Inverse and differentiable rendering

15-468, 15-668, 15-868
Physics-based Rendering

http://graphics.cs.cmu.edu/courses/15-468 Spring 2021, Lecture 22



Course announcements

 Take-home quiz 10 posted, due May 11t 11:59 pm.
e Remember: Extra lecture tomorrow, noon — 1:30 pm.

 This week’s reading group.
- We'll cover non-exponential radiative transfer (same topic as last Friday).



Take the course evaluation surveys!

CMU's Faculty Course Evaluations (FCE): https://cmu.smartevals.com/

CMU's TA Evaluations: https://www.ugrad.cs.cmu.edu/ta/S21/feedback/

An end-of-semester survey specific to 15-468/668/868:
https://docs.google.com/forms/d/e/1FAlpQLSdxnAPIUg-
Oy2IUH50vP7GTRv3XhSOO5POW4 NInQpl1jQ9X1A/viewform



https://cmu.smartevals.com/
https://www.ugrad.cs.cmu.edu/ta/S21/feedback/
https://docs.google.com/forms/d/e/1FAIpQLSdxnAPIUg-Oy2IUH5OvP7GTRv3XhS0O5P0W4_NlnQp1jQ9X1A/viewform

Overview of today’s lecture

Inverse rendering.

Differentiable rendering.
Differentiating local parameters.
Differentiating global parameters.
Path-space differentiable rendering.

Reparameterizations.



Forward rendering

| \ physically-accurate

‘ —_—> rendering

digital scene specification photorealistic
(geometry, materials, simulated image
optics, light sources)

L\




Inverse rendering

| \ physically-accurate

‘<_> inverse rendering

digital scene specification photovaggistic
(geometry, materials, syedsetienmage
camera, light sources)

L\




What | was doing in 2013

whole milk

mustard

hand cream

shampoo

| 2
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coffee

olive oil — curacao
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wine
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mixed soap

milk soap

liquid clay

reduced milk -




| wanted to make images such as this one




Scattering: extremely multi-path transport

random walks
inside volume

volumetric density| o,
scattedte@bredo| a

phase function| f




Acquisition setup




Analysis by synthesis (a.k.a. inverse rendering)

not scalable .
solve-by optimization problem
exhaustiversearch? : , ,
min | 4 - [imd[m) I
m

Monte Carlo @

rendering | ceveral

7 hours

material m, *

material

material




Analysis by synthesis (a.k.a. inverse rendering)

optimization problem

min | HHH 1 - limage(m)|||?
m

dimage(m) T

image(m) 3

Monte Carlo
D rendering

! T

material m

material m material m+om




Other scattering materials

PRECISION S\ ZE STAN

everyday materials industrial ispersions computed tomography
[Gkioulekas et al. 2013] [Gkioulekas et al. 2013] [Geva et al. 2018]

optical
E tomography
- [Gkioulekas et al.
woven fabrics clouds 2016]

[Khungurn et al. 2015, [Elek et al. 2017, 2019] [Levis et al. 2015, 2017]
Zhao et al. 2016]



Making sense of global illumination
X: 3D shape

X: surface reflectance

X: occluded imaging

scattering
M |:| X: illumination

reflectance

A

stochastic gradient descent

) ) . . while (not converged) Monte-Carlo
differentiable rendering: image N rendering
update X with X <€

gradients with respect to arbitrary X | |




Differentiable rendering

= QIRRRAR
.&, ”|E|EEL|H SIGGRAPH Asia 2018 Courses

Not related to:

Light Transport Simulation
Gradient-Domain Path Tracing in the Gradient Domain

Markus Kettunent  Marco Manzi®  Miika Aittala! Jaakko Lehtinen!? Frédo Durand? Matthias Zwicker®
' Aalto University *University of Bern ‘NVIDIA *MIT CSAIL

ACM Transactions on Graphics 34(4) (Proc. SIGGRAPH 2015).
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“Gradient” in their case refers to image edges.
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Differentiable rendering and deep learning

= (Ronysics) ™ (Img)

A
[ 1

Ot
O-S

—>

g
@

|

encoder

—>

parameters 1t

Img =R
A

phy5|cs( )

physics-based
renderer

needs to be
differentiable for

training with
backpropagation

|

force input and output images to be the same



Quick reminder from calculus



Basic differentiation rules

0 b
%f fl;m)dx =7



Basic differentiation rules

0 (P b9
%L f(X, TL’)dX =L %f(x, n)dx what is this rule called?



