Gradient-domain image processing

15-463, 15-663, 15-862 Computational Photography Fall 2023, Lecture 09

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework assignment 3 is out.
 - Due October 13th.
 - Generous bonus components.
- Homework 1 photography competition results posted.

Overview of today's lecture

- Gradient-domain image processing.
- Basics on images and gradients.
- Integrable vector fields.
- Poisson blending.
- A more efficient Poisson solver.
- Poisson image editing examples.
- Flash/no-flash photography.
- Gradient-domain rendering and cameras.

Slide credits

Many of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).
- Fredo Durand (MIT).
- James Hays (Georgia Tech).
- Amit Agrawal (MERL).
- Jaakko Lehtinen (Aalto University).

Gradient-domain image processing

Application: Poisson blending

originals

copy-paste

Poisson blending

More applications

Removing Glass Reflections

Seamless Image Stitching

Yet more applications

Fusing day and night photos

Tonemapping

Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering

Pravin Bhat¹ C. Lawrence Zitnick² ¹University of Washington Michael Cohen^{1,2} Brian Curless¹ ²Microsoft Research

(a) Input image

(b) Saliency-sharpening filter

(c) Pseudo-relighting filter

(d) Non-photorealistic rendering filter

(h) Colorization filter

(e) Compressed input-image

(f) De-blocking filter

(g) User input for colorization

Main pipeline

Basics of gradients and fields

Scalar field: a function assigning a <u>scalar</u> to every point in space.

$$I(x,y):\mathbb{R}^2\to\mathbb{R}$$

Vector field: a function assigning a <u>vector</u> to every point in space.

$$[u(x,y) \quad v(x,y)]: \mathbb{R}^2 \to \mathbb{R}^2$$

Can you think of examples of scalar fields and vector fields?

Scalar field: a function assigning a <u>scalar</u> to every point in space.

$$I(x,y):\mathbb{R}^2\to\mathbb{R}$$

Vector field: a function assigning a <u>vector</u> to every point in space.

$$[u(x,y) \quad v(x,y)]: \mathbb{R}^2 \to \mathbb{R}^2$$

Can you think of examples of scalar fields and vector fields?

- A grayscale image is a scalar field.
- A two-channel image is a vector field.
- A three-channel (e.g., RGB) image is also a vector field, but of higher-dimensional range than what we will consider here.

Nabla (or del): vector differential operator.

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{bmatrix}$$

Think of this as a 2D vector.

Nabla (or del): vector differential operator.

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{bmatrix}$$

Think of this as a 2D vector.

Gradient (grad): product of nabla with a scalar field.

$$\nabla I(x,y) = ?$$

Divergence: inner product of nabla with a vector field.

 $\nabla \cdot [u(x,y) \quad v(x,y)] = ?$

Curl: cross product of nabla with a vector field.

$$\nabla \times [u(x,y) \quad v(x,y)] = ?$$

Nabla (or del): vector differential operator.

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{bmatrix}$$

Think of this as a 2D vector.

Gradient (grad): product of nabla with a scalar field.

$$\nabla I(x,y) = \begin{bmatrix} \frac{\partial I}{\partial x}(x,y) & \frac{\partial I}{\partial y}(x,y) \end{bmatrix}$$

What is the dimension of this?

Divergence: inner product of nabla with a vector field.

$$\nabla \cdot [u(x,y) \quad v(x,y)] = \frac{\partial u}{\partial x}(x,y) + \frac{\partial v}{\partial y}(x,y)$$

What is the dimension of this?

Curl: cross product of nabla with a vector field.

$$\nabla \times [u(x,y) \quad v(x,y)] = \left(\frac{\partial v}{\partial x}(x,y) - \frac{\partial u}{\partial y}(x,y)\right)\hat{k}$$

What is the dimension of this?

Nabla (or del): vector differential operator.

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{bmatrix}$$

Think of this as a 2D vector.

Gradient (grad): product of nabla with a scalar field.

$$\partial I(x,y) = \begin{bmatrix} \frac{\partial I}{\partial x}(x,y) & \frac{\partial I}{\partial y}(x,y) \end{bmatrix}$$
 This is a vector field.

Divergence: inner product of nabla with a vector field.

$$abla \cdot [u(x,y) \quad v(x,y)] = \frac{\partial u}{\partial x}(x,y) + \frac{\partial v}{\partial y}(x,y)$$
This is a scalar field.

Curl: cross product of nabla with a vector field.

$$\nabla \times [u(x,y) \quad v(x,y)] = \left(\frac{\partial v}{\partial x}(x,y) - \frac{\partial u}{\partial y}(x,y)\right)\hat{k}$$

This is a <u>vector</u> field.

Nabla (or del): vector differential operator.

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{bmatrix}$$

Think of this as a 2D vector.

Gradient (grad): product of nabla with a scalar field.

$$7I(x,y) = \begin{bmatrix} \frac{\partial I}{\partial x}(x,y) & \frac{\partial I}{\partial y}(x,y) \end{bmatrix}$$
 This is a vector field.

Divergence: inner product of nabla with a vector field.

$$\nabla \cdot [u(x,y) \quad v(x,y)] = \frac{\partial u}{\partial x}(x,y) + \frac{\partial v}{\partial y}(x,y)$$

Curl: cross product of nabla with a vector field.

$$\nabla \times [u(x,y) \quad v(x,y)] = \left(\frac{\partial v}{\partial x}(x,y) - \frac{\partial u}{\partial y}(x,y)\right) \hat{k}$$

This is a

scalar field.

