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Course announcements

e Details for make-up lectures posted on Slack.



Overview of today’s lecture

 Sources of blur.

e Deconvolution.

 Blind deconvolution.



Slide credits

Most of these slides were adapted from:

 Fredo Durand (MIT).
 Gordon Wetzstein (Stanford).



Why are our images blurry?



Why are our images blurry?

* Lensimperfections.

e (Camera shake.

e Scene motion.

* Depth defocus.
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Lens imperfections

* |deal lens: A point maps to a point at a certain plane.
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Lens imperfections

* |deal lens: A point maps to a point at a certain plane.
* Real lens: A point maps to a circle that has non-zero minimum radius among all planes.
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What is the effect of this on the images we capture?



Lens imperfections

* |deal lens: A point maps to a point at a certain plane.
* Real lens: A point maps to a circle that has non-zero minimum radius among all planes.
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Shift-invariant blur.



Lens imperfections

What causes lens imperfections?



Lens imperfections

What causes lens imperfections?
* Aberrations.

(Important note: Oblique 7\
aberrations like coma and | A
distortion are not shift- | | ORI B
invariant blur and we do
not consider them herel)

! | -
! | e
|

7 Chromatic aberration Spherical aberration

e Diffraction.

small large
aperture aperture










Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
« “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.
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Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
« “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.
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(Airy pattern)




Some basics of diffraction theory

We will assume that we can use:
* Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to wavelength).
* jncoherent illumination (i.e., the light we are measuring is not laser light).

We will also be ignoring various scale factors. Different functions are not drawn to scale.

What we discuss here will make more sense when we cover Fourier optics later in this course.



Some basics of diffraction theory

aperture:
rect(x)

The 1D case
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Some basics of diffraction theory
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coherent point spread
5 function: sinc(x)

aperture:
rect(x)

The 1D case




Some basics of diffraction theory

coherent point spread
function: sinc(x)

v

aperture:
rect(x)

optical transfer

The 1D case function: tent(x)
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Some basics of diffraction theory

<
S
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A\ \/ \/ \
coherent point spread
5 function: sinc(x) —_ A
aperture: incoherent point spread
rect(x) function: sinc?(x)

why do we get the
s same result?

optical transfer

The 1D case function: tent(x)
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Some basics of diffraction theory

o R
Qc/&f
~_/N\ AN e
A\ \/ \/ \
coherent point spread
5 function: sinc(x) —_ A
aperture: incoherent point spread
rect(x) function: sinc?(x)

what happens if we
S increase the aperture size?

optical transfer

The 1D case function: tent(x)




Some basics of diffraction theory

coherent point spread
function: sinc(2x)

v

aperture:
rect(x/2)

optical transfer

The 1D case function: tent(x/2)
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incoherent point spread
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Some basics of diffraction theory
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... point spread function
becomes smaller

As the aperture size
Increases...

optical transfer
function: tent(x/10)

The 1D case




Some basics of diffraction theory

incoherent point spread
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aperture
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Increases...

optical transfer
function

The 2D case




Some basics of diffraction theory

incoherent point spread
function

aperture
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... point spread function
becomes smaller

As the aperture size
Increases...

optical transfer
function

The 2D case
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Some basics of diffraction theory

Why do we prefer circular apertures?

incoherent point spread
function

aperture

S0
o
G
Off@/&
Iy /0
7)

... point spread function
becomes smaller

As the aperture size
Increases...

optical transfer
function

The 2D case
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Some basics of diffraction theory

Other shapes produce very
anisotropic blur.

incoherent point spread
function

aperture
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... point spread function
becomes smaller

As the aperture size
Increases...

optical transfer
function

The 2D case
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Lens as an optical low-pass filter

Point spread function (PSF): The blur kernel of a lens.
« “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

I blur kernel

/

aperture

diffraction-limited
|< )|< q PSF of a circular

optical transfer object distance S sensor distance S’ aperture
function (OTF) (Airy pattern)




Lens as an optical low-pass filter

i s

image from a perfect lens imperfect lens PSF image from imperfect lens

| x k= b



Lens as an optical low-pass filter

If we know b and k, can we recover i?

image from a perfect lens imperfect lens PSF image from imperfect lens

| x k= b



Deconvolution

I x k = D

If we know k and b, can we recover i?



Deconvolution

I x k = D

Reminder: convolution is multiplication in Fourier domain:
F(i) - F(k) = F(b)

If we know k and b, can we recover i?