Basic differentiation rules

b b
%L f(x’ TL’)dX — L %f(x, n)dx differentiation under the integral sign

0 b (1)
%f flx;m)dx =7

a(m)



Basic differentiation rules

d (P b0
%J‘ f(x’ TL’)dX — f %f(x, n)dx differentiation under the integral sign
a a

9 (b b(m) 5
a_f f(x’ n)dx — f _f(x n)dx what is this rule called?
T

a(m) a(rm) on
+f(b(m); ) f(a(m); )

6b(7r) 6a(n)




Basic differentiation rules

d (P b0
%J‘ f(x’ TL’)dX — f %f(x, n)dx differentiation under the integral sign
a a

0 b (1) b () 0
_f f(x’ m)dx = f _f(x m)dx Leibniz integral rule
or a(m) a(m) on

H (b(m);m) 52 = fla(m);m) 57




Trivial differentiable rendering



Images as path integrals

I(m) = fp f(X; m)dX

camera

X — Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &
local terms (BRDF, foreshortening, emmision)




Monte Carlo rendering: approximating path integrals

N f(X;m)
p(X;)

I(m) =

1=1
|

MC ()

X; - Randomly sampled light paths

camera

p(X;) -2 Probability of sampling a path

Algorithms such as path
tracing, bidirectional path
tracing, etc. sample paths.




How can we approximate the derivative of the image?




Easy approach 1: finite differences

0l MC(mt+¢&) —MC(m — €)
(1) ~
on 2€

|
3
z

camera Any issues with this?

* Incredibly noisy for small €

* Veryinaccurate for large €

* Techniques for noise
reduction exist, but generally
impractical approach




Easy approach 2: automatic differentiation

= () ~ autodiff(MC (1))

camera

Any issues with this?

* Many path sampling techniques
are not differentiable

* High variance (consider f(x;m) =
constant)

 Rendering produces enormous,
non-local computational graphs.




OpenDR: An Approximate Differentiable Renderer

[Loper and Black 2015]

* Onlydirectillumination.
* Only shading parameters (normals,
reflectance).

Abstract. Inverse graphics attempts to take sensor data and infer 3D
geometry, illumination, materials, and motions such that a graphics ren-
derer could realistically reproduce the observed scene. Renderers, how-
ever, are designed to solve the forward process of image synthesis. To
go in the other direction, we propose an approximate differentiable ren-
derer (DR) that explicitly models the relationship between changes in
model parameters and image observations. We describe a publicly avail-
able OpenDR framework that makes it easy to express a forward graph-
ics model and then automatically obtain derivatives with respect to the
model parameters and to optimize over them. Built on a new auto-
differentiation package and OpenGL, OpenDR provides a local optimiza-
tion method that can be incorporated into probabilistic programming
frameworks. We demonstrate the power and simplicity of programming
with OpenDR by using it to solve the problem of estimating human body
shape from Kinect depth and RGB data.

Fig. 4. Illustration of optimization in Figure In order: observed image of earth,

initial absolute difference between the rendered and observed image intensities, final

difference, final result.




Differentiable rendering for local parameters



Images as path integrals

I(m) = fp f(X; m)dX

camera

X — Light path, set of ordered vertices on surfaces

P — Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume P is independent of 1t




Derivatives of images as path integrals

camera

0l
- —)
e () ="

X — Light path, set of ordered vertices on surfaces

P — Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume P is independent of 1t



Derivatives of images as path integrals

camera

— (T[) = — (x m)dX

differentiation under the integral sign

X — Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume P is independent of 1t



Monte Carlo differentiable rendering (for local parameters)

This term is generally easy to
compute during path tracing

al N‘ af (XU T[)
Z p(X;)

camera

1=1

X; - Randomly sampled light paths

p(X;) -2 Probability of sampling a path

Sample paths using path
tracing etc.




