Rendering equation

15-468, 15-668, 15-868
Physics-based Rendering
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Course announcements

e quiz 4 due Tuesday 3/16 at 23:59.
Uiz 5 will be posted tonight.

Programming assignment 3 posted, due Friday 3/26 at 23:59.
- How many of you have looked at/started/finished it?
- Any guestions?

This week’s readi
- Please try ar

C

ng group.

post suggested topics by Thursday early afternoon.

- Suggest topics on Piazza.

Vote to re-schedule lecture of 3/25.



Graphics faculty candidate talk

Speaker: Rana Hanocka (Tel Aviv University)
Title: Artificial Intelligence for Geometry Processing

Abstract: Demand for geometry processing is higher than ever, given the continuously and exponentially
growing amount of captured 3D data (with depth-sensing cameras now prevalent in smartphones, robots,
drones, and cars). Yet, in practice, current geometry processing techniques struggle to automatically and
robustly analyze real-world data, even in small volumes. Deep learning, the most popular form of artificial
intelligence, has been remarkably effective in extracting patterns from voluminous data, thus
significant scientific interest in its applicability to 3D geometric data. However, despite the inspiring success of
deep learning on large sets of Euclidean data (such as text, images, and video), extending d
networks to non-Euclidean, irregular 3D data has proven to be both ambiguous and highly challenging.

This talk will present my research into developing deep learni
irregular geometric data. | will demonstrate how we can
ks to solve complex geometry processing problems,
ng/synthesis. | will conclude by highlighting open research directions aligned with my focus on

netwo

designi

modeli

ng techniques that enable effective o
everage the representational powe

including surface reconstruction anc

generating

eep neural

neration on
- of neural

geometric

ng 3D machine learning techniques that can both facilitate the robust processing of real-world
geometric data and improve ease-of-use in downstream applications.



Overview of today’s lecture

* Leftover from previous lecture: light sources, mixture sampling, multiple importance
sampling.

* Rendering equation.

* Path tracing with next-event estimation.



Slide credits

Most of these slides were directly adapted from:

* Wojciech Jarosz (Dartmouth).



Direct vs. Indirect lllumination

Where does Li  L,(x,&;) = fr(x, @;, Wy)Li(x, ;) cos 6; da;
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Direct vs. Indirect lllumination

Direct + indirect

Direct illumination Indirect illumination llumination




All-in-One!
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Reflection Equation

Reflected radiance is the weighted integral of incident radiance




Rendering Equation

James Kajiya, “The Rendering Equation.”
SIGGRAPH 1986.

Energy equilibrium:

outgoing emitted reflected
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Rendering Equation

James Kajiya, “The Rendering Equation.”
SIGGRAPH 1986.

Energy equilibrium:

A

LO /X, (T)O) — Le(x, CT)O) _I_ Hzfr(x/ (r)ll wO} Ll‘xl (’T)O) COS 91 d(r)l

\ \ \

outgoing emitted reflected
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Light Transport
In free-space/vacuum, radiance is constant along rays

We can relate incoming radiance to outgoing radiance

———
-

ray tracing Li(x, (T))
function
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ray tracing

Rendering Equation s

L(x,&) = Le(x, @) + - fr(x, &, @)L(r(x,@"), —&") cos 0'dd’

Only outgoing radiance on both sides
- we drop the “0” subscript
- Fredholm equation of the second kind (recursive)

- Extensive operator-theoretic study (that we will not cover here,
but great reading group material)
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Rendering Equation

L(x,&) = Le(x, @) + - fr(x, &, @)L(r(x,@"), —&") cos 0'dd’

light source

’ -
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Rendering Equation

L(x,@)|= Le(x, @) + i fr(x, &', &) L(r(x,&"), —&") cos 0'd’

light source
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Rendering Equation

L(x, @)= Lo(x, @) + /H (%@, @)L(r(x, &), ~@') cos 0'da

light source

‘ > Integrate over the hemisphere
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Rendering Equation