Deconvolution

I x k = D

Reminder: convolution is multiplication in Fourier domain:
F(i) - F(k) = F(b)

Deconvolution is division in Fourier domain:

F(iest) - F(b) \ F(k)

After division, just do inverse Fourier transform:

est = F (F(b) \ F(k) )

est



Deconvolution

Any problems with this approach?



Deconvolution

 The OTF (Fourier of PSF) is a low-pass filter
zeros at high
frequencies

 The measured signal includes noise

b p— k sk | + N noise term



Deconvolution

 The OTF (Fourier of PSF) is a low-pass filter
zeros at high
frequencies

 The measured signal includes noise

b p— k sk | + N noise term

 When we divide by zero, we amplify the high frequency noise



Naive deconvolution

Even tiny noise can make the results awful.
* Example for Gaussian of 0 = 0.05

| '\
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Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

Ny [ F(k) | ~ F(b) |
et [F(k)|2+ 1/SNR(w) F(k)

noise-dependent damping factor /

* Derived as solution to maximum-likelihood problem under Gaussian noise assumption
* Requires noise of signal-to-noise ratio at each frequency

signal variance at w
SNR(w) =

noise variance at w



Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

Ny [ F(k) | ~ F(b) |
et [F(k)|2+ 1/SNR(w) F(k)

noise-dependent damping factor /

Intuitively:
 When SNR is high (low or no noise), just divide by kernel.
 When SNR is low (high noise), just set to zero.



Deconvolution comparisons

naive deconvolution Wiener deconvolution

38



Deconvolution comparisons

o0 =0.05
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Derivation

Sensing model:

Noise n is assumed to be zero-
mean and independent of signal 1.

b=kxi+n



Derivation

Sensing model:

b=1Fk=xi Noise n is assumed to be zero-
B mean and independent of signal i.

Fourier transform:

B=K-1+N

N

Why multiplication?



Derivation

Sensing model:

b — k * n Noise n is assumed to be zero-
- mean and independent of signal 1.

Fourier transform:

Convolution becomes

B=K-I+N multiplication.

Problem statement: Find function H(w) that minimizes expected error in Fourier domain.

min E{|| — HB||*]



Derivation

Replace B and re-arrange loss:

mHin E[||(1 + HK)I — HN||?]

Expand the squares:

min(|1 — HK|[*E[||[|*] = 2(1 — HK)E[IN] + [[H[[E[|IN||*]



Derivation

When handling the cross terms:
 Can | write the following?

E[IN] = E[I]E[N]



Derivation

When handling the cross terms:
 Can | write the following?

E[IN] = E[I]E[N]

Yes, because | and N are assumed independent.

 Whatis this expectation product equal to?



Derivation

When handling the cross terms:
 Can | write the following?

E[IN] = E[I]E[N]

Yes, because | and N are assumed independent.
 Whatis this expectation product equal to?

Zero, because N has zero mean.



Derivation

Replace B and re-arrange loss:

mHin E[||(1 + HK)I — HN||?]

Expand the squares:

min(|1 — HK|[*E[||[|*] = 2(1 = HK)E[IN] + [[H[[E[|IN||*]

\ cross-term is zero
Simplify:

min||1 — HK|[*E[|11|*] + IHII*ELIIN]I]

How do we solve this optimization problem?



Derivation

Differentiate loss with respect to H, set to zero, and solve for H:

dloss

o -V

= —2(1— HK)E[|IIlI*] + 2HET|IN[*] = 0

KE[|I*

= H = -
K2E[|I1][*] + E[lIN]|*]

Divide both numerator and denominator with E[||I]|?], extract factor 1/K, and done!



Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

=y [ F(k) | | F(b))
est [F(k)|2+ 1/SNR(w) F(k)

noise-dependent damping factor /

* Derived as solution to maximum-likelihood problem under Gaussian noise assumption
e Requires estimate of signal-to-noise ratio at each frequency

signal variance at w
SNR(w) =

noise variance at w



Natural image and noise spectra

Natural images tend to have spectrum that scales as 1 / w?

e Thisis a natural image statistic

771, a2_13

05 1 15 2 258 0 05 1 15 2 25
Logarithm of Spatial Frequency

http://www.cnbc.cmu.edu/cns/papers/

Balboa_PowerSpectra2003.pdf
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Natural image and noise spectra

Natural images tend to have spectrum that scales as 1 / w?
e Thisis a natural image statistic

771, a2_13

] I I 1

1 T
0 05 1 15 2 25 0 05 1 15 2 25
Logarithm of Spatial Frequency

http://www.cnbc.cmu.edu/cns/papers/
Balboa_PowerSpectra2003.pdf

Noise tends to have flat spectrum, o(w) = constant
 We call this white noise

What is the SNR?