Score estimator

B
_ - _ V(xp_1 © xp) Foreshortening terms are
fxm) = fs(Xp—1 = Xp = Xp11; ) lxcy,_1 — xp||2 included in the BRDF
b=1

B

of _

%(Xi T) = ‘ ‘fs(xb—l — Xp = Xp41; )
b=1

g 0
Y 5{; (xb_1 - Xp = xb+1;7T) At each path vertex:

V(xp_1 © xp)

lxp—1 — xp||?

4 fs(xb—l o Xp = Xpai] 7T) * Update product throughput using f;
b=1 * Update score sum using gradient of f
Multiply the two at end of path



This is what all these papers do

PRECISION S\ ZE STAN

indutrial computed tomography
nanodispersions [Geva et al. 2018]

optical
tomography

[Gkioulekas et al.
woven fabrics clouds 2016]

[Khungurn et al. 2015, [Elek et al. 2017, 2019] [Levis et al. 2015, 2017]
Zhao et al. 2016]




Even simpler: use autodiff

N
2 autodiff(f (X;; m))
p(X;)

X; - Randomly sampled light paths

p(X;) -2 Probability of sampling a path




Compare with...

N f(X;m)

dl
— () =~ autodiff —
aﬂ( ) = p(X;)

camera

X; - Randomly sampled light paths

p(X;) -2 Probability of sampling a path




Even simpler: use autodiff

camera

N
0l (" autodiff(f (X;; 7))
HOED)

— p(X;)

Generally lower variance.
Remember: Compute an
estimate of the derivative, not
a derivative of the estimator.



Compute an estimate of the derivative

derivative wrt volumetric density

derivative wrt BRDF

Inverse Transport Networks

Chengqian Che Fujun Luan Shuang Zhao
Carnegie Mellon University Cornell University University of California, Irvine

Kavita Bala Ioannis Gkioulekas
Cornell University Carnegie Mellon University

derivative wrt normal



Comparison with finite differences

rendered
0; a 4
finite
differences
o, a 4

Note: Finite differences are great for testing the correctness of your gradient code.



Compute a derivative of the estimate

Mitsuba 2: A Retargetable Forward and Inverse Renderer

MERLIN NIMIER-DAVID", Ecole Polytechnique Fédérale de Lausanne
DELIO VICINI*, Ecole Polytechnique Fédérale de Lausanne

TIZIAN ZELTNER, Ecole Polytechnique Fédérale de Lausanne
WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne

A lot more general.
e GPU implementation.

derivative wrt volumetric density



Looking inside scattering objects

camera thick smoke cloud simulated camera reconstructed cloud slice through
measurements volume the cloud

43






Looking inside scattering objects




Inverse transport network

geometry

lighting

v

oo - [f] -

input image neural network output material T  forward scattering reconstructed image
~ [

45



Inverse transport network

geometry

lighting

backpropagation

‘O
> —> —_>
< 4] & <
1 J |
input image 1 output material T  forward scattering reconstructed image
derivatives
T i
' d neuralNet i d forwardScattering(m)
0 weights 0T

auto-diff (Torch. TensorFlow etc.)
parameter loss

46



Examples

50 %

groundtruth

0%

supervised and unsupervised

parameter loss: 0.60X
appearance loss: 0.40X
novel appearance loss: 0.42X

supervised only

parameter loss: 1X
appearance loss: 1X
novel appearance loss: 1X




Derivatives of images as path integrals

camera

— (T[) = — (x m)dX

differentiation under the integral sign

X — Light path, set of ordered vertices on surfaces

P —> Space of valid paths

f(X) -2 Path contribution,
includes geometric terms (visibility, fall-off) &

local terms (BRDF, foreshortening, emission)

Assume P is independent of 1t



Derivatives of images as path integrals

—(n) —f —(x m)dX

differentiation under the integral sign
camera

What about parameters it that
change P?

* Location, pose, and shape of
r light, camera, and scene
- objects.




