

http://graphics.cs.cmu.edu/courses/15-463

Radiometry and reflectance

15-463, 15-663, 15-862 Computational Photography Fall 2023, Lecture 13

Course announcements

- Tanli will cover Yannis' office hours tomorrow.
- Grades for HW3 posted.

Overview of today's lecture

- Radiometric quantities. •
- A little bit about color. lacksquare
- Reflectance equation. •
- Standard reflectance functions.

Slide credits

Most of these slides were directly adapted from:

- Wojciech Jarosz (Dartmouth).
- Todd Zickler (Harvard).
- Srinivasa Narasimhan (CMU).

Appearance

Appearance

"Physics-based" computer vision (a.k.a "inverse optics")

Our challenge: Invent computational representations of shape, lighting, and reflectance that are *efficient*: simple enough to make inference tractable, yet general enough to capture the world's most important phenomena

⇒ shape, illumination, reflectance

Example application: Photometric Stereo

Quantifying Light

Assumptions

separately at each wavelength

Geometric/ray optics

No polarization

No fluorescence, phosphorescence, ...

Light sources, reflectance spectra, sensor sensitivity modeled

Radiometry studies the measurement of electromagnetic radiation, including visible light.

11

Assume light consists of photons with:

- X: Position
- $-\vec{\omega}$: Direction of travel
- $-\lambda$: Wavelength
- Each photon has an energy of: $\frac{h c}{\lambda}$ $h \approx 6.63 \times 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg/s}$: Planck's constant $-c = 299,792,458 \,\mathrm{m/s}$: speed of light in vacuum - Unit of energy, Joule: $\left[J = kg m^2/s^2\right]$

12

How do we measure the energy flow?

Basic quantities (depend on wavelength)

- flux Φ
- irradiance *E*
- radiosity B
- intensity I
- radiance L

will be the most important quantity for us

Flux (Radiant Flux, Power)

total amount of radiant energy passing through surface or space per unit time

$\Phi(A) \qquad \left| \frac{\mathsf{J}}{\mathsf{s}} = \mathsf{W} \right|$

examples:

- number of photons hitting a wall per second
- this exactly?)

- number of photons leaving a lightbulb per second (how do we quantify

Irradiance

area density of flux

flux per unit area **arriving** at a surface

$$E(\mathbf{x}) = \frac{\mathrm{d}\Phi(A)}{\mathrm{d}A(\mathbf{x})} \quad \begin{bmatrix} W \\ \frac{W}{m^2} \end{bmatrix}$$

example:

- number of photons **hitting** a small patch of a wall per second, divided by size of patch

Radiosity (Radiant Exitance)

area density of flux

flux per unit area **leaving** a surface

$$B(\mathbf{x}) = \frac{\mathrm{d}\Phi(A)}{\mathrm{d}A(\mathbf{x})} \quad \left[\frac{\mathrm{W}}{\mathrm{m}^2}\right]$$

example:

divided by size of patch

- number of photons reflecting off a small patch of a wall per second,

Radiant Intensity

directional density of flux power (flux) per solid angle

Solid Angle

Angle

- circle: 2π radians

Solid angle - sphere: 4π steradians

Subtended (Solid) Angle

Length/area of object's *projection* onto a unit circle/sphere

Solid angle

The *solid angle* subtended by a small surface patch with respect to point O is the area of its central projection onto the unit sphere about O

Depends on:

orientation of patch

distance of patch

One can show:

"surface foreshortening"

$$d\omega = \frac{dA\cos\theta}{r^2}$$

Units: steradians [sr]

Solid angle

To calculate solid angle subtended by a surface S relative to O you must add up (integrate) contributions from all tiny patches (nasty integral)

$$\Omega = \iint_{S} \frac{\vec{\mathbf{r}} \cdot \hat{\mathbf{n}} \ dS}{|\vec{\mathbf{r}}|^3}$$

One can show:

"surface foreshortening"

$$d\omega = \frac{dA\cos\theta}{r^2}$$

Units: steradians [sr]

Radiant Intensity directional density of flux power (flux) per solid angle

example: $\Phi = 4\pi I$ (for an isotropic point source) power per unit solid angle emanating from a point source

A hypothetical measurement device

flux density per unit solid angle, per perpendicular unit area

$$L(\mathbf{x},\vec{\omega}) = \frac{d^2 \Phi(A)}{d\vec{\omega} dA^{\perp}(\mathbf{x},\vec{\omega})}$$

$$= \frac{d^2 \Phi(A)}{d\vec{\omega} dA(\mathbf{x}) \cos \theta}$$

$$\frac{W}{m^2 sr}$$

fundamental quantity for vision and graphics

remains constant along a ray (in vacuum only!)

incident radiance L_i at one point can be expressed as outgoing radiance L_o at another point