Combinations

Curl of the gradient:

$$\nabla \times \nabla I(x, y) = ?$$

Divergence of the gradient:

 $\nabla \cdot \nabla I(x, y) = ?$

Combinations

Curl of the gradient:

$$\nabla \times \nabla I(x,y) = \frac{\partial^2}{\partial y \partial x} I(x,y) - \frac{\partial^2}{\partial x \partial y} I(x,y)$$

Divergence of the gradient:

$$\nabla \cdot \nabla I(x,y) = \frac{\partial^2}{\partial x^2} I(x,y) + \frac{\partial^2}{\partial y^2} I(x,y) \equiv \Delta I(x,y)$$

Laplacian: scalar differential operator.

$$\Delta \equiv \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Inner product of del with itself!

Simplified notation

Nabla (or del): vector differential operator.

$$\nabla = \begin{bmatrix} x & y \end{bmatrix}$$

Gradient (grad): product of nabla with a scalar field.

$$\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$$

Divergence: inner product of nabla with a vector field.

$$\nabla \cdot \begin{bmatrix} u & v \end{bmatrix} = u_x + v_y$$

Curl: cross product of nabla with a vector field.

$$\nabla \times \begin{bmatrix} u & v \end{bmatrix} = (v_x - u_y)\hat{k}$$

Simplified notation

Curl of the gradient:

$$\nabla \times \nabla I = I_{yx} - I_{xy}$$

Divergence of the gradient:

$$\nabla \cdot \nabla I = I_{xx} + I_{yy} \equiv \Delta I$$

Laplacian: scalar differential operator.

$$\Delta \equiv \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Inner product of del with itself!

Image representation

We can treat grayscale images as scalar fields (i.e., two dimensional functions)

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

• How do we do this differentiation in real *discrete* images?

High-school reminder: definition of a derivative using forward difference.

$$\frac{\partial I}{\partial x}(x,y) = \lim_{h \to 0} \frac{I(x+h,y) - I(x,y)}{h}$$

For discrete scalar fields: remove limit and set h = 1.

$$\frac{\partial I}{\partial x}(x,y) = I(x+1,y) - I(x,y)$$

What <u>convolution</u> kernel does this correspond to?

High-school reminder: definition of a derivative using forward difference.

$$\frac{\partial I}{\partial x}(x,y) = \lim_{h \to 0} \frac{I(x+h,y) - I(x,y)}{h}$$

For discrete scalar fields: remove limit and set h = 1.

$$\frac{\partial I}{\partial x}(x,y) = I(x+1,y) - I(x,y)$$

High-school reminder: definition of a derivative using forward difference.

$$\frac{\partial I}{\partial x}(x,y) = \lim_{h \to 0} \frac{I(x+h,y) - I(x,y)}{h}$$

For discrete scalar fields: remove limit and set h = 1.

$$\frac{\partial I}{\partial x}(x,y) = I(x+1,y) - I(x,y)$$

partial-x derivative filter

Note: common to use central difference, but we will not use it in this lecture.

$$\frac{\partial I}{\partial x}(x,y) = \frac{I(x+1,y) - I(x-1,y)}{2}$$

High-school reminder: definition of a derivative using forward difference.

$$\frac{\partial I}{\partial x}(x,y) = \lim_{h \to 0} \frac{I(x+h,y) - I(x,y)}{h}$$

For discrete scalar fields: remove limit and set h = 1.

$$\frac{\partial I}{\partial x}(x,y) = I(x+1,y) - I(x,y)$$

partial-x derivative filter

Similarly for partial-y derivative.

partial-y derivative filter

$$\frac{\partial I}{\partial y}(x,y) = I(x,y+h) - I(x,y)$$

How do we compute the image Laplacian?

$$\Delta I(x,y) = \frac{\partial^2 I}{\partial x^2}(x,y) + \frac{\partial^2 I}{\partial y^2}(x,y)$$

How do we compute the image Laplacian?

$$\Delta I(x,y) = \frac{\partial^2 I}{\partial x^2}(x,y) + \frac{\partial^2 I}{\partial y^2}(x,y)$$

Use multiple applications of the discrete derivative filters:

$$1 - 1 * 1 - 1 + \frac{1}{-1} * \frac{1}{-1} = ?$$
What is this?
What is this?

How do we compute the image Laplacian?

$$\Delta I(x,y) = \frac{\partial^2 I}{\partial x^2}(x,y) + \frac{\partial^2 I}{\partial y^2}(x,y)$$

Use multiple applications of the discrete derivative filters:

Laplacian filter

1

-4

0

1

 $\left(\right)$

How do we compute the image Laplacian?

$$\Delta I(x,y) = \frac{\partial^2 I}{\partial x^2}(x,y) + \frac{\partial^2 I}{\partial y^2}(x,y)$$

Very important to:

• use consistent derivative and Laplacian filters.

33

 account for boundary shifting and padding from convolution.

()

 $\left(\right)$

Use multiple applications of the discrete derivative filters:

Laplacian filter

1

-4

()

1

 \cap

Warning!

Very important for the techniques discussed in this lecture to:

- use consistent derivative and Laplacian filters.
- account for boundary shifting and padding from convolution.

A correct implementation of differential operators should pass the following test:

Equality holds at all pixels except boundary (first and last row, first and last column).