Differentiable rendering for global geometry



We'll work with the rendering equation

L(x,w;m) = f

G ()

camera

p’

Lix' - x;m)f(x" - x,0;m)V(x" & x;m)dA(x")

L - Radiance at a point and direction
G = All surfaces in the scene

f -2 Reflection, foreshortening, and fall-off
V - Visibility



Let’s slightly rewrite the rendering equation

L(x,w;m) = f Lix' > x;m)f(x" - x,w; m)dA(x")
V(x,m)

L —> Radiance at a point and direction
V' = All visible surfaces in the scene

f -2 Reflection, foreshortening, and fall-off

camera

p’




Let’s differentiate it

d 9,
—L(x,w;m) = —f Lix'->x;m)f(x' - x,w; m)dA(x")
on V(x,m)

o1t

L —> Radiance at a point and direction

IV = All visible surfaces in the scene

f -2 Reflection, foreshortening, and fall-off

Can we just move the integral inside?

camera

p’




Let’s differentiate it

9,
—L(x,w;m) = —f Lix'->x;m)f(x' - x,w; m)dA(x")
om om V()

camera

p’

L —> Radiance at a point and direction

IV = All visible surfaces in the scene

f =2 Reflection, foreshortening, and fall-off

Can we just move the integral inside?
* No. What can we do?



Basic differentiation rules

d (P b0
%f f(x’ n)dx — f ﬁf(x, n)dx differentiation under the integral sign
a a

0 b (1) b(m) 0
_f f(x’ m)dx = f _f(x m)dx Leibniz integral rule
or a(m) a(m) on

H (b(m);m) 52 = fa(m);m) 57

We need a version of this for surface integrals



Reynolds transport theorem for surfaces

i fl;m)dA(x) = fdA(x) +j f<t; 6‘_x> di(x)
OT Js(m) S(r) dS(m) ot

| |

surface line integral on boundary
integral and discontinuities



REYNOLDS TRANSPORT THEOREM

d df
— dA — dl
dm jﬂf dTl: da + 00 g

Boundary domain
Reynolds transport theorem Interior integral I

Generalization of Leibniz’s rule

¢
v




REYNOLDS TRANSPORT THEOREM

1 size of the emitter

Irradiance at x

E =f L;(w)cosO do(w)
E

Unit hemisphere

Differential irradiance at x

dE d
de  dm ) e

L;(w)cosO do(w)



REYNOLDS TRANSPORT THEOREM

1 size of the emitter

Low I High

E = J L;(w) cosf do(w) The integrand Discontinuous points
2 (r-dependent)



REYNOLDS TRANSPORT THEOREM

f Low I High
/—/H
E =f L;(w) cosf do(w)

Discontinuous points
(r-dependent)

The integrand



Let’s differentiate the rendering equation

0

—L(x,w;m) = —f Lix'->x;m)f(x' - x,w; m)dA(x")
om 0T Jy (2m)

camera

p’

L —> Radiance at a point and direction

IV = All visible surfaces in the scene

f =2 Reflection, foreshortening, and fall-off

What are the “boundary” and
discontinuities of I/'?



Boundaries

(a) Boundary edges (b) Silhouette edges (c) Sharp edges

Fig. 5. Three types of edges (drawn in yellow) that can cause geometric

discontinuities: (a) boundary, (b) silhouette, and (c) sharp.




Let’s differentiate it

—L(x,w;m) =
on
0
— LdA(x) + H(L)do(x)
V(x,7) om oV (x,m)
| | |
| |
recursively estimate recursively estimate
derivative of L at radiance L at some
some visible point boundary point
camera
Not terribly good, as we ray trace, we need to:

‘ ’  recompute silhouette at each vertex
* branch twice



Global geometry differentiation

Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAOQ LI, MIT CSAIL

MITKA AITTALA, MIT CSAIL

FREDO DURAND, MIT CSAIL

JAAKKO LEHTINEN, Aalto University & NVIDIA

Beyond Volumetric Albedo
— A Surface Optimization Framework for Non-Line-of-Sight Imaging

Chia-Yin Tsai, Aswin C. Sankaranarayanan, and Ioannis Gkioulekas
Carnegie Mellon University




Global geometry differentiation

LC18 (=) — init T—

4 optimize
bunny

pose

optimize
reflectance
and camera
pose










Optimize shape

visible surface

source
and

sensor

reconstruction evolution N




Let’s differentiate it

—L(x,w; T
7 L( )
0
= f F ( ) dA(x) + J H(L)do(x)
V(x,m) on aV (x,m)
\_'_I L'J
render derivative render L at some
of L at some boundary
visible point (silhouette) point

camera | Not terribly good:

H * As we ray trace, we need to recompute
| silhouette
* Branching of two at each recursion