51



Natural image and noise spectra

Natural images tend to have spectrum that scales as 1 / w?
 Thisisa natura/ /mage statistic

771, a2_13

1 T
05 1 15 2 25 0 05 1 15 2 25
Logarithm of Spatial Frequency

http://www.cnbc.cmu.edu/cns/papers/
Balboa_PowerSpectra2003.pdf

Noise tends to have flat spectrum, o(w) = constant
 We call this white noise

Therefore, we have that:  SNR(w) =1 / w?
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Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

[F(k) |~ F(b)

est = P F)12+ w2 F(K

amplitude-dependent damping factor/

* Derived as solution to maximum-likelihood problem under Gaussian noise assumption
* Requires noise of signal-to-noise ratio at each frequency

1

SNR(w) = .
W



Wiener Deconvolution

For natural images and white noise, equivalent to the minimization problem:

min. [|b =k * i||2 + || Vi]|
/

gradient regularization

How can you prove this equivalence?



Wiener Deconvolution

For natural images and white noise, it can be re-written as the minimization problem

min; |[b =k [ + [|Vil|2
/

gradient regularization

How can you prove this equivalence?

* Convert to Fourier domain and repeat the proof for Wiener deconvolution.
* Intuitively: The w? term in the denominator of the special Wiener filter is the square of
the Fourier transform of Vi, which is j-w.



Deconvolution comparisons

blurry input naive deconvolution  gradient regularization original




Deconvolution comparisons

blurry input naive deconvolution  gradient regularization original




... and a proof-of-concept demonstration

noisy input naive deconvolution  gradient regularization



Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?



Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
e Allthe blur processes we discuss today happen optically (before capture by the sensor).
* Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?



Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?

e Allthe blur processes we discuss today happen optically (before capture by the sensor).
* Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?
* No, because of gamma encoding.
e Before deblurring, you must linearize your images.

How do we linearize PNG or JPEG images?



The importance of linearity

i ﬁﬁﬁjﬂmﬂ‘

“E&.ﬂﬁ

blurry input deconvolution without =~ deconvolution after original
linearization linearization




Can we do better than that?



Can we do better than that?

Use different gradient regularizations:

* L, gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

min. |[|b =k * i||% + || Vi]|,*

* |, gradient regularization (sparsity regularization, isotropic total variation)
| ‘ ‘ ‘ How are

* Anisotropic total variation these two
. 112 . different?
min. ||b =k * i||* + ||V

) &
All of these are motivated by natural image statistics. Active research area.

1
17~




Total Variation

better: isotropic easler: anisotropic

\/(Vxx)2 + (Vyx)2 \/(Vxx)2 + \/(Vyx)2




Total Variation

minimize||Cx — b|[, + ATV (x) = minimize||Cx — b|[ + A||V||

H'xHI :Zi‘xi‘

idea: promote sparse gradients (edges)

-V is finite differences operator, i.e. matrix -1 1

Rudin et al. 1992



Total Variation

for simplicity, this lecture only discusses anisotropic TV:

<

TV(x)= ‘ ‘Vxx

VA= v

<

problem: [1-norm is not differentiable, can't use inverse filtering

however: simple solution for data fitting along and simple solution

for TV alone - split problem!




Deconvolution with ADMM

* split deconvolution with TV prior:
minimize ||Cx— b E + AllZ] ‘1

subject to Vx=z

general form of ADMM (alternating direction method of multiplies):

f0) =[x =4

g(2)=2l[|
A=V, B=-1,¢=0

minimize f(x)+ g(z)
subjectto Ax+Bz=c



minimize f(x)+g(z) ADMM
subjectto Ax+Bz=c

« Lagrangian (bring constraints into objective = penalty method):

L(x,y,2)= f(x)+g(2)+y' (Ax+ Bz—c)
1\

dual variable or Lagrange multiplier



minimize f(x)+g(z) ADMM
subjectto Ax+Bz=c

« augmented Lagrangian is differentiable under mild conditions (usually

better convergence etc.)