Typically requires implementing derivatives in various differential operators differently.

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

- How do we do this differentiation in real *discrete* images?
- Can we go in the opposite direction, from gradients to images?

Vector field integration

Two fundamental questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

Integrable vector fields

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

Property of twice-differentiable functions

Curl of the gradient field equals zero:

$$\nabla \times \nabla I = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

Property of twice-differentiable functions

Curl of the gradient field should be zero:

$$\nabla \times \nabla I = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

• Same result independent of order of differentiation.

$$I_{yx} = I_{xy}$$

Demonstration

Property of twice-differentiable functions

Curl of the gradient field should be zero:

$$\nabla \times \nabla I = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

• Same result independent of order of differentiation.

$$I_{yx} = I_{xy}$$

Can you use this property to derive an integrability condition?

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

Vector field integration

Two fundamental questions:

- When is integration of a vector field possible?
 - Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?

Different types of integration problems

- Reconstructing height fields from gradients Applications: shape from shading, photometric stereo
- Manipulating image gradients Applications: tonemapping, image editing, matting, fusion, mosaics
- Manipulation of 3D gradients Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.

• Integration must be done *approximately*.

A prototypical integration problem: Poisson blending

Application: Poisson blending

originals

copy-paste

Poisson blending

Key idea

When blending, retain the gradient information as best as possible

source

destination

copy-paste

Poisson blending

Definitions and notation

Notation

- g: source function
- S: destination
- $\Omega:$ destination domain
- f: interpolant function
- f^* : destination function

Which one is the unknown?

Definitions and notation

Notation

g: source function

S: destination

 $\Omega:$ destination domain

f: interpolant function

 f^* : destination function

How should we determine f?

- Should it be similar to g?
- Should it be similar to f^* ?

Definitions and notation

Notation

g: source function

S: destination

 Ω : destination domain

f: interpolant function

 f^* : destination function

Find f such that:

- $\nabla f = \nabla g$ inside Ω .
 - $f = f^*$ at the boundary $\partial \Omega$.

Poisson blending: <u>integrate</u> vector field ∇g with Dirichlet boundary conditions f^* .

Least-squares integration and the Poisson problem

Least-squares integration

"Variational" means optimization where the unknown is an entire function Variational problem $\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2$ with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$ what does this
term do?what does this
term do?

Recall ...

Nabla operator definition

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

is this known?

$$\mathbf{v} = (u, v)$$

Least-squares integration

"Variational" means optimization where the unknown is an entire function

Variational problem

$$\begin{split} \min_f \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \quad \text{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega} \\ & \text{gradient of f looks} \quad \text{f is equivalent to } f^* \\ & \text{like vector field } \mathbf{v} \quad \text{at the boundaries} \end{split}$$

Why do we need boundary conditions for least-squares integration?

Recall ...

Nabla operator definition

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Yes, this is the vector field we are integrating $\mathbf{v} = (u, v)$

Equivalently

The *stationary point* of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$ what does this term do?

This can be derived using the *Euler-*Lagrange equation.

Recall ...

Laplacian
$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Divergence div $\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

Input vector field:

$$\mathbf{v} = (u, v)$$

Equivalently

The *stationary point* of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$ Laplacian of f same as divergence of vector field **v**

This can be derived using the *Euler-*Lagrange equation.

Recall ...

Laplacian $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ Divergence div $\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

Input vector field:

$$\mathbf{v} = (u, v)$$

In the Poisson blending example...

The *stationary point* of the variational loss is the solution to the:

S

Ω

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Find f such that:

g

- $\nabla f = \nabla g$ inside Ω .
- $f = f^*$ at the boundary $\partial \Omega$.

$$\mathbf{v} = (u, v) =$$

In the Poisson blending example...

The *stationary point* of the variational loss is the solution to the:

S

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Ω

Find f such that:

g

- $\nabla f = \nabla g$ inside Ω .
- $f = f^*$ at the boundary $\partial \Omega$.

What does the input vector field equal in Poisson blending?

$$\mathbf{v} = (u, v) = \nabla g$$

What does the divergence of the input vector field equal in Poisson blending?

div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} =$$

58

In the Poisson blending example...

The *stationary point* of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Find f such that:

- $\nabla f = \nabla g$ inside Ω .
- $f = f^*$ at the boundary $\partial \Omega$. so make these ... Δg Δf g equal

What does the input vector field equal in Poisson blending?

$$\mathbf{v} = (u, v) =
abla g$$

What does the divergence of the input vector field equal in Poisson blending?

div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \Delta g$$

Equivalently

The *stationary point* of the variational loss is the solution to the:

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$

How do we solve the Poisson equation?