CHALLENGES

Complex light transport effects

Complex geometry

68



PATH-INTEGRAL FOR
DIFFERENTIABLE RENDERING

/>



FORWARD PATH INTEGRAL

Measurement
contribution function

f (x) dp(x)

Area-product

Path space measure

L|ght path X = (xo, xl,xz,xg)



DIFFERENTIAL PATH INTEGRAL

Path Integral

1=fﬂ@w®>
Q

A generalization of
Reynolds theorem

d/
dm

We now derive 9/n/ax in Eq. (25) using the recursive relations pro-
vided by Eqs. (21) and (24). Let

(0)
hy " = [I—]}T‘::'i.‘.l g(xps X2, xn'—I]] Welxn = xn-1)s (52)

1 !
hy' = N k() Vixw), (53)
h:lur]] . h:,m AG(Xp s X 2. X! 1 )G X Xt X 1), (54)
for 0 < n < n" < N. We omit the dependencies of hw] hf,“, and

(0)
.'_\.h, , 0N Xp41,...,xN for notational convenience.
We now show that forall 0 € n < N, it holds that

hn(xn; Xp-1) = f;“.\’ n t[ll 1—1,, =n+1 dA(xy), (55)

and

)

(xp ) df ()

Fln(-\'rrl Xn-1) = f_‘r[;\-_:n w)h“}] l_l,, =n+1 dA(x,)

(0)
n n+‘ifAh Va'\.l

[T dA(x;), (56)
n<i<N

i#n’
where the integral domain of the second term on the right-hand
side, which is omitted for notational clarity, is M(x) for each x;
with i # n’ and aM,y (), which depends on x,y_1, for x,;.

It is easy to verify that Egs. (55) and (56) hold forn = N — 1. We
now show that, if they hold for some 0 < n < N, then it is also

the case for n — 1. Let g,—; = g(xp; xp—2,%x,—1) forall0 < n < N.

Then,
hp—1(xp-1; Xp- 2}—_[“911 lf“\ n h(o n: n+l dA(xp) dA(xp)
= [yqnones By TIN_, dAGxw), (57)

and
n-1(Xn-15 Xn-2)
= f“ [gal 1hn + gn- 1”‘Tn = hnx(xn) V‘.’—'Kn”l dA(xpn)
+ a1, Adn-1 h Vagp de(xn)
s (0 (0), (1) N
= IM:" net |Gn-1 h?l +gn-1 |(hu : —hp hy,~ 1” [T, dA(xn’)

+ Z::{=n+1 Jrg"“1 Aha[::'r:’ VdfT,,;(x"'} df(xn) n

dA(x;)

+ [ Agur Y Vsr, de(xa) 1IN, dAxy)
RN rm AL
= f.-\t-’*"“" [hn—l] n- l n— J| n ‘—n dA(xn)

+ I [ AR, Ve (o) dE ()

1 dA(x).  (58)
n<i<N

izn’
Thus, using mathematical induction, we know that Eqs. (55) and
(56) hold for all0 < n < N.

Notice that h)”) = f and Ah{"), = Afy, where Af, follows the
definition in Eq. ( 28). Letting n = 0 in Eq. (56) yields

ho(x0) = [yn [F(2) = £(2) ZN_, k() V()] TT_, dA(2w)

+IN_ [ Af(®) Viri,, df[x,,'}nqllwdA(x;}. (59)
i#n'

Lastly, based on the assumption that hy is continuous in xg, Eq. (25)
can be obtained by differentiating Eq. (23):
IN = 2 [ ho(xo) dA(x0)
= [y [fo(x0) = ho(xo) k(x0) V (x0) ] dA(x0)
+ fm ho(x0) V7, (x0) de(xo) (60)
= Joy f® - F@ R

+ IR0 Jo . M (®) Vagp dil ().

