.63 \times 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg/s}$: Planck's constant $-c = 299,792,458 \,\mathrm{m/s}$: speed of light in vacuum - Unit of energy, Joule: $\left[J = kg m^2/s^2\right]$

How do we measure the energy flow?

Basic quantities (depend on wavelength)

- flux Φ
- irradiance *E*
- radiosity B
- intensity I
- radiance L

will be the most important quantity for us

Flux (Radiant Flux, Power)

total amount of radiant energy passing through surface or space per unit time

$\Phi(A) \qquad \left| \frac{\mathsf{J}}{\mathsf{s}} = \mathsf{W} \right|$

examples:

- number of photons hitting a wall per second
- this exactly?)

- number of photons leaving a lightbulb per second (how do we quantify

11

Irradiance

area density of flux

example:

divided by size of patch

Radiosity (Radiant Exitance)

area density of flux

flux per unit area **leaving** a surface

$$B(\mathbf{x}) = \frac{\mathrm{d}\Phi(A)}{\mathrm{d}A(\mathbf{x})} \quad \left[\frac{\mathrm{W}}{\mathrm{m}^2}\right]$$

example:

divided by size of patch

- number of photons reflecting off a small patch of a wall per second,

Radiant Intensity

directional density of flux power (flux) per solid angle

Solid Angle

Angle

- circle: 2π radians

Solid angle - sphere: 4π steradians

15

Subtended (Solid) Angle

Length/area of object's *projection* onto a unit circle/sphere

Radiant Intensity directional density of flux power (flux) per solid angle

 $I(\vec{\omega}) = \frac{\mathrm{d}\Phi}{\mathrm{d}\vec{\omega}} \qquad \left[\frac{\mathrm{W}}{\mathrm{sr}}\right]$ $\Phi = \int_{\mathrm{S}^2} I(\vec{\omega}) \,\mathrm{d}\vec{\omega}$

example: $\Phi = 4\pi I$ (for an isotropic point source) power per unit solid angle emanating from a point source

A hypothetical measurement device

$$L(\mathbf{x},\vec{\omega}) = \frac{d^2 \Phi(A)}{d\vec{\omega} dA^{\perp}(\mathbf{x},\vec{\omega})}$$

$$= \frac{d^2 \Phi(A)}{d\vec{\omega} dA(\mathbf{x}) \cos \theta}$$

flux density per unit solid angle, per perpendicular unit area

$$\frac{W}{m^2 sr}$$

Lambert's Cosine Law

 $E = \frac{\Phi}{A}$

Lambert's Cosine Law

remains constant along a ray (in vacuum only!)

incident radiance L_i at one point can be expressed as outgoing radiance L_o at another point

 $L_i(\mathbf{x},\omega) = L_o(\mathbf{y},-\omega)$

fundamental quantity for ray tracing and physics-based rendering

Overview of Quantities

- $\Phi(A)$ • flux:
- irradiance:
- radiosity:
- $I(\vec{\omega}) = \frac{d\Phi}{d\vec{\omega}}$ • intensity:
- radiance:

expressing *irradiance* in terms of radiance:

- $L(\mathbf{x}, \vec{\omega}) = -$
- $L(\mathbf{x}, \vec{\omega}) = -$
- $L(\mathbf{x},\vec{\omega})\cos\theta\,d\vec{\omega}=a$

$$\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = I$$

Integrate cosine-weighted radiance over hemisphere

$$\frac{d^2 \Phi(A)}{\cos \theta dA(\mathbf{x}) d\vec{\omega}} \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$
$$\frac{dE(\mathbf{x})}{\cos \theta d\vec{\omega}}$$
$$\frac{dE(\mathbf{x})}{dE(\mathbf{x})}$$

 $E(\mathbf{x})$

expressing *irradiance* in terms of radiance: $\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = E(\mathbf{x})$ expressing *flux* in terms of radiance:

 $\int_{A} \int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} dA(\mathbf{x}) = \Phi(A)$

Integrate cosine-weighted radiance over hemisphere and area

- $\int_{A} E(\mathbf{x}) \, dA(\mathbf{x}) = \Phi(A) \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$

Computing spherical integrals

Express function using spherical coordinates:

$$\int_0^{2\pi} \int_0^{\pi} f($$

Warning: this is not correct!