Input vector field:

$$\mathbf{v} = (u, v)$$

Discretization of the Poisson equation

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Recall ...Laplacian
filter0101-410101-410101011-11-11-11-1

So for each pixel, do:

$$(\Delta f)(x,y) = (\nabla \cdot \mathbf{v})(x,y)$$

Or for discrete images:

$$-4f(x,y) + f(x + 1,y) + f(x - 1,y) + f(x,y + 1) + f(x,y - 1) = u(x + 1,y) - u(x,y) + v(x,y + 1) - v(x,y)$$

Discretization of the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

So for each pixel, do (more compact notation):

$$(\Delta f)_p = (\nabla \cdot \mathbf{v})_p$$

Or for discrete images (more compact notation):

$$-4f_p + \sum_{q \in N_p} f_q = (u_x)_p + (v_y)_p$$

We can rewrite this as

We can rewrite this as

We can rewrite this as

 $-4f_p + \sum_{q \in N_p} f_q = (u_x)_p + (v_y)_p \quad \text{one for each}$ linear equation of P variables In vector form: $(\nabla \cdot \mathbf{v})_{q_1}$ f_{q_1} (each pixel adds another 'sparse' row here) $\begin{array}{c} \cdot \\ f_{q_2} \\ f_p \\ f_{q_3} \end{array} =$ $\begin{vmatrix} (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_p \end{vmatrix}$ We call this the Laplacian matrix f_{q_4} $(\nabla \cdot \mathbf{v})_{q_4}$ f_P

Laplacian matrix

For a $m \times n$ image, we can re-organize this matrix into *block tridiagonal form* as:

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

After discretization, equivalent to:

$$\begin{bmatrix} D & I & 0 & 0 & 0 & \cdots & 0 \\ I & D & I & 0 & 0 & \cdots & 0 \\ 0 & I & D & I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & D & I & 0 \\ 0 & \cdots & \cdots & 0 & I & D & I \\ 0 & \cdots & \cdots & 0 & I & D \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ \vdots \\ f_{q_1} \\ \vdots \\ f_{q_2} \\ f_p \\ \vdots \\ f_{q_3} \\ \vdots \\ f_{q_4} \\ \vdots \\ f_P \end{bmatrix} = \begin{bmatrix} (\nabla \cdot \mathbf{v})_1 \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_1} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_{q_3} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_3} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_P \end{bmatrix}$$

Linear system of equations:

$$Af = b$$

How would you solve this?

WARNING: requires special treatment at the borders (target boundary values are same as source)

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}f - \mathbf{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = f^{\top} (\mathbf{A}^{\top} \mathbf{A}) f - 2f^{\top} (\mathbf{A}^{\top} \mathbf{b}) + \|\mathbf{b}\|^2$$

Minimize the error:

Set derivative to 0
$$~~(\mathbf{A}^{ op}\mathbf{A}) f = \mathbf{A}^{ op}m{b}$$

Solve for x $f = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b} \leftarrow$ Note: You almost <u>never</u> want to compute the inverse of a matrix.

In Matlab:

$$f = A \setminus b$$

Discrete the Poisson equation

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

After discretization, equivalent to:

$$\begin{bmatrix} D & I & 0 & 0 & 0 & \cdots & 0 \\ I & D & I & 0 & 0 & \cdots & 0 \\ 0 & I & D & I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & D & I & 0 \\ 0 & \cdots & \cdots & 0 & I & D & I \\ 0 & \cdots & \cdots & 0 & I & D \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ \vdots \\ f_{q_1} \\ \vdots \\ f_{q_2} \\ f_p \\ \vdots \\ f_{q_3} \\ \vdots \\ f_{q_4} \\ \vdots \\ f_p \end{bmatrix} = \begin{bmatrix} (\nabla \cdot \mathbf{v})_1 \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_1} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_{q_3} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{p} \end{bmatrix}$$

Linear system of equations:

$$Af = b$$

What is the size of this matrix?

WARNING: requires special treatment at the borders (target boundary values are same as source)

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

After discretization, equivalent to:

$$\begin{bmatrix} D & I & 0 & 0 & 0 & \cdots & 0 \\ I & D & I & 0 & 0 & \cdots & 0 \\ 0 & I & D & I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & D & I & 0 \\ 0 & \cdots & \cdots & 0 & I & D & I \\ 0 & \cdots & \cdots & 0 & I & D \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ \vdots \\ f_{q_1} \\ \vdots \\ f_{q_2} \\ f_p \\ f_{q_3} \\ \vdots \\ f_{q_4} \\ \vdots \\ f_p \end{bmatrix} = \begin{bmatrix} (\nabla \cdot \mathbf{v})_1 \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_1} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_{q_3} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_p \end{bmatrix}$$

Linear system of equations:

$$Af = b$$

Matrix is $P \times P \rightarrow$ billions of entries

WARNING: requires special treatment at the borders (target boundary values are same as source)

Integration procedures

- Poisson solver (i.e., least squares integration)
 - + Generally applicable.
 - Matrices A can become very large.
- Acceleration techniques:
 - + (Conjugate) gradient descent solvers.
 - + Multi-grid approaches.
 - + Pre-conditioning.

•••

- Alternative solvers: projection procedures.
 - We will discuss one of these when we cover photometric stereo.

A more efficient Poisson solver

Variational problem

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \quad \text{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$
gradient of f looks f is equivalent to f*
like vector field \mathbf{v} at the boundaries

Input vector field:

 $\mathbf{v} = (u, v)$

Recall ...

Nabla operator definition

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Variational problemInput
$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2$$
 with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$ \mathbf{v} gradient of f looksf is equivalent to f*like vector field \mathbf{v} at the boundaries

Input vector field:

 $\mathbf{v} = (u, v)$

Recall ...

Nabla operator definition

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

And for discrete images: partial-x derivative filter
1 -1 partial-y derivative filter
1
-1

We can use the gradient approximation to discretize the variational problem

Discrete problem

```
What are G, f, and v?
```

```
\min_{f} \|Gf - v\|^2
```

We will ignore the boundary conditions for now.

Recall ...

