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Course announcements

• Homework assignment 4 due November 6th.
 - Generally shorter to accommodate final project proposals.
 - Two bonus parts.

• Complete the mid-semester survey!!
https://docs.google.com/forms/d/e/1FAIpQLSf7NcXO6L3pOxgS3EebwRL_IcQs4SagQWDyi_
nqudbHY6sa0g/viewform 
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Overview of today’s lecture

• Sources of blur.

• Deconvolution.

• Blind deconvolution.
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Slide credits

Most of these slides were adapted from:

• Fredo Durand (MIT).
• Gordon Wetzstein (Stanford).
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Why are our images blurry?
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Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.
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Lens imperfections

object distance S sensor distance S’

• Ideal lens: A point maps to a point at a certain plane.
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Lens imperfections

object distance S sensor distance S’

• Ideal lens: A point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

What is the effect of this on the images we capture?
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Lens imperfections

object distance S sensor distance S’

• Ideal lens: A point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

Shift-invariant blur.

blur kernel
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Lens imperfections
What causes lens imperfections?

10



Lens imperfections
What causes lens imperfections?
• Aberrations. 

• Diffraction.

large 
aperture

small 
aperture

(Important note: Oblique 
aberrations like coma and 
distortion are not shift-
invariant blur and we do 
not consider them here!)

11









Lens as an optical low-pass filter

object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture 
(Airy pattern)

blur kernel
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Lens as an optical low-pass filter

object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture 
(Airy pattern)

blur kernel
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Some basics of diffraction theory 
14

We will assume that we can use:
• Fraunhofer diffraction (i.e., distance of sensor and aperture is large relative to wavelength).
• incoherent illumination (i.e., the light we are measuring is not laser light).

We will also be ignoring various scale factors. Different functions are not drawn to scale.

What we discuss here will make more sense when we cover Fourier optics later in this course.



Some basics of diffraction theory 
15

aperture: 
rect 𝑥𝑥

coherent point spread 
function: sinc 𝑥𝑥

optical transfer 
function: tent 𝑥𝑥

?

?
The 1D case
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Some basics of diffraction theory 
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aperture: 
rect 𝑥𝑥

incoherent point spread 
function: sinc2 𝑥𝑥

coherent point spread 
function: sinc 𝑥𝑥

optical transfer 
function: tent 𝑥𝑥

?

The 1D case



Some basics of diffraction theory 
18

aperture: 
rect 𝑥𝑥

incoherent point spread 
function: sinc2 𝑥𝑥

coherent point spread 
function: sinc 𝑥𝑥

optical transfer 
function: tent 𝑥𝑥

why do we get the 
same result?

The 1D case



Some basics of diffraction theory 
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aperture: 
rect 𝑥𝑥

incoherent point spread 
function: sinc2 𝑥𝑥

coherent point spread 
function: sinc 𝑥𝑥

optical transfer 
function: tent 𝑥𝑥

what happens if we 
increase the aperture size?

The 1D case



Some basics of diffraction theory 
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aperture: 
rect 𝑥𝑥/2

incoherent point spread 
function: sinc2 2𝑥𝑥

coherent point spread 
function: sinc 2𝑥𝑥

optical transfer 
function: tent 𝑥𝑥/2The 1D case



Some basics of diffraction theory 
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aperture: 
rect 𝑥𝑥/10

incoherent point spread 
function: sinc2 10𝑥𝑥

coherent point spread 
function: sinc 10𝑥𝑥

optical transfer 
function: tent 𝑥𝑥/10The 1D case

… point spread function 
becomes smaller

As the aperture size 
increases…



Some basics of diffraction theory 
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incoherent point spread 
function

optical transfer 
functionThe 2D case

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture



Some basics of diffraction theory 
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incoherent point spread 
function

optical transfer 
functionThe 2D case

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture



Some basics of diffraction theory 
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incoherent point spread 
function

optical transfer 
functionThe 2D case

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture

Why do we prefer circular apertures?



Some basics of diffraction theory 
25

incoherent point spread 
function

optical transfer 
functionThe 2D case

… point spread function 
becomes smaller

As the aperture size 
increases…

aperture

Other shapes produce very 
anisotropic blur.