$(\theta, \phi) d\theta d\phi$?

Differential Solid Angle

Differential area on the unit sphere around direction $\vec{\omega}$

$$dA = (rd\theta)(r\sin\theta d\phi)$$
$$d\vec{\omega} = \frac{dA}{r^2} = \sin\theta d\theta d\phi$$
$$\Omega = \int_{S^2} d\vec{\omega} = \int_0^{2\pi} \int_0^{\pi} s^{\pi} s^{\pi} d\vec{\omega}$$

 $\sin\theta d\theta d\phi = 4\pi$

Overview of Quantities

- $\Phi(A)$ • flux: $E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$ • irradiance: $B(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$ • radiosity:
- $I(\vec{\omega}) = \frac{d\Phi}{d\vec{\omega}}$ • intensity:
- radiance:

All of these quantities can be a function of wavelength!

Handling color

- Any light sensor (digital or not) has different sensitivity to different wavelengths.
- This is described by the sensor's *spectral sensitivity function* (SSF).

• When measuring some incident *spectral* flux, the sensor produces a *scalar color* response:

spectral flux sensor SSF $\stackrel{\text{sensor}}{\stackrel{\text{response}}{\longrightarrow}} \longrightarrow R = \int_{\lambda} \Phi(\lambda) f(\lambda) d\lambda$

Handling color – the human eye

- The human eye is a collection of light sensors called cone cells.
- There are three types of cells with different spectral sensitivity functions.
- Human color perception is three-dimensional (tristimulus color).

cone distribution for normal vision (64% L, 32% M)

$$S = \int_{\lambda} \Phi(\lambda) S(\lambda) d\lambda \overset{1.0}{}_{0.8} \int_{0.4} S M \int_{0.4} L \int_{0.4} \Phi(\lambda) M(\lambda) d\lambda \overset{0.6}{}_{0.4} \int_{0.4} \Phi(\lambda) L(\lambda) d\lambda \overset{0.2}{}_{0} \int_{0.4} \Phi(\lambda) L(\lambda) \dot{\lambda} \overset{0.2}{}_{0} \int_{0.4} \Phi(\lambda) L(\lambda) \dot{\lambda} \overset{0.2}{}_{0} \int_{0.4} \Phi(\lambda) L(\lambda) \dot{\lambda} \overset{0.2} \Phi(\lambda) \overset{0.2$$

Handling color – photography

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter?
- How to spatially arrange ("mosaic") different color filters \bullet

Radiometry versus photometry

- All radiometric quantities have equivalents in photometry
- Photometry: accounts for response of human visual system $V(\lambda)^{0.5}$ to electromagnetic radiation
- Luminance (Y) is photometric quantity that corresponds to radiance: integrate radiance over all wavelengths, weight by eye's luminous efficacy curve, e.g.:

$$Y(\mathbf{p},\omega) = \int_0^\infty$$

 $L(\mathbf{p}, \omega, \lambda) V(\lambda) d\lambda$

Radiometry versus photometry

Physics	Radiometry Photometry		
Energy	Radiant Energy Luminous Energy		
Flux (Power)	Radiant Power Luminous Power		
Flux Density	Irradiance (incoming) Illuminance (incoming Radiosity (outgoing) Luminosity (outgoing		
Angular Flux Density	Radiance Luminance		
Intensity	Radiant Intensity	Luminous Intensity	

Radiometry versus photometry

Photometry	MKS	CGS	British
Luminous Energy	Talbot	Talbot	Talbot
Luminous Power	Lumen	Lumen	Lumen
Illuminance Luminosity	Lux	Phot	Footcandle
Luminance	Nit, Apostlib, Blondel	Stilb Lambert	Footlambert
Luminous Intensity	Candela	Candela	Candela

Modern LED light

Input power: 11 W Output: 815 lumens (~ 80 lumens / Watt)

Incandescent bulbs: ~15 lumens / Watt)

Reflection equation

Lambertian reflection

Also called ideal diffuse reflection

Lambertian surface

Ideal specular reflection/refraction

reflected direction

refracted direction

$\eta_1 \sin \theta_1 = \eta_2 \sin \theta_2$

Light-Material Interactions

The BRDF

Bidirectional Reflectance Distribution Function

- how much light gets scattered from one direction into each other direction
- formally: ratio of outgoing radiance to incident irradiance

The reflection equation

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{$$

This describes a local illumination model

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Where does the cosine come from?