Nabla operator definition

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

And for discrete images:

We can use the gradient approximation to discretize the variational problem

We will ignore the boundary conditions for now.

Recall ...

And for discrete images: partial-x derivative filter

 partial-y
 1
 -1

 partial-y
 1
 -1

 derivative filter
 1
 -1

We can use the gradient approximation to discretize the variational problem

How do we solve this optimization problem?

Recall ...

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = ?$$

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we do what with it?

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we set that to zero:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow G^T G f = G^T v$$
What is this vector?
What is this matrix?

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we set that to zero: $\frac{\partial E}{\partial f} = 0 \Rightarrow G^T G f = G^T v$ It is equal to the vector b we derived previously! It is equal to the Laplacian matrix A we derived previously!

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

After discretization, equivalent to:

 $\begin{bmatrix} D & I & 0 & 0 & 0 & \cdots & 0 \\ I & D & I & 0 & 0 & \cdots & 0 \\ 0 & I & D & I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & D & I & 0 \\ 0 & \cdots & \cdots & 0 & I & D & I \\ 0 & \cdots & \cdots & 0 & I & D \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ \vdots \\ f_{q_1} \\ \vdots \\ f_{q_2} \\ f_p \\ f_{q_3} \\ \vdots \\ f_{q_4} \\ \vdots \\ f_p \end{bmatrix}} = \begin{bmatrix} (\nabla \cdot \mathbf{v})_1 \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_1} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_3} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{p} \end{bmatrix}$ Linear system of equations: Af = bSame system as: $G^T Gf = G^T v$

We arrive at the same system, no matter whether we discretize the continuous Poisson equation or the variational optimization problem.

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we set that to zero:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow G^T G f = G^T v$$

Solving this is <u>exactly</u> as expensive as what we had before.

Approach 2: Use gradient descent

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v = A f - b \equiv -r \quad \text{We call this term} \\ \text{the residual}$$

Approach 2: Use gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v = A f - b \equiv -r \quad \text{We call this term} \\ \text{the residual}$$

... and then we *iteratively* compute a solution:

$$f^{i+1} = f^i + \eta^i r^i$$
 for i = 0, 1, ..., N, where
 η^i are positive step sizes

Selecting optimal step sizes

Make derivative of loss function with respect to η^i equal to zero:

$$E(f) = \|Gf - v\|^2$$

$$E(f^{i+1}) = \left\| G(f^i + \eta^i r^i) - \nu \right\|^2$$

Selecting optimal step sizes

Make derivative of loss function with respect to η^i equal to zero:

$$E(f) = \|Gf - v\|^{2}$$

$$E(f^{i+1}) = \|G(f^{i} + \eta^{i}r^{i}) - v\|^{2}$$

$$\frac{\partial E(f^{i+1})}{\partial \eta^{i}} = [b - A(f^{i} + \eta^{i}r^{i})]^{T}r^{i} = 0 \Rightarrow \eta^{i} = \frac{(r^{i})^{T}r^{i}}{(r^{i})^{T}Ar^{i}}$$

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

Minimize by iteratively computing:

$$r^{i} = b - Af^{i}, \quad \eta^{i} = \frac{(r^{i})^{T}r^{i}}{(r^{i})^{T}Ar^{i}}, \quad f^{i+1} = f^{i} + \eta^{i}r^{i}, \quad i = 0, ..., N$$

Is this cheaper than the pseudo-inverse approach?

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$r^{i} = b - Af^{i}, \quad \eta^{i} = \frac{(r^{i})^{T} r^{i}}{(r^{i})^{T} A r^{i}} \quad f^{i+1} = f^{i} + \eta^{i} r^{i}, \quad i = 0, ..., N$$

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$r^{i} = b - Af^{i}, \quad \eta^{i} = \frac{(r^{i})^{T} r^{i}}{(r^{i})^{T} A r^{i}} \quad f^{i+1} = f^{i} + \eta^{i} r^{i}, \quad i = 0, ..., N$$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$r^{i} = b - Af^{i}, \quad \eta^{i} = \frac{(r^{i})^{T} r^{i}}{(r^{i})^{T} A r^{i}} \quad f^{i+1} = f^{i} + \eta^{i} r^{i}, \quad i = 0, ..., N$$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.
- Because A is the *Laplacian matrix*, these matrix-vector products can be efficiently computed using *convolutions* with the *Laplacian kernel*.

In practice: conjugate gradient descent

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

Minimize by iteratively computing:

$$d^{i+1} = r^{i} + \beta^{i} d^{i}, \quad \eta^{i} = \frac{(r^{i})^{T} r^{i}}{(d^{i})^{T} A d^{i}} f^{i}$$
$$r^{i+1} = r^{i} - \eta^{i} A d^{i}, \quad \beta^{i} = \frac{(r^{i+1})^{T} r^{i+1}}{(r^{i})^{T} r^{i}}$$

$$f^{i+1} = f^i + \eta^i d^i, \quad i = 0, ..., N$$

- Smarter way for selecting update directions
- Everything can still be done using convolutions
- Only one convolution needed per iteration

Note: initialization

Does the initialization f^0 matter?

Note: initialization

Does the initialization f^0 matter?

• It doesn't matter in terms of what final f we converge to, because the loss function is convex.

$$E(f) = \|Gf - \nu\|^2$$

Note: initialization

Does the initialization f^0 matter?