 $L_i(\mathbf{x},\omega) = L_o(\mathbf{y},-\omega)$

Overview of Quantities

- $\Phi(A)$ • flux:
- irradiance:
- radiosity:
- $I(\vec{\omega}) = \frac{d\Phi}{d\vec{\omega}}$ • intensity:

• radiance:

expressing *irradiance* in terms of radiance:

- $L(\mathbf{x}, \vec{\omega}) = -$
- $L(\mathbf{x}, \vec{\omega}) = -$
- $L(\mathbf{x},\vec{\omega})\cos\theta\,d\vec{\omega}=a$

$$\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = E(\mathbf{x})$$

Integrate cosine-weighted radiance over hemisphere

$$\frac{d^2 \Phi(A)}{\cos \theta dA(\mathbf{x}) d\vec{\omega}} \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$$
$$\frac{dE(\mathbf{x})}{\cos \theta d\vec{\omega}}$$
$$\frac{dE(\mathbf{x})}{dE(\mathbf{x})}$$

expressing *irradiance* in terms of radiance: $\int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} = E(\mathbf{x})$ expressing *flux* in terms of radiance:

 $\int_{A} \int_{H^2} L(\mathbf{x}, \vec{\omega}) \cos \theta \, d\vec{\omega} dA(\mathbf{x}) = \Phi(A)$

Integrate cosine-weighted radiance over hemisphere and area

- $\int_{A} E(\mathbf{x}) \, dA(\mathbf{x}) = \Phi(A) \qquad E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$

Allows computing the radiant flux measured by any sensor

$$\Phi(W, X) = \int_X \int_W L(\hat{\boldsymbol{\omega}}, x) \cos \theta d\boldsymbol{\omega} dA$$

- Cameras measure integrals of radiance (after a one-time (integrals of) radiance.
 - "Processed" images (like PNG and JPEG) are not linear radiance measurements!!

radiometric calibration). So RAW pixel values are proportional to

Computing spherical integrals

Express function using spherical coordinates:

$$\int_0^{2\pi} \int_0^{\pi} f($$

Warning: this is not correct!

$(\theta, \phi) d\theta d\phi$?

Differential Solid Angle

Differential area on the unit sphere around direction $\vec{\omega}$

$$dA = (rd\theta)(r\sin\theta d\phi)$$
$$d\vec{\omega} = \frac{dA}{r^2} = \sin\theta d\theta d\phi$$
$$\Omega = \int_{S^2} d\vec{\omega} = \int_0^{2\pi} \int_0^{\pi} s^{\pi} s^{\pi} d\vec{\omega}$$

 $\sin\theta d\theta d\phi = 4\pi$

Overview of Quantities

 $\Phi(A)$ • flux: $E(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$ • irradiance: $B(\mathbf{x}) = \frac{d\Phi(A)}{dA(\mathbf{x})}$ • radiosity: $I(\vec{\omega}) = \frac{d\Phi}{d\vec{\omega}}$ • intensity: radiance:

All of these quantities can be a function of wavelength!

Handling color

- Any light sensor (digital or not) has different sensitivity to different wavelengths.
- This is described by the sensor's spectral sensitivity function (SSF).

• When measuring some incident *spectral* flux, the sensor produces a *scalar color* response:

spectral flux sensor SSF $\stackrel{\text{sensor}}{\stackrel{\text{response}}{\longrightarrow}} \longrightarrow R = \int_{\lambda} \Phi(\lambda) f(\lambda) d\lambda$

Handling color – the human eye

- The human eye is a collection of light sensors called cone cells.
- There are three types of cells with different spectral sensitivity functions.
- Human color perception is three-dimensional (*tristimulus color*).

cone distribution for normal vision (64% L, 32% M)

Handling color – photography

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter? \bullet
- How to spatially arrange ("mosaic") different color filters \bullet

Radiometry versus photometry

- All radiometric quantities have equivalents in photometry
- Photometry: accounts for

 or

 response of human visual system $V(\lambda)^{0.5}$ to electromagnetic radiation
- Luminance (Y) is photometric quantity that corresponds to radiance: integrate radiance over all wavelengths, weight by eye's luminous efficacy curve, e.g.:

$$Y(\mathbf{p},\omega) = \int_0^\infty$$

 $L(\mathbf{p}, \omega, \lambda) V(\lambda) d\lambda$

Radiometry versus photometry

Physics	Radiometry	Radiometry Photometry	
Energy	Radiant Energy Luminous Energy		
Flux (Power)	Radiant Power Luminous Power		
Flux Density	Irradiance (incoming) Radiosity (outgoing)	Illuminance (incoming) Luminosity (outgoing)	
Angular Flux Density	Radiance	Radiance	
Intensity	Radiant Intensity	Luminous Intensity	

