
Inverse and differentiable rendering

15-468, 15-668, 15-868
Physics-based Rendering
Spring 2021, Lecture 22http://graphics.cs.cmu.edu/courses/15-468

1



Course announcements

• Take-home quiz 10 posted, due May 11th, 11:59 pm.

• Remember: Extra lecture tomorrow, noon – 1:30 pm.

• This week’s reading group.
- We’ll cover non-exponential radiative transfer (same topic as last Friday).

2



Take the course evaluation surveys!

• CMU's Faculty Course Evaluations (FCE): https://cmu.smartevals.com/

• CMU's TA Evaluations: https://www.ugrad.cs.cmu.edu/ta/S21/feedback/

• An end-of-semester survey specific to 15-468/668/868: 
https://docs.google.com/forms/d/e/1FAIpQLSdxnAPIUg-
Oy2IUH5OvP7GTRv3XhS0O5P0W4_NlnQp1jQ9X1A/viewform

3

https://cmu.smartevals.com/
https://www.ugrad.cs.cmu.edu/ta/S21/feedback/
https://docs.google.com/forms/d/e/1FAIpQLSdxnAPIUg-Oy2IUH5OvP7GTRv3XhS0O5P0W4_NlnQp1jQ9X1A/viewform


Overview of today’s lecture

• Inverse rendering.

• Differentiable rendering.

• Differentiating local parameters.

• Differentiating global parameters.

• Path-space differentiable rendering.

• Reparameterizations.

4



physically-accurate 
rendering

photorealistic 
simulated image

digital scene specification 
(geometry, materials, 
optics, light sources)

Forward rendering



physically-accurate 
inverse rendering

photorealistic 
synthetic image

digital scene specification 
(geometry, materials, 
camera, light sources)

image 
measurements

Inverse rendering



What I was doing in 2013

mustard

whole milk

shampoo

hand cream

coffee

wine

robitussin

olive oil curacao

mixed soap

milk soap

liquid clay

reduced milk



I wanted to make images such as this one

8

mixed soap

glycerine soap olive oil curacao whole milk



scattering albedo

Scattering: extremely multi-path transport

random walks 
inside volume

θ

material π =
σt

a
frphase function

volumetric density



Acquisition setup



min ǁ              - image(m) ǁ2

m
min ǁ              - ǁ2

m

Analysis by synthesis (a.k.a. inverse rendering)

Monte Carlo 
rendering

material m
image 
data

optimization problem

material m1material m2material m3

several 
hours

solve by 
exhaustive search?

loss

material

m
at

er
ia

l

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10


not scalable




min ǁ              - image(m) ǁ2

m

material m

optimization problem

material m material m+∂m

image(m)
∂image(m)
∂m

Analysis by synthesis (a.k.a. inverse rendering)

Monte Carlo 
rendering



Other scattering materials

everyday materials
[Gkioulekas et al. 2013]

woven fabrics
[Khungurn et al. 2015, 

Zhao et al. 2016]

clouds
[Levis et al. 2015, 2017]

industrial dispersions
[Gkioulekas et al. 2013]

computed tomography
[Geva et al. 2018]

3D printing
[Elek et al. 2017, 2019]

optical 
tomography

[Gkioulekas et al. 
2016]



Making sense of global illumination

reflectance

scattering

analysis by synthesis

X
min ǁ              - image(X) ǁ2

X: 3D shape
X: surface reflectance
X: occluded imaging
X: illumination

differentiable rendering: image 
gradients with respect to arbitrary X

Monte-Carlo 
rendering∂loss(X)

∂X
~

while (not converged)

update X with

stochastic gradient descent



Differentiable rendering

Not related to:

“Gradient” in their case refers to image edges.
15



Differentiable rendering and deep learning

𝜎𝜎𝑡𝑡
𝜎𝜎𝑠𝑠
𝑔𝑔

encoder parameters πimage physics-based 
renderer

image

force input and output images to be the same

Img = Rphysics(π)π = (Rphysics) -1 (Img) needs to be 
differentiable for 

training with 
backpropagation



Quick reminder from calculus



Basic differentiation rules

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = ?



Basic differentiation rules

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = �

𝑎𝑎

𝑏𝑏 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 what is this rule called?



Basic differentiation rules

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = �

𝑎𝑎

𝑏𝑏 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 differentiation under the integral sign

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎(𝜋𝜋)

𝑏𝑏(𝜋𝜋)
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = ?