• It doesn't matter in terms of what final f we converge to, because the loss function is convex.

$$E(f) = \|Gf - \nu\|^2$$

- It does matter in terms of convergence speed.
- We can use a *multi-resolution* approach:
 - Solve an initial problem for a very low-resolution f (e.g., 2x2).
 - Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
 - Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).
 - Use the solution to initialize gradient descent for an **f** with the original resolution PxP.
- *Multi-grid* algorithms alternate between higher and lower resolutions during the (conjugate) gradient descent iterative procedure.

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

After discretization, equivalent to:

$$\begin{bmatrix} D & I & 0 & 0 & 0 & \cdots & 0 \\ I & D & I & 0 & 0 & \cdots & 0 \\ 0 & I & D & I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & D & I & 0 \\ 0 & \cdots & \cdots & 0 & I & D & I \\ 0 & \cdots & \cdots & 0 & I & D \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ \vdots \\ f_{q_1} \\ \vdots \\ f_{q_2} \\ f_p \\ \vdots \\ f_{q_3} \\ \vdots \\ f_{q_4} \\ \vdots \\ f_P \end{bmatrix} = \begin{bmatrix} (\nabla \cdot \mathbf{v})_1 \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_1} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_{q_3} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_P \end{bmatrix}$$

Linear system of equations:

$$Af = b$$

Remember that what we are doing is equivalent to solving this linear system.

We are solving this linear system:

$$Af = b$$

For any invertible matrix **P**, this is equivalent to solving:

$$P^{-1}Af = P^{-1}b$$

When is it preferable to solve this alternative linear system?

We are solving this linear system:

$$Af = b$$

For any invertible matrix **P**, this is equivalent to solving:

$$P^{-1}Af = P^{-1}b$$

When is it preferable to solve this alternative linear system?

- Ideally: If **A** is invertible, and **P** is the same as **A**, the linear system becomes trivial! But computing the inverse of **A** is even more expensive than solving the original linear system.
- In practice: If the matrix P⁻¹A has a better condition number, or its singular values are more uniformly distributed, the linear system becomes more *numerically stable*.

What *preconditioner* **P** should we use?

We are solving this linear system:

$$Af = b$$

For any invertible matrix **P**, this is equivalent to solving:

$$P^{-1}Af = P^{-1}b$$

When is it preferable to solve this alternative linear system?

- Ideally: If **A** is invertible, and **P** is the same as **A**, the linear system becomes trivial! But computing the inverse of **A** is even more expensive than solving the original linear system.
- In practice: If the matrix P⁻¹A has a better condition number, or its singular values are more uniformly distributed, the linear system becomes more *numerically stable*.

What *preconditioner* **P** should we use?

- Standard preconditioners like Jacobi.
- More effective preconditioners. Active area of research.

$$P_{\text{Jacobi}} = \text{diag}(A)$$

We are solving this linear system:

$$Af = b$$

For any invertible matrix **P**, this is equivalent to solving:

$$P^{-1}Af = P^{-1}b$$

Preconditioning can be incorporated in the conjugate gradient descent algorithm.

When is it preferable to solve this alternative linear system?

- Ideally: If **A** is invertible, and **P** is the same as **A**, the linear system becomes trivial! But computing the inverse of **A** is even more expensive than solving the original linear system.
- In practice: If the matrix P⁻¹A has a better condition number, or its singular values are more uniformly distributed, the linear system becomes more *numerically stable*.

What *preconditioner* **P** should we use?

- Standard preconditioners like Jacobi.
- More effective preconditioners. Active area of research.

Is this effective for Poisson solvers?

$$P_{\text{Jacobi}} = \text{diag}(A)$$

Discrete Poisson equation

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

After discretization, equivalent to:

$$\begin{bmatrix} D & I & 0 & 0 & 0 & \cdots & 0 \\ I & D & I & 0 & 0 & \cdots & 0 \\ 0 & I & D & I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I & D & I & 0 \\ 0 & \cdots & \cdots & 0 & I & D & I \\ 0 & \cdots & \cdots & 0 & I & D \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ \vdots \\ f_{q_1} \\ \vdots \\ f_{q_2} \\ f_p \\ \vdots \\ f_{q_3} \\ \vdots \\ f_{q_4} \\ \vdots \\ f_p \end{bmatrix} = \begin{bmatrix} (\nabla \cdot \mathbf{v})_1 \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_1} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_2} \\ (\nabla \cdot \mathbf{v})_{q_3} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \\ \vdots \\ (\nabla \cdot \mathbf{v})_{q_4} \end{bmatrix}$$

Linear system of equations:

$$Af = b$$

Matrix is $P \times P \rightarrow$ billions of entries

WARNING: requires special treatment at the borders (target boundary values are same as source)

Note: handling (Dirichlet) boundary conditions

- Form a mask B that is 0 for pixels that should *not* be updated (pixels on S- Ω and $\partial \Omega$) and 1 otherwise.
- Use convolution to perform Laplacian filtering over the *entire image*.
- Use (conjugate) gradient descent rules to only update pixels for which the mask is 1. Equivalently, change the update rules to:

$$f^{i+1} = f^i + B\eta^i r^i$$
 (gradient descent)
 $f^{i+1} = f^i + B\eta^i d^i$ (conjugate gradient descent)

Note: handling (Dirichlet) boundary conditions

descent)

- Form a mask B that is 0 for pixels that should *not* be updated (pixels on S- Ω and $\partial \Omega$) and 1 otherwise.
- Use convolution to perform Laplacian filtering over the *entire image*.
- Use (conjugate) gradient descent rules to only update pixels for which the mask is 1. Equivalently, change the update rules to:

$$f^{i+1} = f^i + B\eta^i r^i$$
 (gradient descent)
 $f^{i+1} = f^i + B\eta^i d^i$ (conjugate gradient descent)

In practice, masking is also required at other steps of (conjugate) gradient descent, to deal with invalid boundaries (e.g., from convolutions). See homework assignment 3.