L (x,y,2)= f()+g()+y (Ax+Bz—c)+(p /2)HAx+Bz—cHz



minimize

subject to

f(x)+ g(2) ADMM

Ax+Bz=c

ADMM consists of 3 steps per iteration k:

k+1
X

k+1

k+1

argmin L, (x,z",y")

k+1

argmin L (x Z,9")

<

yk +p(Axk+1 _l_BZk—l—l _C)



minimize f(x)+ g(2) ADMM
subjectto Ax+Bz=c

« ADMM consists of 3 steps per iteration k:

constant
x*' = argmin (f(x)-l-(p /2)‘ Ax+B7' _C"'ik‘ )
7= arginin (g(z) +(p /2)‘ ‘A)ck+1 + Bz-c+ uk‘ D

scaled dual variable: y=(1/p)y



minimize

f(x)+ g(2) ADMM

subjectto Ax+Bz=c

ADMM consists of 3 steps per iteration k:

k+1
X

k+1

k+1

=
1

split f(x) and g(x) into independent problems!

arg min (f(x)+ (p/2)||Ax+ Bz —c+ ukHi

2
arg min (g(z)+(p /2)HA)ck+1 +Bz—c-|—ukH )

u' +Ax"' + Bz — ¢

v Su connects them)

2

scaled dual variable: y=(1/p)y



minimize %‘ Cx — D) E + All||

subject to

Vx—z=0

Deconvolution with A

ADMM consists of 3 steps per iteration k:

k+1

k+1

k+1

arg min [%HCX—[?‘ E +(p /2)HVx— z' + ukHi)

argmin 2]l +(p/ 2)[[Va*" - 2+

u“ +Vx

k+1

k+1

DMM



minimize %HCX_ yf+l4] Deconvolution with ADMM

subject to Vx—z=0 constant, say p = 7 — *

1, x-update: x**!:= arg min (%HCx—b\ [ +(p/2)||[Vx+z' + uk\\z)

solve normal equations (CTC + pVTV)x — (CTb + pVTv)

y,

T .. X T T
Viv= v=V.v+Viv,




Hinimize %HC'X_b‘E_l_/IHZ‘L Deconvolution with ADMM
subject to Vx-2z=0 constant, say y = z* — ¥
1. X-update: x“!:= arg min (%HCx—b‘ E +(p /2)HVx 154 ukHi)
x=(C"C+pV'V) (CTb+pV'V)
F{e} F{pY+ p[F{V.J]-F{v}4F ]V } F{vz})

inverse filtering: x**!

:F'_1

Fle} - F{c}+p(F{V} FIV 1+F{v ﬂ)

precompute'




minimize %HCX_ yf+l4] Deconvolution with ADMM

subject to Vx—-z=0 constant, say g=Vx**' +u"

o zopcme: 2 = argmin(A) + (o) 2T oA




minimize %‘ Cx — D) E + All||

subject to

Vx—z=0

for k=1:max_iters

k+1

k+1

N
|l

k+1

arg min

X

\

2

pV

S;Up(ka+1 +u")

u" +Vx

k+1

k+1

Deconvolution with ADMM

pVv

inverse filtering

element-wise threshold

trivial



Deconvolution comparisons

Wiener deconvolution ADMM + TV, A =0.01 ADMM + TV, A=0.1

* image becomes too flat as we increase weight of TV prior
* |mage becomes too noisy as we decrease weight of TV prior
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Deconvolution comparisons

Wiener deconvolution ADMM + TV, A=0.01 ADMM + TV, A=0.1

* image becomes too flat as we increase weight of TV prior
* |mage becomes too noisy as we decrease weight of TV prior



Outlook ADMM

« powerful tool for many computational imaging problems

* include generic prior in g(z), just need to derive proximal operator

] minimize x)+
minimize —||Ax — b| E + T(x) i J(x)+g(2)
’ 2 ~ regularization

data Pirdelity SUbJeCt o A)C =<

« example priors: noise statistics, sparse gradient, smoothness, ...
« weighted sum of different priors also possible

* anisotropic TV is one of the easiest priors



Can we do better than that?

Use different gradient regularizations:

* L, gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

* L, gradient regularlzatlon sparsity regularization, same as total variation)

min. ||b —k * i \2+\V|\

* | ., gradient regularlzatlon (fractional regularlzatlon)

0
min, |[|b —k * | 08

All of these are motivated by natural image statistics. Active research area.




Comparison of gradient regularizations

squared gradient fractional gradient
regularization regularization

input
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Derivation

Sensing model:

b _ k % Noise n is assumed to be zero-
o l mean and independent of signal i.

\ Is this a reasonable noise model?