Basic differentiation rules

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = �

𝑎𝑎

𝑏𝑏 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 differentiation under the integral sign

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎(𝜋𝜋)

𝑏𝑏(𝜋𝜋)
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = �

𝑎𝑎(𝜋𝜋)

𝑏𝑏(𝜋𝜋) 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥

+𝑓𝑓 𝑏𝑏(𝜋𝜋);𝜋𝜋 𝜕𝜕𝑏𝑏(𝜋𝜋)
𝜕𝜕𝜋𝜋

− 𝑓𝑓 𝛼𝛼(𝜋𝜋);𝜋𝜋 𝜕𝜕𝛼𝛼(𝜋𝜋)
𝜕𝜕𝜋𝜋

what is this rule called?



Basic differentiation rules

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = �

𝑎𝑎

𝑏𝑏 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 differentiation under the integral sign

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎(𝜋𝜋)

𝑏𝑏(𝜋𝜋)
𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥 = �

𝑎𝑎(𝜋𝜋)

𝑏𝑏(𝜋𝜋) 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝑥𝑥

+𝑓𝑓 𝑏𝑏(𝜋𝜋);𝜋𝜋 𝜕𝜕𝑏𝑏(𝜋𝜋)
𝜕𝜕𝜋𝜋

− 𝑓𝑓 𝛼𝛼(𝜋𝜋);𝜋𝜋 𝜕𝜕𝛼𝛼(𝜋𝜋)
𝜕𝜕𝜋𝜋

Leibniz integral rule



Trivial differentiable rendering



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emmision)

𝐼𝐼(𝜋𝜋) = �
ℙ
𝑓𝑓 �𝐱𝐱;𝜋𝜋 d�𝐱𝐱

Images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths



Monte Carlo rendering: approximating path integrals

light

camera

𝐼𝐼(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁
𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋
𝑝𝑝(�𝐱𝐱𝑖𝑖)

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths

Algorithms such as path 
tracing, bidirectional path 
tracing, etc. sample paths.

𝑀𝑀𝑀𝑀(𝜋𝜋)



How can we approximate the derivative of the image?

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 ≈?



Easy approach 1: finite differences

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 ≈
𝑀𝑀𝑀𝑀 𝜋𝜋 + 𝜀𝜀 − 𝑀𝑀𝑀𝑀(𝜋𝜋 − 𝜀𝜀)

2𝜀𝜀

Any issues with this?

• Incredibly noisy for small ε
• Very inaccurate for large ε
• Techniques for noise 

reduction exist, but generally 
impractical approach



Easy approach 2: automatic differentiation

light

camera

𝜕𝜕𝜕𝜕
𝜕𝜕𝜋𝜋

𝜋𝜋 ≈ autodiff(𝑀𝑀𝑀𝑀(𝜋𝜋))

Any issues with this?

• Many path sampling techniques 
are not differentiable

• High variance (consider f(x;π) = 
constant)

• Rendering produces enormous, 
non-local computational graphs.



OpenDR: An Approximate Differentiable Renderer
[Loper and Black 2015]

• Only direct illumination.
• Only shading parameters (normals, 

reflectance).



Differentiable rendering for local parameters



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

𝐼𝐼(𝜋𝜋) = �
ℙ
𝑓𝑓 �𝐱𝐱;𝜋𝜋 d�𝐱𝐱

Images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

Derivatives of images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 =?



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

Derivatives of images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 = �
ℙ

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 d�𝐱𝐱

differentiation under the integral sign



Monte Carlo differentiable rendering (for local parameters)

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁 𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋 �𝐱𝐱𝑖𝑖;𝜋𝜋
𝑝𝑝(�𝐱𝐱𝑖𝑖)

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths

Sample paths using path 
tracing etc.

This term is generally easy to 
compute during path tracing 



Score estimator

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 = �
𝑏𝑏=1

𝐵𝐵

𝑓𝑓𝑠𝑠 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋
V 𝑥𝑥𝑏𝑏−1 ↔ 𝑥𝑥𝑏𝑏
𝑥𝑥𝑏𝑏−1 − 𝑥𝑥𝑏𝑏 2

�
𝑏𝑏=1

𝐵𝐵 𝜕𝜕𝑓𝑓𝑠𝑠
𝜕𝜕𝜋𝜋 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋
𝑓𝑓𝑠𝑠 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋

𝑓𝑓 �𝐱𝐱;𝜋𝜋 = �
𝑏𝑏=1

𝐵𝐵

𝑓𝑓𝑠𝑠 𝑥𝑥𝑏𝑏−1 → 𝑥𝑥𝑏𝑏 → 𝑥𝑥𝑏𝑏+1;𝜋𝜋
V 𝑥𝑥𝑏𝑏−1 ↔ 𝑥𝑥𝑏𝑏
𝑥𝑥𝑏𝑏−1 − 𝑥𝑥𝑏𝑏 2

Foreshortening terms are 
included in the BRDF

At each path vertex:
• Update product throughput using 𝑓𝑓𝑠𝑠
• Update score sum using gradient of 𝑓𝑓𝑠𝑠
Multiply the two at end of path



This is what all these papers do

everyday materials

woven fabrics
[Khungurn et al. 2015, 

Zhao et al. 2016]

clouds
[Levis et al. 2015, 2017]

industrial 
nanodispersions

computed tomography
[Geva et al. 2018]

3D printing
[Elek et al. 2017, 2019]

optical 
tomography

[Gkioulekas et al. 
2016]



Even simpler: use autodiff

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁
autodiff(𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋 )

𝑝𝑝(�𝐱𝐱𝑖𝑖)

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths



Compare with…

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈ autodiff �
𝑖𝑖=1

𝑁𝑁
𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋
𝑝𝑝 �𝐱𝐱𝑖𝑖

𝑝𝑝(�𝐱𝐱𝑖𝑖)  Probability of sampling a path

�𝒙𝒙𝑖𝑖  Randomly sampled light paths



Even simpler: use autodiff

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

(𝜋𝜋) ≈�
𝑖𝑖=1

𝑁𝑁
autodiff(𝑓𝑓 �𝐱𝐱𝑖𝑖;𝜋𝜋 )

𝑝𝑝(�𝐱𝐱𝑖𝑖)

• Generally lower variance.
• Remember: Compute an 

estimate of the derivative, not 
a derivative of the estimator.



Compute an estimate of the derivative

derivative wrt BRDF derivative wrt normal

derivative wrt volumetric density



Comparison with finite differences

⍺σt g

⍺

Forward

σt g

rendered

finite 
differences

Note: Finite differences are great for testing the correctness of your gradient code.



Compute a derivative of the estimate

derivative wrt volumetric density

• A lot more general.
• GPU implementation.



simulated camera 
measurements

reconstructed cloud 
volume

slice through 
the cloud

camera thick smoke cloud

Looking inside scattering objects

43






Looking inside scattering objects

44



Inverse transport network

45

input image output material 𝛑𝛑

𝜎𝜎𝑡𝑡
𝛼𝛼
𝑔𝑔

reconstructed imageforward scattering

𝑆𝑆

geometry

lighting

neural network

≈
𝑆𝑆

−1

≈



Inverse transport network

46

input image

𝜎𝜎𝑡𝑡
𝛼𝛼
𝑔𝑔 𝑆𝑆

geometry

lighting

supervised

neural network

min         ǁ 𝛑𝛑 - network( ) ǁ
groundtruth

network
weights

training
set

Σ
input image

training loss
unsupervised

+ ǁ - forwardScattering(𝛑𝛑)ǁ
input image

appearance loss

∂ neuralNet
∂ weights

∂ forwardScattering(𝛑𝛑)
∂ 𝛑𝛑

derivatives

volumetric differentiable rendererauto-diff (Torch, TensorFlow etc.)

backpropagation

parameter loss

output material 𝛑𝛑 forward scattering reconstructed image



Examples

groundtruth

47

supervised only

supervised and unsupervised
parameter loss:  0.60X
appearance loss: 0.40X
novel appearance loss: 0.42X

parameter loss:  1X
appearance loss: 1X
novel appearance loss: 1X

0 %

50 %



𝑓𝑓(�𝐱𝐱)       Path contribution, 
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emission)

Derivatives of images as path integrals

light

camera

�𝐱𝐱  Light path, set of ordered vertices on surfaces

ℙ  Space of valid paths

Assume ℙ is independent of π

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 = �
ℙ

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 d�𝐱𝐱

differentiation under the integral sign



Derivatives of images as path integrals

light

camera

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

𝜋𝜋 = �
ℙ

𝜕𝜕𝑓𝑓
𝜕𝜕𝜋𝜋

�𝐱𝐱;𝜋𝜋 d�𝐱𝐱

differentiation under the integral sign

What about parameters π that 
change ℙ?
• Location, pose, and shape of 

light, camera, and scene 
objects.