Lens as an optical low-pass filter

object distance S sensor distance S’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture 
(Airy pattern)

blur kernel
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optical transfer 
function (OTF)

aperture



Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

i * k = b
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Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

i * k = b

If we know b and k, can we recover i?

28



Deconvolution
i * k = b

If we know k and b, can we recover i?
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Deconvolution
i * k = b

Reminder: convolution is multiplication in Fourier domain:

F(i) . F(k) = F(b)
If we know k and b, can we recover i?
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Deconvolution

After division, just do inverse Fourier transform:

Reminder: convolution is multiplication in Fourier domain:

Deconvolution is division in Fourier domain:

F(iest) = F(b) \ F(k)

iest = F-1 ( F(b) \ F(k) )

31

i * k = b

F(i) . F(k) = F(b)



Deconvolution

Any problems with this approach?
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Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

b  = k * i + n
• The measured signal includes noise

noise term

zeros at high 
frequencies
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Deconvolution

• When we divide by zero, we amplify the high frequency noise

• The OTF (Fourier of PSF) is a low-pass filter

b  = k * i + n
• The measured signal includes noise

noise term

zeros at high 
frequencies
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Naïve deconvolution

* =

b * k-1 = iest

-1

Even tiny noise can make the results awful.
• Example for Gaussian of σ = 0.05
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Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(k)|2
iest = F-1 (                                  ⋅           )                                

|F(k)|2 + 1/SNR(ω)
F(b)
F(k)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
signal variance at ω

noise variance at ω
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Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(k)|2
iest = F-1 (                                  ⋅           )                                

|F(k)|2 + 1/SNR(ω)
F(b)
F(k)

Intuitively:
• When SNR is high (low or no noise), just divide by kernel.
• When SNR is low (high noise), just set to zero.
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Deconvolution comparisons

naïve deconvolution Wiener deconvolution
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Deconvolution comparisons

σ = 0.01 σ = 0.05 σ = 0.1
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Derivation

𝑏𝑏 = 𝑘𝑘 ∗ 𝑖𝑖 + 𝑛𝑛 Noise n is assumed to be zero-
mean and independent of signal i.

Sensing model:
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Derivation

𝑏𝑏 = 𝑘𝑘 ∗ 𝑖𝑖 + 𝑛𝑛

Sensing model:

Fourier transform:

𝐵𝐵 = 𝐾𝐾 ⋅ 𝐼𝐼 + 𝑁𝑁

Why multiplication?

41

Noise n is assumed to be zero-
mean and independent of signal i.



Derivation
Sensing model:

Fourier transform:

Problem statement: Find function H(ω) that minimizes expected error in Fourier domain.

Convolution becomes 
multiplication.

min
𝐻𝐻

𝐸𝐸 𝐼𝐼 − 𝐻𝐻𝐵𝐵 2

42

𝑏𝑏 = 𝑘𝑘 ∗ 𝑖𝑖 + 𝑛𝑛

𝐵𝐵 = 𝐾𝐾 ⋅ 𝐼𝐼 + 𝑁𝑁

Noise n is assumed to be zero-
mean and independent of signal i.



Derivation
Replace B and re-arrange loss:

min
𝐻𝐻

𝐸𝐸 1 + 𝐻𝐻𝐾𝐾 𝐼𝐼 − 𝐻𝐻𝑁𝑁 2

min
𝐻𝐻

1 −𝐻𝐻𝐾𝐾 2𝐸𝐸 𝐼𝐼 2 − 2 1 −𝐻𝐻𝐾𝐾 𝐸𝐸 𝐼𝐼𝑁𝑁 + 𝐻𝐻 2𝐸𝐸 𝑁𝑁 2

Expand the squares:
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Derivation
When handling the cross terms:
• Can I write the following?

𝐸𝐸 𝐼𝐼𝑁𝑁 = 𝐸𝐸 𝐼𝐼 𝐸𝐸 𝑁𝑁
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Derivation
When handling the cross terms:
• Can I write the following?

Yes, because I and N are assumed independent.

• What is this expectation product equal to?
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Derivation
When handling the cross terms:
• Can I write the following?

Yes, because I and N are assumed independent.

• What is this expectation product equal to?