Poisson image editing examples

Photoshop's "healing brush"

Slightly more advanced version of what we covered here:

• Uses higher-order derivatives

Contrast problem

Loss of contrast when pasting from dark to bright:

- Contrast is a multiplicative property.
- With Poisson blending we are matching linear differences.

Contrast problem

Loss of contrast when pasting from dark to bright:

- Contrast is a multiplicative property.
- With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

More blending

originals

copy-paste

Poisson blending

Blending transparent objects

source

Blending objects with holes

(c) seamless cloning and destination averaged

(d) mixed seamless cloning

Editing

Concealment

How would you do this with Poisson blending?

Concealment

How would you do this with Poisson blending?

• Insert a copy of the background.

Texture swapping

Special case: membrane interpolation

How would you do this?

Special case: membrane interpolation

How would you do this?

Poisson problem

$$\begin{split} \min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^{2} \quad \text{with} \quad f|_{\partial\Omega} &= f^{*}|_{\partial\Omega} \\ \text{Laplacian problem} \\ \min_{f} \iint_{\Omega} |\nabla f|^{2} \quad \text{with} \quad f|_{\partial\Omega} &= f^{*}|_{\partial\Omega} \end{split}$$

Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering

Pravin Bhat¹ C. Lawrence Zitnick² ¹University of Washington Michael Cohen^{1,2} Brian Curless¹ ²Microsoft Research

(a) Input image

(b) Saliency-sharpening filter

(c) Pseudo-relighting filter

(d) Non-photorealistic rendering filter

(h) Colorization filter

(e) Compressed input-image

(f) De-blocking filter

(g) User input for colorization

Flash/no-flash photography

Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image.

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?

Removing self-reflections and hot-spots

Removing self-reflections and hot-spots

Removing self-reflections and hot-spots

Reflection Layer

Flash/no-flash with gradient-domain processing

Gradient-domain rendering

Primal domain

Love

...

Gradient domain

gradients of natural images are *sparse* (close to zero in most places)

136

Primal domain

Love

Gradient domain

Can I go from one image to the other?

Can I go from one image to the other?

differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson solver)

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

- Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) on rendering the few pixels that are non-zero in gradient space, with much lower variance.
- Poisson reconstruction performs a form of "filtering" to further reduce variance.

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

Why would gradient-domain rendering make sense? Why not all?

- Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) on rendering the few pixels that are non-zero in gradient space, with much lower variance.
- Poisson reconstruction performs a form of "filtering" to further reduce variance.

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per "flat" region in the image) in primal domain, to use as boundary conditions in the Poisson solver.

• In practice, do image-space stratified sampling to select these pixels.

Gradient-domain rendering

Figure 1: Comparing gradient-domain path tracing (G-PT, L_1 reconstruction) to path tracing at equal rendering time (2 hours). In this time, G-PT draws about 2,000 samples per pixel and the path tracer about 5,000. G-PT consistently outperforms path tracing, with the rare exception of some highly specular objects. Our frequency analysis explains why G-PT outperforms conventional path tracing.

A lot of papers since SIGGRAPH 2013 (first introduction of gradient-domain rendering) that are looking to extend basically all primal-domain rendering algorithms to the gradient domain.

Does it help?

Gradient-domain path tracing (2 minutes)

1 65 m

Love

Primal-domain path tracing (2 minutes)

...

7 385

Lowe

Remember this idea (we'll come back to it)

gradients of natural images are *sparse* (close to zero in most places)

Primal domain

Love

Gradient domain

Gradient cameras

One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Northwestern University jet@cs.northwestern.edu Amit Agrawal University of Maryland aagrawal@umd.edu Ramesh Raskar MERL raskar@merl.com

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

What implication would this have on a camera?

gradients of natural images are *sparse* (close to zero in most places)

150

Primal domain

Gradient domain

One of my favorite papers

Why would you want a gradient camera?

- Much faster frame rate, as you only read out very few pixels (where gradient is significant).
- Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

One of my favorite papers

Why would you want a gradient camera?

- Much faster frame rate, as you only read out very few pixels (where gradient is significant).
- Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

Can you think how?