Differentiable rendering for global geometry



light

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) = �
𝐺𝐺(𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 𝑉𝑉(𝑥𝑥′ ↔ 𝑥𝑥;𝜋𝜋)d𝐴𝐴(𝑥𝑥′)

We’ll work with the rendering equation

camera

𝐺𝐺 All surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

V Visibility



light

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) = �
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s slightly rewrite the rendering equation

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off



light

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) =
𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s differentiate it

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

Can we just move the integral inside?



light

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) =
𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s differentiate it

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

Can we just move the integral inside?
• No. What can we do?



Basic differentiation rules

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥;𝜋𝜋 𝑑𝑑𝑥𝑥 = �

𝑎𝑎

𝑏𝑏 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 𝑑𝑑𝑥𝑥 differentiation under the integral sign

𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑎𝑎(𝜋𝜋)

𝑏𝑏(𝜋𝜋)
𝑓𝑓 𝑥𝑥;𝜋𝜋 𝑑𝑑𝑥𝑥 = �

𝑎𝑎(𝜋𝜋)

𝑏𝑏(𝜋𝜋) 𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 𝑥𝑥;𝜋𝜋 𝑑𝑑𝑥𝑥

+𝑓𝑓 𝑏𝑏(𝜋𝜋);𝜋𝜋 𝜕𝜕𝑏𝑏(𝜋𝜋)
𝜕𝜕𝜋𝜋

− 𝑓𝑓 𝛼𝛼(𝜋𝜋);𝜋𝜋 𝜕𝜕𝛼𝛼(𝜋𝜋)
𝜕𝜕𝜋𝜋

Leibniz integral rule

We need a version of this for surface integrals



𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑆𝑆(𝜋𝜋)

𝑓𝑓 𝑥𝑥;𝜋𝜋 d𝐴𝐴 𝑥𝑥 = �
𝑆𝑆(𝜋𝜋)

̇𝑓𝑓d𝐴𝐴 𝑥𝑥 + �
𝜕𝜕𝑆𝑆(𝜋𝜋)

𝑓𝑓 𝑡𝑡,
𝜕𝜕𝑥𝑥
𝜕𝜕𝜋𝜋

d𝑙𝑙 𝑥𝑥

Reynolds transport theorem for surfaces

surface 
integral

line integral on boundary
and discontinuities



boundary integral

REYNOLDS TRANSPORT THEOREM

57

𝑓𝑓 = 0 𝑓𝑓 = 1

d
d𝜋𝜋

�
Ω
𝑓𝑓d𝐴𝐴 = + �

𝜕𝜕Ω
𝑔𝑔 d𝑙𝑙

𝜋𝜋
discontinuity points

discontinuity points ∪ boundary of domain Ω
=Boundary domain

Reynolds transport theorem
Generalization of Leibniz’s rule

Interior integral

�
Ω

d𝑓𝑓
d𝜋𝜋

d𝐴𝐴



Unit hemisphere

REYNOLDS TRANSPORT THEOREM

58

𝐸𝐸 = �
ℍ2

𝐿𝐿𝑖𝑖 𝝎𝝎 cos𝜃𝜃 d𝜎𝜎(𝝎𝝎)

𝜋𝜋: size of the emitter
Irradiance at 𝒙𝒙

Differential irradiance at 𝒙𝒙

d𝐸𝐸
d𝜋𝜋

=
d

d𝜋𝜋
�
ℍ2

𝐿𝐿𝑖𝑖 𝝎𝝎 cos𝜃𝜃 d𝜎𝜎(𝝎𝝎)



REYNOLDS TRANSPORT THEOREM

59

𝐸𝐸 = �
ℍ2
𝐿𝐿𝑖𝑖 𝝎𝝎 cos𝜃𝜃 d𝜎𝜎(𝝎𝝎) The integrand Discontinuous points 

(𝜋𝜋-dependent)

Low High
𝜋𝜋: size of the emitter



= 0 ≠ 0

REYNOLDS TRANSPORT THEOREM

60

Low High

𝐸𝐸 = �
ℍ2
𝐿𝐿𝑖𝑖 𝝎𝝎 cos𝜃𝜃 d𝜎𝜎(𝝎𝝎)

𝑓𝑓

The integrand Discontinuous points 
(𝜋𝜋-dependent)

d𝐸𝐸
d𝜋𝜋

= �
ℍ2

d𝑓𝑓
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙



light

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋) =
𝜕𝜕
𝜕𝜕𝜋𝜋

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐿𝐿 𝑥𝑥′ → 𝑥𝑥;𝜋𝜋 𝑓𝑓 𝑥𝑥′ → 𝑥𝑥,ω;𝜋𝜋 d𝐴𝐴(𝑥𝑥′)

Let’s differentiate the rendering equation

camera

𝑉𝑉 All visible surfaces in the scene
𝐿𝐿  Radiance at a point and direction

𝑓𝑓 Reflection, foreshortening, and fall-off

What are the “boundary” and 
discontinuities of 𝑉𝑉?