 Zero, because N has zero mean.
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𝐸𝐸 𝐼𝐼𝑁𝑁 = 𝐸𝐸 𝐼𝐼 𝐸𝐸 𝑁𝑁



Derivation
Replace B and re-arrange loss:

min
𝐻𝐻

𝐸𝐸 1 + 𝐻𝐻𝐾𝐾 𝐼𝐼 − 𝐻𝐻𝑁𝑁 2

min
𝐻𝐻

1 −𝐻𝐻𝐾𝐾 2𝐸𝐸 𝐼𝐼 2 − 2 1 −𝐻𝐻𝐾𝐾 𝐸𝐸 𝐼𝐼𝑁𝑁 + 𝐻𝐻 2𝐸𝐸 𝑁𝑁 2

Expand the squares:

cross-term is zero

min
𝐻𝐻

1 −𝐻𝐻𝐾𝐾 2𝐸𝐸 𝐼𝐼 2 + 𝐻𝐻 2𝐸𝐸 𝑁𝑁 2

Simplify:

How do we solve this optimization problem?
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Derivation
Differentiate loss with respect to H, set to zero, and solve for H:

𝜕𝜕loss
𝜕𝜕𝐻𝐻

= 0

⇒ −2 1 −𝐻𝐻𝐾𝐾 𝐸𝐸 𝐼𝐼 2 + 2𝐻𝐻𝐸𝐸 𝑁𝑁 2 = 0

⇒ 𝐻𝐻 =
𝐾𝐾𝐸𝐸 𝐼𝐼 2

𝐾𝐾2𝐸𝐸 𝐼𝐼 2 + 𝐸𝐸 𝑁𝑁 2

Divide both numerator and denominator with 𝐸𝐸 𝐼𝐼 2 , extract factor 1/K, and done! 
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Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(k)|2

iest = F-1 (                                  ⋅           )                                
|F(k)|2 + 1/SNR(ω)

F(b)
F(k)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires estimate of signal-to-noise ratio at each frequency

SNR(ω) =
signal variance at ω

noise variance at ω
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Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic
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Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

What is the SNR?
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Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

Therefore, we have that:  SNR(ω) = 1 / ω2
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Wiener Deconvolution

amplitude-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(k)|2
iest = F-1 (                                  ⋅           )

|F(k)|2 + ω2
F(b)
F(k)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
1

ω2
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Wiener Deconvolution

gradient regularization

For natural images and white noise, equivalent to the minimization problem:

mini ‖b – k ∗ i‖2 + ‖∇i‖2

How can you prove this equivalence?
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Wiener Deconvolution

gradient regularization

For natural images and white noise, it can be re-written as the minimization problem

mini ‖b – k ∗ i‖2 + ‖∇i‖2

How can you prove this equivalence?
• Convert to Fourier domain and repeat the proof for Wiener deconvolution.
• Intuitively: The ω2 term in the denominator of the special Wiener filter is the square of 

the Fourier transform of ∇i, which is j⋅ω.
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Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original

56



Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original
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… and a proof-of-concept demonstration

noisy input gradient regularizationnaive deconvolution
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Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
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Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
• All the blur processes we discuss today happen optically (before capture by the sensor).
• Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?
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Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
• All the blur processes we discuss today happen optically (before capture by the sensor).
• Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?
• No, because of gamma encoding.
• Before deblurring, you must linearize your images.

How do we linearize PNG or JPEG images?

61



The importance of linearity

blurry input deconvolution after 
linearization

deconvolution without 
linearization

original
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Can we do better than that?
63



Can we do better than that?
Use different gradient regularizations:

mini ‖b – k ∗ i‖2 + ‖∇i‖2
2

mini ‖b – k ∗ i‖2 + ‖∇i‖1
1

mini ‖b – k ∗ i‖2 + ‖∇i‖200

• L2 gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

• L1 gradient regularization (sparsity regularization, isotropic total variation)

• Anisotropic total variation

All of these are motivated by natural image statistics. Active research area.