Motivation

Motivation

BRDF Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

 $\int_{\mathbf{U}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i \, \mathrm{d}\vec{\omega}_i \leq 1, \quad \forall \vec{\omega}_r$

Where does the cosine come from?

Helmholtz Reciprocity

BRDFs Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

 $\int_{\mathbf{H}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i \, \mathrm{d}\vec{\omega}_i \leq 1, \quad \forall \vec{\omega}_r$

- Helmholtz reciprocity

 $f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{x}, \vec{\omega}_r, \vec{\omega}_i)$

 $f_r(\mathbf{x}, \vec{\omega}_i \leftrightarrow \vec{\omega}_r)$

BRDFs Properties

normal, then it is *isotropic*, otherwise it is *anisotropic*.

Isotropic BRDFs are functions of just 3 variables

If the BRDF is unchanged as the material is rotated around the

 $(\theta_i, \theta_r, \Delta \phi)$

Isotropic vs Anisotropic Reflection

Reflection vs. Refraction

BRDF for ideal diffuse reflection?

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} \underbrace{f_r(\mathbf{x}, \vec{\omega}_r)}_{H^2} dr dr$$

Scatters light equal in all directions BRDF is a constant

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Ideal Diffuse BRDF For Lambertian reflection, the BRDF is a constant: $L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$ $L_r(\mathbf{x}) = f_r \int_{H^2} L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$ Note: we can drop ω_r $L_r(\mathbf{x}) = f_r E(\mathbf{x})$ If *all* incoming light is reflected: $E(\mathbf{x}) = B(\mathbf{x})$ $E(\mathbf{x}) = \int_{H^2} L_r(\mathbf{x}) \cos \theta \, d\vec{\omega}$ $E(\mathbf{x}) = L_r(\mathbf{x}) \int_{H^2} \cos \theta \, d\vec{\omega} \qquad f_r = \int_{H^2} L_r(\mathbf{x}) \int_{H^2} \frac{\cos \theta \, d\vec{\omega}}{\int_{H^2} L_r(\mathbf{x}) d\vec{\omega}}$ Note: can also be derived from energy conservation $E(\mathbf{x}) = L_r(\mathbf{x}) \, \pi$

Diffuse BRDF

For Lambertian reflection, the BRDF is a constant:

 ρ : Diffuse reflectance (albedo) [0...1)

 $L_r(\mathbf{x}, \vec{\omega}_r) = \int_{\mathbf{H}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

 $L_r(\mathbf{x}) = \frac{\rho}{\pi} \int_{\mathbf{H}^2} L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

Specular BRDF?

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) d\mathbf{x}$$

Scatters all light into one (or two) directions Contains a Dirac delta Integral drops out

What is the BRDF for specular reflection/refraction?

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Dirac delta functions

Note: careful when performing changes of variables in Dirac delta functions!

 $\int_{-\infty} f(x)\delta(x-a) \, \mathrm{d}x = f(a)$

BRDF of Ideal Specular Reflection

$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x})$$

What is the BRDF for specular reflection?

 $\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

BTDF of Ideal Specular Refraction

$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x})$$

What is the BTDF for specular refraction?

Fresnel reflection

$$f_t(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = \begin{pmatrix} \eta_1^2 \\ \eta_2^2 \\ \eta_2^2 \end{pmatrix} (1$$

 $\vec{\omega}_i, \vec{\omega}_r L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d} \vec{\omega}_i$

Turning math into algorithms

No need to be scared of math like this:

- $\int_{H^2} L(\mathbf{x},\vec{\omega})\cos\theta\,d\vec{\omega} = E(\mathbf{x})$ integrals will just turn into for loops in your code
- evaluating $L(\mathbf{x}, \omega)$ will correspond to tracing a ray

Next time:

Approximating these integrals with Monte Carlo

Architecture of a rendering system

Architecture of a rendering system Chapter 8 Chapter 6 Materials $\cdots d\omega$ Integrator Lamera Chapter 14 Geometry Chapter 3