Boundaries



light

Let’s differentiate it

camera
Not terribly good, as we ray trace, we need to:
• recompute silhouette at each vertex
• branch twice

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿 𝑥𝑥,ω;𝜋𝜋 =

�
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿d𝐴𝐴 𝑥𝑥 + �
𝜕𝜕𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐻𝐻 𝐿𝐿 d𝜎𝜎 𝑥𝑥

recursively estimate 
derivative of L at 

some visible point

recursively estimate 
radiance L at some 

boundary point



Global geometry differentiation



Global geometry differentiation
target init

target init

optimize 
bunny 
pose

optimize 
reflectance 
and camera 

pose









visible surface

NLOS 
scene

occluder

source 
and 

sensor
reconstruction evolution

Optimize shape

66



light

Let’s differentiate it

camera Not terribly good:
• As we ray trace, we need to recompute 

silhouette
• Branching of two at each recursion

𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿(𝑥𝑥,ω;𝜋𝜋)

= �
𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐹𝐹
𝜕𝜕
𝜕𝜕𝜋𝜋

𝐿𝐿 d𝐴𝐴 𝑥𝑥 + �
𝜕𝜕𝑉𝑉(𝑥𝑥,𝜋𝜋)

𝐻𝐻 𝐿𝐿 d𝜎𝜎 𝑥𝑥

render derivative 
of L at some 
visible point

render L at some 
boundary 

(silhouette) point



CHALLENGES

68

Complex light transport effects Complex geometry



PATH-INTEGRAL FOR 
DIFFERENTIABLE RENDERING

69



Area-product
measure

Measurement
contribution function

𝐼𝐼 = �
Ω
𝑓𝑓 �𝒙𝒙 d 𝜇𝜇(�𝒙𝒙)

FORWARD PATH INTEGRAL

70

Path space

Light path �𝒙𝒙 = (𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏



DIFFERENTIAL PATH INTEGRAL

71

A generalization of 
Reynolds theorem 

d𝐼𝐼
d𝜋𝜋

= �
Ω

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙 d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω
𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙𝐼𝐼 = �

Ω
𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)

Path Integral

？

Full derivation in the paper



Boundary integral Interior integral 

DIFFERENTIAL PATH INTEGRAL

72

d𝐼𝐼
d𝜋𝜋

= �
Ω

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙 d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω
𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙𝐼𝐼 = �

Ω
𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)

Path Integral Differential Path Integral

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Original
light path

A generalization of 
Reynolds theorem 

Boundary
light path

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Types of discontinuity edge:

path space boundary path space



SOURCE OF DISCONTINUITIES

73

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette
detection



REPARAMETERIZATIONS FOR 
SIMPLIFYING THE BOUNDARY TERM

74



REVISIT - DIFFERENTIAL IRRADIANCE

75
= 0 ≠ 0

𝐸𝐸 = �
ℍ2
𝐿𝐿𝑖𝑖 𝝎𝝎 cos𝜃𝜃 d𝜎𝜎(𝝎𝝎)

𝑓𝑓

d𝐸𝐸
d𝜋𝜋

= �
ℍ2

d𝑓𝑓
d𝜋𝜋

d𝜎𝜎 + �
𝜕𝜕ℍ2

𝑔𝑔 d𝑙𝑙Differentiation

Low High Discontinuities of 𝑓𝑓𝜋𝜋: size of the emitter

𝒙𝒙

𝝎𝝎𝜽𝜽



DIFFERENTIAL IRRADIANCE

76

Spherical integral Surface integral

𝒚𝒚𝓛𝓛(𝜋𝜋)