L(x &)= Le(x, @) + S &', &) L(r(x,&"), —&") cos ' d&’|

light source
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Rendering Equation
L(x,@)|= Le(x, @) +

7"

ray tracing
function

@)L(r(x @),

light source
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Rendering Equation

L(x,@)|= Le(x, @) + o Fr(x &', @&)L(r(x,

—
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Rendering Equation

L(x,@)|= Le(x, @) + L Fr(x &', &\L(r(x,&"), —

light source
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Rendering Equation

[L(xr, CTJ)]: Le(x,0) + [ fr(x,

recursion
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Rendering Equation

L(x @) = Le(x,@) + |  fr(x &, &\L(r(x, &), -

light source
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Rendering Equation

L(x,@)|= Le(x, @) + i fr(x, &', &) L(r(x,&"), —&") cos 0'd’

light source
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Rendering Equation

L(x &)= Le(x, @) + S &', &) L(r(x,&"), —&") cos ' d&’|

light source
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Rendering Equation
L(x,@)|= Le(x, @) +

7"

ray tracing
function

@)L(r(x @),

light source
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Rendering Equation

[L(x, CTJ)J = Le(x,@0) + [ fr( L([r —(I’J’]) cos 0'd@’

light source



Rendering Equation

[L(x,d’))]: Le(x,0) + [ fr(x,

light source

recursion
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Rendering Equation

L(x, @) = Le(x,0) + - fr(x, @', &)L(r(x,

—/
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), —@") cos 0'd&’
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Rendering Equation
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Rendering Equation
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Path Tracing



Path Tracing
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Path Tracing Algorithm

L(x,&0) = Le(x,@0) 4+ Le(x, @)

Color color(Point x, Direction w, int moreBounces):

if not moreBounces:
return Le(X,-w)

// sample recursive integral
w’ = sample from BRDF
return Le(X,-w) + BRDF * color(trace(x, w’), moreBounces-1) * dot(n,w’) / pdf(w’)
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Partitioning the Integrand

Direct illumination: sometimes better estimated by sampling
emissive surfaces

Let’s estimate direct illumination separately from indirect
illumination, then add the two

- i.e. shoot shadow rays (direct) and gather rays (indirect)

- be careful not to double-count!

Also known as next-event estimation (NEE)
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Path Tracing with NEE

VOI
dddddd
counting!



Path Tracing Algorithm with NEE

L(x,(f)) — Le(X, (f)) T Ldir(xl (f)) T Lind(xla’))
Color color(Point x, Direction w, int moreBounces):

if not moreBounces:

return Le; double counting!

// hext-event estimation: compute L4ir by Sampling the light
w1 = sample from light
Lsir = BRDF * color(trace(Xx, wi), 0) * dot(n, wi1) / pdf(wi)

// compute Ling by sampling the BSDF
w: = sample from BSDF;
Lina = BSDF * color(trace(X, w2), moreBounces-1) * dot(n, w2) / pdf(w:)

return Le + Lgir + Lind
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Path Tracing Algorithm with NEE

L(x,(f)) — Le(x/ (f)) T Ldir(x/ (f)) T Lind(x/aj)
Color color(Point x, Direction w, int moreBounces, bool includele):

Le = includele ? Le(X,~w) : black

if not moreBounces:
return Le

// hext-event estimation: compute L4ir by sSampling the light
w1 = sample from light
Lair = BRDF * color(trace(x, wi), 0, true) * dot(n, wi1) / pdf(wi)

// compute Lina by sampling the BSDF
w2 = sample from BSDF

Lina = BSDF * color(trace(Xx, w2), moreBounces-1, false) * dot(n, w2) / pdf(w:2)

return Le + Lgir + Lind
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Path Tracing with
Shadow Rays

1 path/pixel




Path Tracing
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Improving quality: the wrong way

N
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The problem

<

Exponential growth!

3-bounce contributes less than 1-bounce transport, but we
estimate it with 25x as many samples!
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Improving quality
Just shoot more rays/pixel

- avoid exponential growth: make sure not to branch!

