Light transport matrices

15-463, 15-663, 15-862

Course announcements

- Homework assignment 6 is tomorrow.
- Any questions?
- Final project logistics posted on course website.
- Make sure to read the details.

Overview of today's lecture

- The light transport matrix.
- Image-based relighting.
- Optical computing using the light transport matrix.
- Dual photography.

Slide credits

These slides were directly adapted from:

- Matt O’Toole (CMU).

The light transport matrix

How do these three images relate to each other?

the superposition principle

photo taken under two light sources = sum of photos taken under each source individually

the superposition principle

photo taken under two light sources = sum of photos taken under each source individually

the superposition principle

why is the error not exactly zero?

photo taken under two light sources = sum of photos taken under each source individually
image-based relighting

image-based relighting

image-based relighting

Weight 2
$\times 12$

$\times l_{2}$

n pixel values
photo with light 1 turned

Contribution of the source

photo with light 2 turned

$$
\begin{aligned}
& \text { Weight } 1 \\
& \times \boxed{\mathbf{I}_{\mathbf{1}}}+
\end{aligned}
$$

Number of
controllable sources

Contribution of each source l

Contribution of each source l
l_{i}
n pixel values

Contribution of each source l

n pixel values

Contribution of each source l
l_{i}
n pixel values

light transport matrix

Can you think of a case where we have a very large m ?

Use a projector
scene

$n \times m$

n pixel values

What does each row and column of T correspond to here?

Image-based relighting

Let's say I have measured T.

- What does it mean to right-multiply it with some vector I?

Image-based relighting: Use the measurements we already have of the scene (the pictures I took when measuring T) to simulate new illuminations of the scene.

m independent illumination degrees of freedom

Acquiring the Reflectance Field [Debevec et al. 2000]
image-based rendering \& relighting

Acquiring the Reflectance Field

image-based rendering \& relighting

Acquiring the Reflectance Field

Light stage 6, Debevec et al., 2006

Optical computing using the light transport matrix

main difficulties

question: what are the challenges with analyzing T ?

main difficulties

question: what are the challenges with analyzing T?

- matrix can be extremely large

main difficulties

question: what are the challenges with analyzing T?

- matrix can be extremely large
- elements not directly accessible

main difficulties

question: what are the challenges with analyzing T?

- matrix can be extremely large
- elements not directly accessible
- global structure poorly understood

How would you measure the light transport matrix T?

- matrix can be extremely large
- elements not directly accessible
- global structure poorly understood

How would you measure the light transport matrix T?

Exhaustive/naïve approach: turn on projector pixels one at a time and take a photo for each of them.

- What does each photo correspond to in T?

How would you measure the light transport matrix T?

Exhaustive/naïve approach: turn on projector pixels one at a time and take a photo for each of them.

- How many photos do we need to capture?

computing with light

numerical algorithms implemented directly in optics

computing with light

numerical algorithms implemented directly in optics

computing with light

numerical algorithms implemented directly in optics
numerical domain
function analyze(T)
for $i=1$ to $k\{$

$$
\mathbf{p}_{i}=\mathbf{T l}_{i}
$$

$\mathbf{d}_{i}=\boldsymbol{T r}_{i}$
\}
return result
optical domain

computing with light

numerical algorithms implemented directly in optics
numerical domain function analyze(T)
for $i=1$ to $k\{$

$$
\mathbf{p}_{i}=\mathbf{T l}_{i}
$$

$\mathbf{d}_{i}=\boldsymbol{T r}_{i}$
\}
return result

optical domain

function analyze()
for $i=1$ to $k\{$
project \mathbf{l}_{i}, capture \mathbf{p}_{i}
project \mathbf{r}_{i}, capture \mathbf{d}_{i}
\}
return result
find an illumination pattern that when projected onto scene, we get the same photo back (multiplied by a scalar)

capture

What do we call these patterns?

computing transport eigenvectors

eigenvector of a square matrix T when projected onto scene, we get the same photo back (multiplied by a scalar)

capture

numerical goal
find l, λ such that

$$
\mathrm{Tl}=\lambda \mathbf{l}
$$

and λ is maximal

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathbf{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$
numerical domain
function PowerIt(T)
$\mathrm{l}_{1}=$ initial vector
for $i=1$ to $k\{$

$$
\mathbf{p}_{i}=\mathbf{T l}_{i}
$$

$l_{i+1}=\mathbf{p}_{i} /\left\|\mathbf{p}_{i}\right\|_{2}$
\}
return l_{i+1}

properties

- linear convergence [Trefethen and Bau 1997]
- eigenvalues must be distinct
- l_{1} cannot be orthogonal to principal eigenvector