Change of 
variable

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝒙𝒙𝒙𝒙

𝝎𝝎𝜽𝜽

𝐸𝐸 = �
ℍ2
𝐿𝐿𝑖𝑖 𝝎𝝎 cos𝜃𝜃 d𝜎𝜎(𝝎𝝎)



constant domain evolving domain

continuousdiscontinuous

DIFFERENTIAL DIRECT ILLUMINATION

77

Low High

𝐸𝐸 = �
ℍ2
𝐿𝐿𝑖𝑖 𝝎𝝎 cos𝜃𝜃 d𝜎𝜎(𝝎𝝎) 𝐸𝐸 = �

𝓛𝓛(𝜋𝜋)
𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

Spherical integral Surface integral

Change of 
variable



𝒙𝒙

DIFFERENTIAL IRRADIANCE

78

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝑓𝑓

Low High

≠ 0

Boundary of 𝓛𝓛(𝜋𝜋)

Differentiation
d𝐸𝐸
d𝜋𝜋

= �
𝓛𝓛(𝜋𝜋)

d𝑓𝑓
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛(𝜋𝜋)

𝑔𝑔 d𝑙𝑙

Reynolds theorem 

Interior Boundary



REPARAMETERIZATION

79

𝒑𝒑 X(𝒑𝒑,𝜋𝜋1)
X(𝒑𝒑,𝜋𝜋2) Parameterize 𝓛𝓛 𝜋𝜋 using some fixed 𝓛𝓛0:

𝒚𝒚 = X 𝒑𝒑,𝜋𝜋
where X(� ,𝜋𝜋) is one-to-one and continuous

𝐸𝐸 = �
𝓛𝓛0
𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚

d𝐴𝐴(𝒚𝒚)
d𝐴𝐴(𝒑𝒑)

d𝐴𝐴(𝒑𝒑)Reparameterization 
with 𝒚𝒚 = X(𝒑𝒑,𝜋𝜋):

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝓛𝓛 𝜋𝜋0𝓛𝓛0

𝓛𝓛 𝜋𝜋2

𝓛𝓛 𝜋𝜋1

=



= 0≠ 0

= 0 ≠ 0

REPARAMETERIZATION

80

d𝐸𝐸
d𝜋𝜋

= �
𝓛𝓛(𝜋𝜋)

d𝑓𝑓
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛(𝜋𝜋)

𝑔𝑔 d𝑙𝑙

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚)

𝑓𝑓

d𝐸𝐸
d𝜋𝜋

= �
𝓛𝓛0

d𝑓𝑓0
d𝜋𝜋

d𝐴𝐴 + �
𝜕𝜕𝓛𝓛0

𝑔𝑔0 d𝑙𝑙

𝐸𝐸 = �
𝓛𝓛0
𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚

d𝐴𝐴(𝒚𝒚)
d𝐴𝐴(𝒑𝒑)

d𝐴𝐴(𝒑𝒑)

𝒚𝒚 = X(𝒑𝒑,𝜋𝜋) 𝑓𝑓0



REPARAMETERIZATION

81

𝒚𝒚 = X(𝒑𝒑,𝜋𝜋)

𝐸𝐸 = �
𝓛𝓛(𝜋𝜋)

𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚 d𝐴𝐴(𝒚𝒚) 𝐸𝐸 = �
𝓛𝓛0
𝐿𝐿𝑒𝑒 𝒚𝒚 → 𝒙𝒙 𝐺𝐺 𝒙𝒙,𝒚𝒚

d𝐴𝐴(𝒚𝒚)
d𝐴𝐴(𝒑𝒑) d𝐴𝐴(𝒑𝒑)

Reparameterization for irradiance 

�
𝑖𝑖

d𝐴𝐴(𝒙𝒙𝑖𝑖)
d𝐴𝐴(𝒑𝒑𝑖𝑖)

=

Fixed surface

Reparameterization for path integral 

𝐼𝐼 = �
Ω(𝜋𝜋)

𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)
�𝒙𝒙 = X(�𝒑𝒑,𝜋𝜋)

𝐼𝐼 = �
Ω0
𝑓𝑓 �𝒙𝒙

d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑)

Fixed path space



DIFFERENTIAL PATH INTEGRAL

82

𝐼𝐼 = �
Ω(𝜋𝜋)

𝑓𝑓 �𝒙𝒙 d𝜇𝜇(�𝒙𝒙)

�𝒙𝒙 = X(�𝒑𝒑,𝜋𝜋)

𝐼𝐼 = �
Ω0
𝑓𝑓 �𝒙𝒙

d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑)

d𝐼𝐼
d𝜋𝜋

= �
Ω(𝜋𝜋)

d𝑓𝑓 �𝒙𝒙
d𝜋𝜋

d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω(𝜋𝜋)

𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙

d𝐼𝐼
d𝜋𝜋

= �
Ω0

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

Pro: No global parametrization required
Con: More types of discontinuities

Con: Requires global parametrization X
Pro: Fewer types of discontinuities

Original

Reparameterized Reparameterized

Original



DIFFERENTIAL PATH INTEGRAL

83

Differential path integral 

Topology-driven

d𝐼𝐼
d𝜋𝜋

= �
Ω(𝜋𝜋)

d𝑓𝑓 �𝒙𝒙
d𝜋𝜋

d𝜇𝜇 �𝒙𝒙 + �
𝜕𝜕Ω(𝜋𝜋)

𝑔𝑔(�𝒙𝒙)d𝜇𝜇′ �𝒙𝒙
d𝐼𝐼
d𝜋𝜋

= �
Ω0

d
d𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

sensor sensorSharp
edge

Silhouette
edge

Visibility-driven



MONTE CARLO ESTIMATORS

84



Boundary integral 

ESTIMATING INTERIOR INTEGRAL

85

Interior integral 

• Can be estimated using identical path 
sampling strategies as forward rendering
– Unidirectional path tracing

– Bidirectional path tracing

– …

(Reparameterized) 
Differential path Integral 

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

= �
Ω0

𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Original
light path Different MC estimators



𝒙𝒙𝟐𝟐

Silhouette detection
[Li et al. 2018, Zhang et al. 2019]

ESTIMATING BOUNDARY INTEGRAL

86

(Reparameterized) 
Differential path Integral 

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

= �
Ω0

𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

Boundary integral 

𝒙𝒙𝟎𝟎

𝒙𝒙𝟑𝟑

𝒙𝒙𝟐𝟐

𝒙𝒙𝟏𝟏

Boundary
light path



ESTIMATING BOUNDARY INTEGRAL

87

(Reparameterized) 
Differential path Integral 

𝜕𝜕𝐼𝐼
𝜕𝜕𝜋𝜋

= �
Ω0

𝜕𝜕
𝜕𝜕𝜋𝜋

𝑓𝑓 �𝒙𝒙
d𝜇𝜇(�𝒙𝒙)
d𝜇𝜇(�𝒑𝒑)

d𝜇𝜇(�𝒑𝒑) + �
𝜕𝜕Ω0

𝑔𝑔(�𝒑𝒑)d𝜇𝜇′ �𝒑𝒑

Boundary integral 

Boundary
light path

• Construct boundary segment
• Construct  source and sensor subpaths

• To improve efficiency
– Next-event estimation
– Importance sampling of boundary segments

where �𝒙𝒙 = X(�𝒑𝒑,𝜋𝜋)



OUR ESTIMATORS

88

Unidirectional estimator
Interior: unidirectional path tracing
Boundary: unidirectional sampling of subpaths

Bidirectional estimator
Interior: bidirectional path tracing
Boundary: bidirectional sampling of subpaths

Bidirectional path tracingUnidirectional path tracing + NEE

Boundary
light paths

Boundary
light paths



SOME RESULTS

89



HANDLING COMPLEX GEOMETRY

90

Reference

hours

Equal-sample
comparison

[Zhang et al. 2019] [Loubet et al. 2019] Ours

5.7 s 0.3 s 0.5 sComplex geometry



HANDLING COMPLEX GEOMETRY

O
ur

s
[L

ou
be

t2
01

9]
[Z

ha
ng

 2
01

9]

Target image

• Optimizing rotation angle
• Equal-sample per iteration
• Identical optimization setting

– Learning rate (Adam)
– Initializations

91



HANDLING CAUSTICS

92

[Zhang et al. 2019] [Loubet et al. 2019] Ours

101.3 s 153 s 19.7 s

Equal-sample
comparison

Complex light transport effects

Reference

hours



HANDLING CAUSTICS

93

Reference

[Zhang et al. 2019]

101.3 s

[Loubet et al. 2019]

153 s

Ours (bidirectional)

19.7 s

Ours (unidirectional)

19.7 s

hours

Equal-sample comparison



HANDLING CAUSTICS

94

O
ur

s 
(u

ni
di

r.)
O

ur
s 

(b
id

ir.
)

[Z
ha

ng
 2

01
9]

Target image

• Optimizing
– Glass IOR
– Spotlight position

• Equal-time per iteration
• Identical optimization setting



SHAPE OPTIMIZATION

95

Target image

Initial

Optimizing cross-sectional shape (100 variables)



RESULTS

96

Config. Optimize (initial) Optimize (final) Target

Original image Derivative image Original image Derivative image



Stuff we are missing

We need path sampling algorithms tailored to differentiable rendering:
• Some simple versions exist for local differentiation (Gkioulekas et al. 2013, 2016).
• We need to take into account diff. geometric quantities in global case.
• We need to take into account loss function.