K(xg) V(xK)] dp(x)

Full derivation in the paper




DIFFERENTIAL PATH INTEGRAL

A generalization of

Path Integral Reynolds theorem Differential Path Integral
1= | f@d® == - [ @ + [ @i
Q) %J9)

path space] Intertaumtagradth space -7

Original [ ) [ )

light PR{fpes of di§cagtinuity edge: X x
0
X 1
\ .| x3 o* -
xk./ | | X2 }/ | :_




SOURCE OF DISCONTINUITIES

Boundary edge Sharp edge Silhouette edge |

Boundary edge

Silhouette !
detection

¥ Silhouette
edge

Topology-driven Visibility-driven



REPARAMETERIZATIONS FOR
SIMPLIFYING THE BOUNDARY TERM



REVISIT - DIFFERENTIAL IRRADIANCE

7. size of the emitter Low I High  Discontinuities of f

E = j L;(w) cosf do(w) Differentiation> f —dO' +f g dl
H2 - _ HZ OH?2

~

f




DIFFERENTIAL IRRADIANCE

Spherical integral Surface integral

Change of
variable

E = j L;(w) cosO do(w) E = J Le(y » x) G(x,y) dA(y)
H2 L(m)

L(m)




DIFFERENTIAL DIRECT ILLUMINATION

Spherical integral Surface integral

Low I High

Change of
variable

discontinuous continuous
E = j L;(w) cosf do(w) E = f L.(y » x) G(x,y) dA(y)
[HI2 L(m)

constant domain evolving domain



DIFFERENTIAL IRRADIANCE

Low N High Boundary of L(m)
\ )
f Interior

_ A - dE d
E= [ LG - D60y Diﬁerenﬁaﬁon> T Farr[ ga
£(m) T Jg)dn 0L(T)

Reynolds theorem



REPARAMETERIZATION

E = j L.(y » x) G(x,y) dA(y)
L(1)

..
.
.0
.
.
3|

®
X(p,m,) Parameterize £(rr) using some fixed L:
re / XD y = X(p, )
L) where X(-, ) is one-to-one and continuous

L(my)

L(r,) >(/ P )
f dA(y)

L.(y » x)G(x,y) dA(p)

Reparameterization j
E =
Lo \34,@/

with y = X(p, ):



REPARAMETERIZATION

f

(- - 2
E = Le(y » x) G(x,y) dA(y)

JL(n)
dE d
E_[ Y +j g dl
dm  Jymdm 0L()

=0
fo

[ dA(y)
E = L.( —>x)G(x,)‘—dA

). ey Y 340 (p)
dE d
dE _ [ Youu +f go dI
de J, dm 9L,

£ 0



REPARAMETERIZATION

Reparameterization for irradiance

y = X(p,m)
)
= - ) d = - S E—
E L(E)Le(y x)G(x,y)dA(y) > E LO Le(y = x) G(x, y)‘dA( ) dA(p)
0
Fixed surface
Reparameterization for path integral
¥ = du(x)
I=| f@®dux = j ‘ T
BRICOLTC b @ (p) u(p)

Fixed path space 1

1—[ ‘dA(xl)
dA(p;)




DIFFERENTIAL PATH INTEGRAL

Original
[ = f () du(x)

Q(m)

X =X(p,n)

AV
Reparameterized

du(x)
du(p)

I=1 f(x) du(p)
Qo

Original
du(x) + f

dQ(m)

g(x)du'(x)

dI _f df (x)
dr am qm

Pro:  No global parametrization required
Con: More types of discontinuities

Reparameterized

Al [ d (. _ |du@
T jﬂoﬁ<f(x)

du(p)

Con: Requires global parametrization X
Pro: Fewer types of discontinuities

)du(ﬁ) ¥ ja ) )



DIFFERENTIAL PATH INTEGRAL

Differential path integral

Visibility-driven

Silhouette
edge




MONTE CARLO ESTIMATORS



ESTIMATING INTERIOR INTEGRAL

(Reparameterized) oI f u(x) _ f o
Differential path Integral o~ J_ ( & )‘d D) du(p) + aﬂog(p)dﬂ (p)

Interior integral

Original [ ) Can m using identical path

light path 7 e samplify renble<cstMSHfard rendering

Unidirectional path tracing

X1 Bidirectional path tracing

ng

A\




ESTIMATING BOUNDARY INTEGRAL

(Reparameterized) oI j 9 (. |du(X) _ J o
Differential path Integral ~ dn q, 0T f&) du(p) au(p) + aaog (P)du'(p)
Silhouette detection
[Li et al. 2018, Zhang et al. 2019]
| / 1\ ]




ESTIMATING BOUNDARY INTEGRAL
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OUR ESTIMATORS

Unidirectional estimator

Interior: unidirectional path tracing
. unidirectional sampling of subpaths
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Bidirectional estimator