Digital subtraction in post-processing

$$\sigma(I_1 - I_2)^2 = ?$$

$$\sigma(I_1 - I_2)^2$$

Noise considerations $I_1 = L_1 \cdot g + n_{\text{read}} \cdot g + n_{\text{ADC}}$ $I_2 = L_2 \cdot g + n_{\text{read}} \cdot g + n_{\text{ADC}}$ L_1 L_2 Digital subtraction in $\sigma(I_1 - I_2)^2 = \sigma(L_1 - L_2)^2 + 2 \cdot \sigma_{\text{read}}^2 \cdot g^2 + 2 \cdot \sigma_{\text{ADC}}^2$ post-processing $L_1 - L_2 \sim \text{Skellam}(t \cdot a \cdot (\Phi_1 - \Phi_2), t \cdot (a \cdot (\Phi_1 + \Phi_2) + 2 \cdot D))$ Analog subtraction $\sigma(I)^2 = \sigma(L_1 - L_2)^2 + \sigma_{\text{opamp}}^2 \cdot g^2 + \sigma_{\text{read}}^2 \cdot g^2 + \sigma_{\text{ADC}}^2$ on sensor L_1 $L_1 \sim \text{Poisson}(t \cdot (a \cdot \Phi_1 + D))$ $L_2 \sim \text{Poisson}(t \cdot (a \cdot \Phi_2 + D))$ (we will $n_{\text{opamp}} \sim \text{Normal}(0, \sigma_{\text{opamp}})$ $n_{\rm read} \sim {\rm Normal}(0, \sigma_{\rm read})$ this) $n_{ADC} \sim Normal(0, \sigma_{ADC})$ L_2

 $D = (L_1 - L_2) + n_{\text{opamp}}$ $I = (L_1 - L_2) \cdot g + n_{\text{opamp}} \cdot g + n_{\text{read}} \cdot g + n_{\text{ADC}}$

Can you think how?

Optical filtering lenslet refractive slab template (edge filter) photodetectors

resulting image

Angle-sensitive pixels

One of my favorite papers

Why would you want a gradient camera?

- Much faster frame rate, as you only read out very few pixels (where gradient is significant).
- Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

- Change the sensor.
- Change the optics.

We can also compute temporal gradients

event-based cameras (a.k.a. dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim

Slowly becoming popular in robotics and vision

Under camera motion, temporal gradients become spatial gradients (why?)

References

Basic reading:

- Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.
- Pérez et al., "Poisson Image Editing," SIGGRAPH 2003.
- The original Poisson image editing paper. Agrawal and Raskar, "Gradient Domain Manipulation Techniques in Vision and Graphics," ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/ A great resource (entire course!) for gradient-domain image processing.
- Agrawal et al., "Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling," SIGGRAPH 2005. A paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:

- Georgiev, "Covariant Derivatives and Vision," ECCV 2006.
 - An paper from Adobe on the version of Poisson blending implemented in Photoshop's "healing brush".
- Elder and Goldberg, "Image editing in the contour domain", PAMI 2001.
 - One of the very first papers discussing gradient-domain image processing.
- Frankot and Chellappa, "A method for enforcing integrability in shape from shading algorithms," PAMI 1988.
- Bhat et al., "Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems," ECCV 2008. A couple of papers discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
- Agrawal et al., "What Is the Range of Surface Reconstructions from a Gradient Field?," ECCV 2006.
- Quéau et al., "Normal Integration: A Survey," JMIV 2017.
 - Two papers reviewing various gradient (and surface normal) integration techniques, including Poisson solvers.
- Szeliski, "Locally adapted hierarchical basis preconditioning," SIGGRAPH 2006.
 - Krishnan and Szeliski, "Multigrid and multilevel preconditioners for computational photography," SIGGRAPH 2011.
- Krishnan et al., "Efficient Preconditioning of Laplacian Matrices for Computer Graphics," SIGGRAPH 2013.
 - A few well-known references on multi-grid and preconditioning techniques for accelerating the Poisson solver, with a specific focus on computational photography applications.
- Shewchuk, "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain," CMU TR 1994, http://www.cs.cmu.edu/~guake-papers/painless-conjugate-gradient.pdf A great reference on (preconditioned) conjugate gradient solvers for large linear systems.
- Briggs et al., "A multigrid tutorial," SIAM 2000.
 - A great reference book on multi-grid approaches.
- Bhat et al., "GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering," TOG 2010.
 - A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond blending.
- Krishnan and Fergus, "Dark Flash Photography," SIGGRAPH 2009.
 - A paper proposing doing flash/no-flash photography using infrared flash lights.
- Kazhdan et al., "Poisson surface reconstruction," SGP 2006.
- Kazhdan and Hoppe, "Screened Poisson surface reconstruction," TOG 2013.
 - Two papers discussing Poisson problems for reconstructing meshes from point clouds and normals. This is arguably the most commonly used surface reconstruction algorithm.
- Lehtinen et al., "Gradient-domain metropolis light transport," SIGGRAPH 2013.
- Kettunen et al., "Gradient-domain path tracing," SIGGRAPH 2015.
- Hua et al., "Light transport simulation in the gradient domain." SIGGRAPH Asia 2018 course, http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018 GradientCourse/ In addition to *editing* images in the gradient-domain, we can *render* them directly in the gradient-domain.
- Tumblin et al., "Why I want a gradient camera?" CVPR 2005.
 - We can even directly *measure* images in the gradient domain, using so-called *gradient cameras*.
- Callenberg et al., "Snapshot difference imaging using correlation time-of-flight sensors," SIGGRAPH Asia 2017. A form of camera with differential pixels.
- Koppal et al., "Toward wide-angle microvision sensors", PAMI 2013.
 - Gradient cameras using optical filtering.
- Chen et al., "ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels," CVPR 2016. Gradient cameras using angle-sensitive pixels.
- Kim et al., "Real-time 3D reconstruction and 6-DoF tracking with an event camera," ECCV 2016.
 - A paper on using evet-based cameras for computer vision applications in very fast frame rates (best paper award at ECCV 2016!).
- Gallego et al., "Event-based Vision: A Survey," PAMI 2020. A survey paper on event cameras.