Each ray will start a new path

We can achieve antialiasing/depth of field/motion blur at the
same time “for free”!
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Path Tracing with
Shadow Rays

1 path/pixel
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Path Tracing with
Shadow Rays
4 paths/pixel
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Path Tracing with
16 paths/pixel

Shadow Rays



Path Tracing with
Shadow Rays

64 paths/pixel




Path Tracing with
Shadow Rays

256 paths/pixel




Path Tracing with
Shadow Rays

1024 paths/pixel




When do we stop recursion?

Truncating at some fixed depth introduces bias

Solution: Russian roulette
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Russian Roulette

Probabilistically terminate the recursion

New estimator: evaluate original estimator X with probability
P (but reweighted), otherwise return zero:

S5 E<P
er — .
0 otherwise

Unbiased: same expected value as original estimator:

ElX]
P

E[er]:P-( )+(1—p)-0:15pq
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Russian Roulette

This will actually increase variance!

- but it will improve efficiency if P is chosen so that samples that are
expensive, but are likely to make a small contribution, are skipped

You are already doing this

- probabilistic absorption in BSDF (instead of scattering)
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Questions?

We should really be using MIS or mixture sampling
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Naive Path Tracing

L(x,&0) = Le(x,@0) 4+ Le(x, @)

Color color(Point x, Direction w, int moreBounces):

if not moreBounces:
return Le(X,-w)

// sample recursive integral
w’ = sample from BRDF
return Le(X,-w) + BRDF * color(trace(x, w’), moreBounces-1) * dot(n,w’) / pdf(w’)
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Path Tracing with mixture sampling

L(x,&0) = Le(x,@0) 4+ Le(x, @)

Color color(Point x, Direction w, int moreBounces):

if not moreBounces:
return Le(X,-w)

// sample recursive integral
w’ = sample from mixture PDF
return Le(X,-w) + BRDF * color(trace(x, w’), moreBounces-1) * dot(n,w’) / pdf(w’)

54



Path Tracing Algorithm with NEE

color trace(Point x, Direction w, int moreBounces, bool includele):
get scene intersection X, and normaln
Le = includele ? Le(X,~w) : black

if not moreBounces:
return Le

// hext-event estimation: compute L4ir by Sampling the light
w1 = sample from light
Lair = BRDF * trace(X, wi, 0, true) * dot(n, wi) / pdf(w:1)

// compute Linga by sampling the BSDF
w: = sample from BSDF
Lina = BSDF * trace(X, w2, moreBounces-1, false) * dot(n, w2) / pdf(w:)

return Le + Lgir + Lind
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Path Tracing Algorithm with NEE+MIS

color trace(Point x, Direction w, int moreBounces, float Lcweight):
get scene intersection X, and normal n
Le — Leweight * Le(x,'w)

if not moreBounces:
return Le

// hext-event estimation: compute Lqir by Sampling the light
w1 = sample from light
Lair = BRDF * trace(X, wi, 0, mis-weighti) * dot(n, wi) / pdf(w:1)

// compute Linga by sampling the BSDF
w: = sample from BSDF
Linda = BSDF * trace(X, w2, moreBounces-1, mis-weight2) * dot(n, w2) / pdf(w:)

return Le + Lgir + Lind
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Path Tracing on 99 Lines of C++

OoooNOOTUVL, WNER

#tinclude <math.h> // smallpt, a Path Tracer by Kevin Beason, 2008
#include <stdlib.h> //Make : g++ -O3 -fopenmp smallpt.cpp -o smallpt
#include <stdio.h> / Remove "-fopenmp" for g++ version < 4.2

struct Vec {

}s

// Usage: time ./smallpt 5000 && xv image.ppm

double x, y, z; // position, also color (r,g,b)

Vec(double x =0, double y =0, double z =0){ x=x_; y=y ; z=z_; }

Vec operator+(const Vec &) const { return Vec(x+b.x,y+b.y,z+b.z); }
Vec operator-(const Vec &) const { return Vec(x-b.x,y-b.y,z-b.z); }
Vec operator*(double b) const { return Vec(x*b,y*b,z*b); }