Radiometry versus photometry

Photometry	MKS	CGS	British
Luminous Energy	Talbot	Talbot	Talbot
Luminous Power	Lumen	Lumen	Lumen
Illuminance Luminosity	Lux	Phot	Footcandle
Luminance	Nit, Apostlib, Blondel	Stilb Lambert	Footlambert
Luminous Intensity	Candela	Candela	Candela

Modern LED light

Input power: 11 W Output: 815 lumens (~ 80 lumens / Watt)

Incandescent bulbs: ~15 lumens / Watt)

Reflection equation

Light-Material Interactions

The BRDF

Bidirectional Reflectance Distribution Function

- how much light gets scattered from one direction into each other direction
- formally: ratio of outgoing radiance to incident irradiance

The reflection equation

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) = \int_{H^2} f_r(\mathbf{x}, \mathbf{$$

This describes a local illumination model

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Where does the cosine come from?

Motivation

Motivation

BRDF Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

 $\int_{\mathbf{U}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i \, \mathrm{d}\vec{\omega}_i \leq 1, \quad \forall \vec{\omega}_r$

Where does the cosine come from?

Helmholtz Reciprocity

BRDFs Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

 $\int_{\mathbf{H}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) \cos \theta_i \, \mathrm{d}\vec{\omega}_i \leq 1, \quad \forall \vec{\omega}_r$

- Helmholtz reciprocity

 $f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = f_r(\mathbf{x}, \vec{\omega}_r, \vec{\omega}_i)$

 $f_r(\mathbf{x}, \vec{\omega}_i \leftrightarrow \vec{\omega}_r)$

BRDFs Properties

normal, then it is *isotropic*, otherwise it is *anisotropic*.

Isotropic BRDFs are functions of just 3 variables

If the BRDF is unchanged as the material is rotated around the

 $(\theta_i, \theta_r, \Delta \phi)$

Isotropic vs Anisotropic Reflection

Idealized materials

Diffuse reflection

Diffuse reflection

Real surface

Lambertian reflection

Also called ideal diffuse reflection

Lambertian surface

BRDF for ideal diffuse reflection?

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) d\mathbf{x}$$

Scatters light equal in all directions BRDF is a constant

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Ideal Diffuse BRDF For Lambertian reflection, the BRDF is a constant: Note: we can drop ω_r $L_r(\mathbf{x}) = f_r E(\mathbf{x})$ If *all* incoming light is reflected: $E(\mathbf{x}) = B(\mathbf{x})$ Note: can also be derived from energy conservation $E(\mathbf{x}) = L_r(\mathbf{x}) \, \pi$

Diffuse BRDF

For Lambertian reflection, the BRDF is a constant:

 ρ : Diffuse reflectance (albedo) [0...1)

 $L_r(\mathbf{x}, \vec{\omega}_r) = \int_{\mathbf{H}^2} f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

 $L_r(\mathbf{x}) = \frac{\rho}{\pi} \int_{\mathbf{H}^2} L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, d\vec{\omega}_i$

Specular/Mirror reflection

What <u>two</u> properties defined reflection direction?

Assume **n** is unit length

What two properties defined reflection direction?

- co-planar view direction, reflected direction, and normal direction —
- equal angles between normal-view directions, and normal-reflected directions —

Assume **n** is unit length

reflected direction

reflected direction

Assumes **n** is unit length

Specular BRDF?

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$L_r(\mathbf{x}, \vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x}) d\mathbf{x}$$

Scatters all light into one (or two) directions Contains a Dirac delta Integral drops out

What is the BRDF for specular reflection/refraction?

 $\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Dirac delta functions

Note: careful when performing changes of variables in Dirac delta functions!

 $\int_{-\infty} f(x)\delta(x-a) \, \mathrm{d}x = f(a)$

BRDF of Ideal Specular Reflection

$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x})$$

What is the BRDF for specular reflection?

 $\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\vec{\omega}_i$

Specular refraction

Reflection vs. Refraction

The BSDF

Bidirectional Scattering Distribution Function

at each point p

- informally: how much the material scatters light coming from one direction 1 into some other direction v,

Refraction

Refraction

Index of Refraction

Speed of light in vacuum / speed of light in medium

Some values of	
Vacuum	1
Air at STP	1.0
lce	1.3
Water	1.3
Crown glass	1.5
Diamond	2.4

These are actually wavelength dependent!

 η

Dispersion

Specular transmission/refraction

Snell's law

Specular transmission/refraction

Snell's law

What is this dark circle?

What is this dark circle?

Called "Snell's window" Caused by total internal reflection

source: mrreid.org

Recall...

Snell's law

Can only happen when the ray starts in the higher index medium

Total Internal Reflection

Total Internal Reflection

Total Internal Reflection

source: imgur.com

BTDF of Ideal Specular Refraction

$$L_r(\mathbf{x},\vec{\omega}_r) = \int_{H^2} f_r(\mathbf{x},\mathbf{x})$$

What is the BTDF for specular refraction?