Richardson-Lucy Algorithm + TV

+ log-likelihood function: \

M
log (Lzv (x)) = log (p (b|x)) + log (p (x)) = log (Ax)” b — (Ax)" 1 — 3" log (b;!) — A | Dx|,

i—1

* gradient:

Viog (Lrv (x)) = ATdiag (Ax)"'b — AT1 + VA ||Vx|, = AT (i) — AT1 - V)| Dx|,

e recover signal by setting gradient to zero
* generally challenging
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High quality images usmg cheap lenses

I ‘ . l CON BELERSE I l I I b 5’21._. l c'owwanssl
! -
f

\ \
\".*'

[Heide et al., “High-Quality Computational Imaging Through Simple Lenses,” TOG 2013]




Deconvolution

If we know b and k, can we recover i?

How do we
measure this?
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PSF calibration

Take a photo of a point source

Image with sharp lens

Image with cheap lens

Image of PSF

88



Deconvolution

If we know b and k, can we recover i?

89



Blind deconvolution

If we know b, can we recover i and k?

90



Camera shake

Removing Camera Shake from a Single Photograph

Rob Fergus!  Barun Singh!  Aaron Hertzmann?  Sam T. Roweis?  William T. Freeman!
IMIT CSAIL  *University of Toronto

i ML OO R S, o T
1 R o e T

Figure 1: Lefi: An image spoiled by camera shake. Middle: result from Photoshop “unsharp mask™. Righr: result from our algorithm.
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Camera shake as a filter

If we know b, can we recover i and k?

image from static camera PSF from camera motion

| x Kk =

image from shaky camera

b
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Multiple possible solutions

/ Sharp image Blur kernel

g

Blurry image

How do we
detect this
one’?




Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

* Theimage “looks like” a natural image.

e The kernel “looks like” a motion PSF.



Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

*  The image “looks like” a natural image.

e The kernel “looks like” a motion PSF.



Gradients in natural images follow a
characteristic “heavy-tail” distribution.

sharp
N natural
P .
2 image
c
Q
-
>
B -
'_5 "
©
2.
9.
Q. blurry
S
= Qatural
_l "5251} 100 1III.|J 150 Image




Gradients in natural images follow a
characteristic “heavy-tail” distribution.

=]

Log; probability density

1
(%)
L=

~Gradient
Can be approximated by || Vi || 08

sharp
natural
image

blurry
natural
image
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Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

== Sharp
== Blurry

5 L b °

* Theimage “looks like” a natural image.

Gradients in natural images follow a
characteristic “heavy-tail” distribution.

Log, probability density

100

Gradient

e The kernel “looks like” a motion PSF.

Shake kernels are very sparse, have
continuous contours, and are always positive

How do we use this information for blind deconvolution?



Regularized blind deconvolution

Solve regularized least-squares optimization

min; || —k * i

=+ [Vl + k][4

What does each term in this summation correspond to?



Regularized blind deconvolution

Solve regularized least-squares optimization

min [lb — k12 + [[Vil[2 + [IKI|,
/ / shakekerir\\el prior

natural image prior

data term

. @H =l""!

== Sharp

= Blurry

S -

—— Estimated

Estimated sharp image blur kernel Input blurry image

Log, probability density

~ Gradient

Note: Solving such optimization problems is complicated (no longer linear least squares).

100
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A demonstration

input deconvolved image and kernel
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A demonstration

input deconvolved image and kernel

This image looks worse
than the original...

This doesn’t look like a
plausible shake kernel...




Regularized blind deconvolution

Solve regularized least-squares optimization

min., |[b—k* |

2+ IVIlPE + k]l

loss function



Regularized blind deconvolution

Solve regularized least-squares optimization

min; || —k * i

N—

2+ IVIlPE + k]l

inverse

0SS loss function

Where in this graph is
the solution we find?

. . . )
pixel intensity



Regularized blind deconvolution

Solve regularized least-squares optimization

min; || —k * i

N—

2+ IVIlPE + k]l

inverse 4 oo et
loss 0SS tunction
- many plausible

solutions here

Rather than keep just
maximum, do a weighted
> average of all solutions

optimal solution pixel intensity
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A demonstration

input maximum-only average
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More examples




Results on real shaky images
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Results on real shaky images
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Results on real shaky images




Results on real shaky images




More advanced motion deblurring

[Shah et al., High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008]



Why are our images blurry?

Lens imperfections. Can we solve all of these problems using (blind) deconvolution?

Camera shake.
Scene motion.

Depth defocus.



Why are our images blurry?

Lens imperfections. Can we solve all of these problems using (blind) deconvolution?

* We can deal with (some) lens imperfections and camera
shake, because their blur is shift invariant.

* We cannot deal with scene motion and depth defocus,
because their blur is not shift invariant.

Depth defocus. * See coded photography lecture.

Camera shake.

Scene motion.
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