Vec mult(const Vec &) const { return Vec(x*b.x,y*b.y,z*b.z); }

Vec& norm(){ return *this = *this * (1/sqrt(x*x+y*y+z*z)); }

double dot(const Vec &) const { return x*b.x+y*b.y+z*b.z; } //cross:
Vec operator’%(Vec&b){return Vec(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);}

struct Ray { Vec o, d; Ray(Vec o_, Vec d_) : o(o_), d(d ) {} };
enum Refl_t { DIFF, SPEC, REFR }; //material types, used in radiance()
struct Sphere {

}s

double rad; // radius

Vec p, e, C; // position, emission, color

Refl t refl; // reflection type (DIFFuse, SPECular, REFRactive)

Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl ):
rad(rad_), p(p_), e(e_), c(c_), refi(refl_) {}

double intersect(const Ray &r) const { //returns distance, O if nohit
Vec op = p-r.o; // Solve t"2*d.d + 2*t*(o-p).d + (o-p).(0-p)-R"2 = 0
double t, eps=le-4, b=op.dot(r.d), det=b*b-op.dot(op)+rad*rad;
if (det<9) return 9; else det=sqrt(det);
return (t=b-det)>eps ? t : ((t=b+det)>eps ? t : 9);

}

Sphere spheres[] = {/Scene: radius, position, emission, color, material

}s

Sphere(1e5, Vec( 1le5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF),//Left
Sphere(1le5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),/Rght
Sphere(1le5, Vec(50,40.8, 1le5), Vec(),Vec(.75,.75,.75),DIFF),/Back
Sphere(1e5, Vec(50,40.8,-1e5+170), Vec(),Vec(), DIFF),/Frnt
Sphere(1le5, Vec(50, 1le5, 81.6), Vec(),Vec(.75,.75,.75),DIFF),/Botm
Sphere(1le5, Vec(50,-1e5+81.6,81.6),Vec(),Vec(.75,.75,.75),DIFF),/Top
Sphere(16.5,Vec(27,16.5,47), Vec(),Vec(1,1,1)*.999, SPEC),/Mirr
Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(1,1,1)*.999, REFR),/Glas
Sphere (600, Vec(50,681.6-.27,81.6),Vec(12,12,12), Vec(), DIFF) /Lite

inline double clamp(double x){ return x<0 ? @ : x>1 ? 1 : x; }
inline int tolnt(double x){ return int(pow(clamp(x),1/2.2)*255+.5); }
inline bool intersect(const Ray &r, double &t, int &id){

}

double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=1e20;
for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&8&d<t){t=d;id=1i;}
return t<inf;
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Vec radiance(const Ray &r, int depth, unsigned short *Xi){

}

double t; // distance to intersection
int id=0; // id of intersected object
if (lintersect(r, t, id)) return Vec(); //if miss, return black
const Sphere &obj = spheres[id]; // the hit object
Vec x=r.o+r.d*t, n=(x-obj.p).norm(), nl=n.dot(r.d)<@?n:n*-1, f=obj.c;
double p = f.x>f.y & f.x>f.z ? f.x : f.y>f.z ? f.y : f.z; /maxrefl
if (++depth>5) if (erand48(Xi)<p) f=f*(1/p); else return obj.e; /R.R.
if (obj.refl == DIFF){ // Ideal DIFFUSE reflection
double ri1=2*M PI*erand48(Xi), r2=erand48(Xi), r2s=sqrt(r2);
Vec w=nl, u=((fabs(w.x)>.1?Vec(9,1):Vec(1))%w).norm(), v=wku;
Vec d = (u*cos(rl)*r2s + v*sin(rl)*r2s + w*sqrt(1-r2)).norm();
return obj.e + f.mult(radiance(Ray(x,d),depth,Xi));
} else if (obj.refl == SPEC) // lIdeal SPECULAR reflection
return obj.e + f.mult(radiance(Ray(x,r.d-n*2*n.dot(r.d)),depth,Xi));
Ray reflRay(x, r.d-n*2*n.dot(r.d)); // Ideal dielectric REFRACTION
bool into = n.dot(nl)>0; // Ray from outside going in?
double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=r.d.dot(nl), cos2t;
if ((cos2t=1-nnt*nnt*(1-ddn*ddn))<0) // Total internal reflection
return obj.e + f.mult(radiance(reflRay,depth,Xi));
Vec tdir = (r.d*nnt - n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm();
double a=nt-nc, b=nt+nc, R@=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(n));