Fresnel reflection

$$f_t(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_r) = \overbrace{\frac{\eta_1^2}{\eta_2^2}}^{\eta_1} (1$$

 $\vec{\omega}_i, \vec{\omega}_r) L_i(\mathbf{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d} \vec{\omega}_i$

Reflection vs. Refraction

How much light is reflected vs. refracted?

- in reality determined by "Fresnel equations"

Fresnel Equations

Reflection and *refraction* from smooth *dielectric* (e.g. glass) surfaces

Reflection from *conducting* (e.g. metal) surfaces

Derived from Maxwell equations

Involves polarization of the wave

Fresnel Equations for Dielectrics

Reflection of light polarized parallel and perpendicular to the plane of refraction

$$\rho_{\parallel} = \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2}$$
$$\rho_{\perp} = \frac{\eta_1 \cos \theta_1 - \eta_2 \cos \theta_2}{\eta_1 \cos \theta_1 + \eta_2 \cos \theta_2}$$

reflected: $F_r = \frac{1}{2} \left(\rho_{||}^2 + \rho_{\perp}^2 \right)$ refracted: $F_t = 1 - F_r$

What's happening in this photo?

Polarizing Filter

Polarization

Without Polarizer

With Polarizing Filter

source: photography.ca

Polarization

Without Polarizer

With Polarizing Filter

source: wikipedia

So Far: Idealized BRDF Models

Diffuse

Specular Reflection and Refraction

Ideal Lambertian surface

Real-world materials Metals

Dielectric

Real-world materials

Metals

Dielectric

Spivak

Real materials are more complex

Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe: $f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{e+2}{2-}(\vec{\omega}_r \cdot \vec{\omega}_o)^e$

$$= \frac{e+2}{2\pi} (\vec{\omega}_r \cdot \vec{\omega}_o)^e$$
$$= (2\vec{n}(\vec{n} \cdot \vec{\omega}_i) - \vec{\omega}_i)$$
$$\vec{n} \qquad \text{mirror reflection} \\ \vec{f}_r \quad \vec{\omega}_r \\ \vec{\omega}_0 \\ \text{outgoing direction} \end{cases}$$

Blinn-Phong BRDF

Distribution of normals instead of reflection directions

 $f_r(\vec{\omega}_o, \vec{\omega}_i)$ $\vec{\omega}_h$

incident direction

$$= \frac{e+2}{2\pi} (\vec{\omega}_h \cdot \vec{n})^e$$

$$= \frac{\vec{\omega}_i + \vec{\omega}_0}{\|\vec{\omega}_i + \vec{\omega}_0\|}$$

$$\vec{n} \quad \text{ind} \quad$$

Microfacet Theory

Key idea:

- transition from individual interactions to statistical averages

Macro scale

Scene geometry

Detail at intermediate scales

(can have variations here too)

Meso scale

Micro scale

Roughness

Microfacet Theory

Assume surface consists of tiny facets

Assume that the differential area being viewed/illuminated is relatively large compared to the size of microfacets

A facet can be perfectly specular or diffuse

General Microfacet Model

$$\vec{\omega}_h = \frac{\vec{\omega}_i + \vec{\omega}_o}{\|\vec{\omega}_i + \vec{\omega}_o\|}$$

GGX and Beckmann

anti-glare (Beckman, $\alpha_b = 0.023$)

etched (GGX, $\alpha_g = 0.553$)

ground (GGX, $\alpha_g = 0.394$)

Walter et al. 07

Interesting grazing angle behavior

Extension: Anisotropic Reflection

The Oren-Nayar Model

Same concept as the microfacet models, but assumes that the facets are diffuse

Shadowing/masking + interreflections No analytic solution; fitted approximation $f_r(\vec{\omega}_o, \vec{\omega}_i) = \frac{\rho}{\pi} \left(A + B \operatorname{max}_{\sigma^2} \right)$ $A = 1 - \frac{\sigma^2}{2(\sigma^2 + 0.3)}$ $\alpha = \max(\theta_i, \theta_o)$ Ideal Lambertian is just a specia

$$ax(0, \cos(\phi_i - \phi_o)) \sin \alpha \tan \beta)$$

$$B = \frac{0.45\sigma^2}{\sigma^2 + 0.09}$$

$$\beta = \min(\theta_i, \theta_o)$$

$$I \text{ case } (\sigma = 0)$$

Measuring BRDFs

Measuring BRDFs

The MERL Database

- "A Data-Driven Reflectance Model" McMillan.
- ACM Transactions on Graphics 22, 3(2003), 759-769.
- http://www.merl.com/brdf/

Wojciech Matusik, Hanspeter Pfister, Matt Brand and Leonard

110