How are 
these two 
different?
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Deconvolution comparisons

Wiener deconvolution ADMM + TV, λ = 0.01 ADMM + TV, λ = 0.1

79

• image becomes too flat as we increase weight of TV prior
• Image becomes too noisy as we decrease weight of TV prior



Deconvolution comparisons

Wiener deconvolution ADMM + TV, λ = 0.01 ADMM + TV, λ = 0.1
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• image becomes too flat as we increase weight of TV prior
• Image becomes too noisy as we decrease weight of TV prior





Can we do better than that?
Use different gradient regularizations:

mini ‖b – k ∗ i‖2 + ‖∇i‖2
2

mini ‖b – k ∗ i‖2 + ‖∇i‖1
1

mini ‖b – k ∗ i‖2 + ‖∇i‖0.8
0.8

• L2 gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

• L1 gradient regularization (sparsity regularization, same as total variation)

• Ln<1 gradient regularization (fractional regularization)

All of these are motivated by natural image statistics. Active research area.
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Comparison of gradient regularizations

input squared gradient 
regularization

fractional gradient 
regularization
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Derivation

Noise n is assumed to be zero-
mean and independent of signal i.

Sensing model:

84

Is this a reasonable noise model?

𝑏𝑏 = 𝑘𝑘 ∗ 𝑖𝑖 + 𝑛𝑛



• recover signal by setting gradient to zero
• generally challenging



High quality images using cheap lenses

[Heide et al., “High-Quality Computational Imaging Through Simple Lenses,” TOG 2013]
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Deconvolution

* =

i * k = b

If we know b and k, can we recover i?

?

How do we 
measure this?
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PSF calibration

Take a photo of a point source

Image of PSF

Image with sharp lens Image with cheap lens
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Deconvolution

* =

i * k = b

If we know b and k, can we recover i?

?
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Blind deconvolution

* =

i * k = b

If we know b, can we recover i and k?

? ?
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Camera shake
91



Camera shake as a filter

image from static camera

*

PSF from camera motion

=

image from shaky camera

* = b

92

i k

If we know b, can we recover i and k?



Multiple possible solutions

How do we 
detect this 

one?
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Use prior information
Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.
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Use prior information
Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.
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Natural image statistics
Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

sharp 
natural 
image

blurry 
natural 
image
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Natural image statistics
Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

sharp 
natural 
image

blurry 
natural 
image

Can be approximated by ‖∇i‖0.8
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Use prior information
Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.

Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

Shake kernels are very sparse, have 
continuous contours, and are always positive

How do we use this information for blind deconvolution?
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Regularized blind deconvolution
Solve regularized least-squares optimization

mini,k ‖b – k ∗ i‖2 + ‖∇i‖0.8 + ‖k‖1

What does each term in this summation correspond to?
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Regularized blind deconvolution

natural image prior

Solve regularized least-squares optimization

data term shake kernel prior

Note: Solving such optimization problems is complicated (no longer linear least squares).
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mini,k ‖b – k ∗ i‖2 + ‖∇i‖0.8 + ‖k‖1



A demonstration

input deconvolved image and kernel
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A demonstration

input deconvolved image and kernel

This image looks worse 
than the original…

This doesn’t look like a 
plausible shake kernel…
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Regularized blind deconvolution
Solve regularized least-squares optimization

loss function

103

mini,k ‖b – k ∗ i‖2 + ‖∇i‖0.8 + ‖k‖1



Regularized blind deconvolution
Solve regularized least-squares optimization

loss function
inverse 

loss

pixel intensity

Where in this graph is 
the solution we find?

104

mini,k ‖b – k ∗ i‖2 + ‖∇i‖0.8 + ‖k‖1



Regularized blind deconvolution
Solve regularized least-squares optimization

loss function
inverse 

loss

pixel intensityoptimal solution

many plausible 
solutions here

Rather than keep just 
maximum, do a weighted 

average of all solutions
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mini,k ‖b – k ∗ i‖2 + ‖∇i‖0.8 + ‖k‖1



A demonstration

input maximum-only

This image looks worse 
than the original…

average
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More examples
107



Results on real shaky images
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Results on real shaky images
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Results on real shaky images
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Results on real shaky images
111



More advanced motion deblurring

[Shah et al., High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008]
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Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems using (blind) deconvolution?
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Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems using (blind) deconvolution?
• We can deal with (some) lens imperfections and camera 

shake, because their blur is shift invariant.
• We cannot deal with scene motion and depth defocus, 

because their blur is not shift invariant.
• See coded photography lecture.

114



References
Basic reading:
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Laplacian (sparsity) and hyper-Laplacian priors on gradients, analysis of different loss functions and maximum a-
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