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathrm{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical power iteration

goal: find principal eigenvector of \mathbf{T} observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{T}, \mathrm{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$
numerical domain
function PowerIt(T)
$\mathrm{l}_{1}=$ initial vector
for $i=1$ to $k\{$ $\mathbf{p}_{i}=\mathrm{Tl}_{i}$
$\mathbf{l}_{i+1}=\mathbf{p}_{i} /\left\|\mathbf{p}_{i}\right\|_{2}$ \}
return 1_{i+1}
optical domain

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{T}, \mathrm{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathrm{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathbf{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical domain

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathrm{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical domain

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathbf{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical domain

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathbf{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical domain

optical power iteration

goal: find principal eigenvector of \mathbf{T}
observation: it is a fixed point of the sequence $\mathbf{l}, \mathrm{Tl}, \mathbf{T}^{2} \mathbf{l}, \mathrm{~T}^{3} \mathbf{l}, \ldots$

optical domain

(approximate)

principal eigenvector

How would you measure the light transport matrix T?

Alternative approach: use optical eigendecomposition to form a low-rank approximation to the light transport matrix.

- How many photos do we need to capture?

Inverse transport

input photo

How do you solve this problem if you know the light transport matrix T?

input photo
illumination

input photo
?
illumination

input photo
?
illumination

numerical goal

 given photo \mathbf{p}, find illumination 1 that minimizes

How do you usually solve for I when T is large?

input photo
?
illumination

Reminder: gradient descent

Given the loss function:

$$
E(f)=\|G f-v\|^{2}
$$

Minimize by iteratively computing:

$$
f^{i+1}=f^{i}-\eta^{i} r^{i}, \quad r^{i}=v-A f^{i}, \quad \eta^{i}=\frac{\left(r^{i}\right)^{T} r^{i}}{\left(r^{i}\right)^{T} A r^{i}} \quad \text { for } \mathrm{i}=0,1, \ldots, \mathrm{~N}
$$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.
- Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed using convolutions with the Laplacian kernel.

Gradient descent in this case

Given the loss function:

$$
E(f)=\|G f-v\|^{2}
$$

Minimize by iteratively computing:

$$
f^{i+1}=f^{i}-\eta^{i} r^{i}, \quad r^{i}=v-A f^{i}, \quad \eta^{i}=\frac{\left(r^{i}\right)^{T} r^{i}}{\left(r^{i}\right)^{T} A r^{i}} \quad \text { for } \mathrm{i}=0,1, \ldots, \mathrm{~N}
$$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vecters f, rafe images. What are f, r in this case?
- Because Λ is the Laplacian metrix, these matrix-vector productscan be efficiently computed using convelutions with the Laplacian kernet. How do we compute matrix-vector products efficiently in this case?
numerical goal
given photo p, find illumination 1 that minimizes

remarks
- T low-rank or high-rank
- T unknown \& not acquired
- illumination sequence will be specific to input photo

inverting light transport

 input photo

actual illumination

Dual photography

How do the light transport matrices for these two scenes relate to each other?

Helmholtz reciprocity: The two matrices are the transpose of each other.

Great demonstration:
https://www.youtube.com/watch?v=eV58Ko3iFul
©

References

Basic reading:

- Sloan et al., "Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments," SIGGRAPH 2002.
- Ng et al., "All-frequency shadows using non-linear wavelet lighting approximation," SIGGRAPH 2003.
- Seitz et al., "A theory of inverse light transport," ICCV 2005.

These three papers all discuss the concept of light transport matrix in detail.

- Debevec et al., "Acquiring the reflectance field of a human face," SIGGRAPH 2000.

The paper on image-based relighting.

- O’Toole and Kutulakos, "Optical computing for fast light transport analysis," SIGGRAPH Asia 2010.

The paper on eigenanalysis and optical computing using light transport matrices.

- Sen et al., "Dual photography," SIGGRAPH 2005.

The dual photography paper.
Additional reading:

- Peers et al., "Compressive light transport sensing," TOG 2009.
- Wang et al., "Kernel Nyström method for light transport," SIGGRAPH 2009.

These two papers discuss alternative ways for efficient acquisition of the light transport matrix, using assumptions on its algebraic structure.

- Durand et al., "A frequency analysis of light transport," SIGGRAPH 2005.
- Mahajan et al., "A theory of locally low dimensional light transport," SIGGRAPH 2007.
- Reddy et al., "Frequency-space decomposition and acquisition of light transport under spatially varying illumination," ECCV 2012.

These papers more formally discuss the notion of light transport frequency, how it relates to light transport matrix rank, and the frequency/rank characteristics of different light transport effects (specular versus diffuse reflections, hard versus smooth shadows).