double Re=RO+(1-R@)*c*c*c*c*c,Tr=1-Re,P=.25+.5*Re,RP=Re/P,TP=Tr/(1-P);

return obj.e + f.mult(depth>2 ? (erand48(Xi)<P ?  //Russian roulette
radiance(reflRay,depth,Xi)*RP:radiance(Ray(x,tdir),depth,Xi)*TP)
radiance(reflRay,depth,Xi)*Re+radiance(Ray(x,tdir),depth,Xi)*Tr);

int main(int argc, char *argv[]){

int w=1024, h=768, samps = argc==2 ? atoi(argv[1l])/4 : 1; //# samples
Ray cam(Vec(50,52,295.6), Vec(0,-0.042612,-1).norm()); //cam pos, dir

Vec cx=Vec(w*.5135/h), cy=(cx%cam.d).norm()*.5135, r, *c=new Vec[w*h];
#pragma omp parallel for schedule(dynamic, 1) private(r)

for (int y=0; y<h; y++){ // Loop over image rows
fprintf(stderr, "\rRendering (%d spp) %5.2f%%",samps*4,100.*y/(h-1));
for (unsigned short x=0, Xi[3]={9,0,y*y*y}; x<w; x++) //Loop cols
for (int sy=0, i=(h-y-1)*w+Xx; sy<2; sy++) // 2x2 subpixel rows
for (int sx=0; sx<2; sx++, r=Vec()){ /] 2x2 subpixel cols
for (int s=0; s<samps; s++){
double ril=2*erand48(Xi), dx=rl<1l ? sqrt(rl)-1: 1-sqrt(2-rl);
double r2=2*erand48(Xi), dy=r2<1 ? sqrt(r2)-1: 1-sqrt(2-r2);
Vec d = cx*( ( (sx+.5 + dx)/2 + x)/w - .5) +
cy*( ( (sy+.5 + dy)/2 + y)/h - .5) + cam.d;

r = r + radiance(Ray(cam.o+d*140,d.norm()),0,Xi)*(1./samps);

} // Camera rays are pushed "M forward to start in interior
c[i] = c[i] + Vec(clamp(r.x),clamp(r.y),clamp(r.z))*.25;
}
}
FILE *f = fopen("image.ppm", "w");
fprintf(f, "P3\n%d %d\n%d\n", w, h, 255);
for (int i=0; i<w*h; i++)
fprintf(f, “%d %d %d ", tolnt(c[i].x), toIlnt(c[i].y), toInt(c[i].z));

// Write image to PPM file.

// OpenMP

smallpt by Kevin Beason



directions for making pictures using numbers
(explained using only the fen hundred words people use most often)

the light that comes from

an inferesting direction
towards the position on the
direction towards the answer to how wuch light from an stuff how much the light
the eye interesting direction that will keep going becomes less bright
position on light made by the stuff i the direction tnwar{!s.fhe eye, .aﬁer beeause the stuff leans
the stuff (sometimes because  hitting stuff at the position (this is easy away from the
\ it is very hot) for wmirrors, not so easy for everything else) interesting direction

L (x, a)) L (X, @ ) + /f(x, .= )HL*(x,. m)| I(cu:rz)l dw.

i 0 : i z z
| /‘
light that leaves fhe | | |

position on the stuff and light can be added D Sy —
reaches the eye said 2 man who sat under inside half a ball facing up
a {ree many years ago from the stuff, add up all the
answers in between

this idea came from http://xked.com/1133/ @levork
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