We need theory that can handle very low-dimensional path manifolds:
• We can’t easily incorporate specular and refractive effects into arbitrary pipelines.
• Doable in isolation (Chen and Arvo 2000, Jakob and Marschner 2013, Xin et al. 2019).

97



Some more general thoughts
Initialization is super important:
• Approximate reconstruction assuming direct lighting is usually good enough.
• Coarse-to-fine schemes work well.

Parameterizations are super important:
• Loss functions very non-linear and change shape easily. 
• Working with meshes is a pain (topology is awful and not (easily?) differentiable).

98



Parameterization matters

scattering albedo
σt

a
frphase function

volumetric density

99



Some more general thoughts
Initialization is super important:
• Approximate reconstruction assuming direct lighting is usually good enough.
• Coarse-to-fine schemes work well.

Parameterizations are super important:
• Loss functions very non-linear and change shape easily. 
• Working with meshes is a pain (topology is awful and not (easily?) differentiable).

You don’t always need Monte Carlo differentiable rendering:
• If you don’t have strong global illumination, just use direct lighting.
• A lot of research in computer vision on differentiable rasterizers.

100

Remember that you are doing optimization:
• Unbiased and consistent gradients are very expensive to compute.
• Biased and/or inconsistent gradients can be very cheap to compute.
• Often, biased and/or inconsistent gradients are enough for convergence.
• Stochastic gradient descent matters a lot.



Reference material

101


	Inverse and differentiable rendering
	Course announcements
	Take the course evaluation surveys!
	Overview of today’s lecture
	Slide Number 5
	Slide Number 6
	What I was doing in 2013
	I wanted to make images such as this one
	Scattering: extremely multi-path transport
	Acquisition setup
	Analysis by synthesis (a.k.a. inverse rendering)
	Analysis by synthesis (a.k.a. inverse rendering)
	Other scattering materials
	Making sense of global illumination
	Differentiable rendering
	Differentiable rendering and deep learning
	Quick reminder from calculus
	Basic differentiation rules
	Basic differentiation rules
	Basic differentiation rules
	Basic differentiation rules
	Basic differentiation rules
	Trivial differentiable rendering
	Images as path integrals
	Monte Carlo rendering: approximating path integrals
	How can we approximate the derivative of the image?
	Easy approach 1: finite differences
	Easy approach 2: automatic differentiation
	OpenDR: An Approximate Differentiable Renderer
	Differentiable rendering for local parameters
	Images as path integrals
	Derivatives of images as path integrals
	Derivatives of images as path integrals
	Monte Carlo differentiable rendering (for local parameters)
	Score estimator
	This is what all these papers do
	Even simpler: use autodiff
	Compare with…
	Even simpler: use autodiff
	Compute an estimate of the derivative
	Comparison with finite differences
	Compute a derivative of the estimate
	Slide Number 43
	Slide Number 44
	Inverse transport network
	Inverse transport network
	Examples
	Derivatives of images as path integrals
	Derivatives of images as path integrals
	Differentiable rendering for global geometry
	We’ll work with the rendering equation
	Let’s slightly rewrite the rendering equation
	Let’s differentiate it
	Let’s differentiate it
	Basic differentiation rules
	Reynolds transport theorem for surfaces
	Reynolds transport theorem
	Reynolds transport theorem
	Reynolds transport theorem
	Reynolds transport theorem
	Let’s differentiate the rendering equation
	Boundaries
	Let’s differentiate it
	Global geometry differentiation
	Global geometry differentiation
	Slide Number 66
	Let’s differentiate it
	Challenges
	Path-Integral for differentiable rendering
	Forward path integral
	Differential path integral
	Differential path integral
	Source of discontinuities
	Reparameterizations for simplifying the boundary term
	Revisit - Differential irradiance
	Differential irradiance
	Differential direct illumination
	Differential irradiance
	Reparameterization
	Reparameterization
	Reparameterization
	Differential path integral
	Differential path integral
	Monte carlo estimators
	Estimating interior integral
	Estimating boundary integral
	Estimating boundary integral
	Our estimators
	Some results
	Handling complex geometry
	Handling complex geometry
	Handling caustics
	Handling caustics
	Handling caustics
	Shape optimization
	results
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101