Interior:
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. bidirectional sampling of subpaths

Bidirectional path tracing



SOME RESULTS



HANDLING COMPLEX GEOMETRY

Reference
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Complex geometry
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[Zhang et al. 2019] [Loubet et al. 2019]
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HANDLING COMPLEX GEOMETRY

|lteration #0

Target image

- Optimizing rotation angle

- Equal-sample per iteration

- ldentical optimization setting
— Learning rate (Adam)
— Initializations

[Loubet 2019] Ours

[Zhang 2019]
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HANDLING CAUSTICS

Complex light transport effects

Equal-sample
comparison

Reference

Negative

[Zhang et al. 2019]
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[Loubet et al. 2019]
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HANDLING CAUSTICS

Equal-sample comparison

[Zhang et al. 2019] [Loubet et al. 2019]
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HANDLING CAUSTICS

Target image

+ Optimizing
— Glass IOR
— Spotlight position
- Equal-time per iteration
- ldentical optimization setting

Ours (bidir.)

Ours (unidir.)

[Zhang 2019]
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SHAPE OPTIMIZATION

Initial
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RESULTS

Qriginal image | Derivative image Original image Derivative image

Optimize (final)




Stuff we are missing

We need path sampling algorithms tailored to differentiable rendering:

 Some simple versions exist for local differentiation (Gkioulekas et al. 2013, 2016).
* We need to take into account diff. geometric quantities in global case.

* We need to take into account loss function.

We need theory that can handle very low-dimensional path manifolds:
* We can’t easily incorporate specular and refractive effects into arbitrary pipelines.

* Doable inisolation (Chen and Arvo 2000, Jakob and Marschner 2013, Xin et al. 2019).
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Some more general thoughts

Initialization is super important:

Approximate reconstruction assuming direct lighting is usually good enough.

Coarse-to-fine schemes work well.

Parameterizations are super important:

Loss functions very non-linear and change shape easily.
Working with meshes is a pain (topology is awful and not (easily?) differentiable).
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Parameterization matters

Scattering Coefficient
Scattering Coefficient
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Figure 4: Search spaces for an inverse rendering problem: (a) the
original space; (b) the reparameterized space. The plotted region
in (a) maps to the area enclosed by the dashed lines in (b). Using
the original space, the stochastic gradient descent (SGD) algorithm
starting from point S is trapped at point P, which is far from the
real solution T. Using the reparameterized space, the algorithm is
able to find point R that is much closer to the real solution.

volumetric density o,
scattering albedo a

phase function f
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Some more general thoughts

Initialization is super important:
* Approximate reconstruction assuming direct lighting is usually good enough.
* Coarse-to-fine schemes work well.

Parameterizations are super important:
* Loss functions very non-linear and change shape easily.
 Working with meshes is a pain (topology is awful and not (easily?) differentiable).

You don’t always need Monte Carlo differentiable rendering:

* |f you don’t have strong global illumination, just use direct lighting.
* Alot of research in computer vision on differentiable rasterizers.

Remember that you are doing optimization:

* Unbiased and consistent gradients are very expensive to compute.

* Biased and/or inconsistent gradients can be very cheap to compute.

* Often, biased and/or inconsistent gradients are enough for convergence.

* Stochastic gradient descent matters a lot. 100




Reference material

Physics-Based Differentiable Rendering
A Comprehensive Introduction

Shuang Zhaol, Wenzel Jakob?, and Tzu-Mao Li3
luniversity of California, Irvine  2EPFL  3MIT CSAIL

SIGGRAPH 2020 Course

Differentiable Differentiable
physical simulation objective function

z=2g(y)

dz d )
= 2-8(y
dy dy
Input parameters Output
shape & position of objects, materials, Update scene rendered image
light sources, camera pose, etc.

CVPR 2021 Tutorial Proposal

Title: Tutorial on Physics-Based Differentiable Rendering

Proposers’ Names, Titles, Affiliations, and Primary Contact Emails:

Shuang Zhao Ioannis Gkioulekas
Assistant Professor, CS Assistant Protfessor, RI
University of California, Irvine Carnegie Mellon University

shz@ics.uci.edu igkioule@cs.cmu.edu 101
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