Edge-aware and bilateral filtering
Course announcements

• Homework assignment 3 posted.
 - Due October 17th.
 - Start early: tricky implementation that is easy to get wrong.

• Grades for homework assignment 1 posted.

• Propose and/or vote for topics for this week’s reading group.
Overview of today’s lecture

• Leftover from color.
• Back to tonemapping.
• Edge-aware filtering and bilateral filtering.
• Non-local means.
• Flash/no-flash photography.
• Joint bilateral filtering.
Many of these slides were inspired or adapted from:

- James Hays (Georgia Tech).
- Fredo Durand (MIT).
- Gordon Wetzstein (Stanford).
- Sylvain Paris (MIT).
- Sam Hasinoff (Google).
Back to tonemapping
Dealing with color

If we tonemap all channels the same, colors are washed out

Can you think of a way to deal with this?
Intensity-only tonemapping

How would you implement this?
Comparison

Color now OK, but some details are washed out due to loss of contrast

Can you think of a way to deal with this?
Low-frequency intensity-only tonemapping

Tonemap low-frequency intensity component

Leave high-frequency intensity component the same

Leave color the same

How would you implement this?
Comparison

We got nice color and contrast, but now we’ve run into the halo plague

Can you think of a way to deal with this?
Tonemapping with bilateral filtering
Comparison

We fixed the halos without losing contrast
Edge-aware filtering and bilateral filtering
Motivational example

Let’s say I want to reduce the amount of detail in this picture. What can I do?
Motivational example

What is the problem here?

original Gaussian filtering
Motivational example

How to smooth out the details in the image without losing the important edges?
Motivational example

original

Gaussian filtering

bilateral filtering
The problem with Gaussian filtering

Gaussian kernel

input

output

Why is the output so blurry?
The problem with Gaussian filtering

Gaussian kernel

Blur kernel averages across edges

input

output
The bilateral filtering solution

Do not blur if there is an edge! How does it do that?
Bilateral filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]
Bilateral filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]

Spatial weighting

\(\sigma_s \)

Assign a pixel a large weight if:

1) it’s nearby
Bilateral filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]

1. Spatial weighting
2. Intensity range weighting

Assign a pixel a large weight if:
1) it’s nearby
2) it looks like me
Bilateral filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]

- **Normalization factor**
- **Spatial weighting**
- **Intensity range weighting**

Assign a pixel a large weight if:
1) it’s nearby
2) it looks like me
Bilateral filtering vs Gaussian filtering

Which is which?

\[h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l] \]

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]
Bilateral filtering vs Gaussian filtering

Gaussian filtering

\[h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l] \]

Bilateral filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]
Bilateral filtering vs Gaussian filtering

Gaussian filtering

$$h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l]$$

Bilateral filtering

$$h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l]$$

Spatial weighting: favor nearby pixels
Bilateral filtering vs Gaussian filtering

Gaussian filtering

\[h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l] \]

Spatial weighting: favor nearby pixels

Bilateral filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]

Intensity range weighting: favor similar pixels
Bilateral filtering vs Gaussian filtering

Gaussian filtering

$$h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l]$$

Bilateral filtering

$$h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn[k, l]} f[m + k, n + l]$$

Spatial weighting: favor nearby pixels

Intensity range weighting: favor similar pixels

Normalization factor
Bilateral filtering vs Gaussian filtering

Gaussian filtering

- Smooths everything nearby (even edges)
- Only depends on spatial distance

Bilateral filtering

- Smooths ‘close’ pixels in space and intensity
- Depends on spatial and intensity distance
Gaussian filtering visualization

\[h[m, n] = \sum_{k,l} g[k, l] f[m + k, n + l] \]
Bilateral filtering visualization

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]
Exploring the bilateral filter parameter space

$\sigma_s = 2$

$\sigma_s = 6$

$\sigma_s = 18$

$\sigma_r = 0.1$

$\sigma_r = 0.25$

$\sigma_r = \infty$

(Gaussian blur)
Does the bilateral filter respect all edges?

input

bilateral filter kernel

output
Does the bilateral filter respect all edges?

Bilateral filter crosses (and blurs) thin edges.
Denoising

noisy input

bilateral filtering

median filtering
Contrast enhancement

How would you use Gaussian or bilateral filtering for sharpening?
Photo retouching
Photo retouching

original

digital pore removal (aka bilateral filtering)
Before
After
Close-up comparison

original

digital pore removal (aka bilateral filtering)
Cartoonization

input

cartoon rendition
Cartoonization

How would you create this effect?
Note: image cartoonization and abstraction are very active research areas.
Is the bilateral filter:

Linear?

Shift-invariant?
Is the bilateral filter:

Linear?
• No.

Shift-invariant?
• No.

Does this have any bad implications?
The bilateral grid

Real-time Edge-Aware Image Processing with the Bilateral Grid

Jiwen Chen Sylvain Paris Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Figure 1: The bilateral grid enables edge-aware image manipulations such as local tone mapping on high resolution images in real time. This 15 megapixel HDR panorama was tone mapped and locally refined using an edge-aware brush at 50 Hz. The inset shows the original input. The process used about 1 MB of texture memory.

Data structure for fast edge-aware image processing.
Modern edge-aware filtering: local Laplacian pyramids

Local Laplacian Filters: Edge-aware Image Processing with a Laplacian Pyramid

Sylvain Paris
Adobe Systems, Inc.

Samuel W. Hasinoff
Toyota Technological Institute at Chicago and MIT CSAIL

Jan Kautz
University College London

(a) input HDR image tone-mapped with a simple gamma curve (details are compressed)
(b) our pyramid-based tone mapping, set to preserve details without increasing them
(c) our pyramid-based tone mapping, set to strongly enhance the contrast of details

Figure 1: We demonstrate edge-aware image filters based on the direct manipulation of Laplacian pyramids. Our approach produces high-quality results, without degrading edges or introducing halos, even at extreme settings. Our approach builds upon standard image pyramids and enables a broad range of effects via simple point-wise nonlinearities (shown in corners). For an example image (a), we show results of tone mapping using our method, creating a natural rendition (b) and a more exaggerated look that enhances details as well (c). Laplacian pyramids have previously been considered unsuitable for such tasks, but our approach shows otherwise.
Modern edge-aware filtering: local Laplacian pyramids
Modern edge-aware filtering: local Laplacian pyramids

input

texture decrease

large texture increase

texture increase
Tonemapping with edge-aware filtering
Tonemapping with edge-aware filtering

local Laplacian pyramids bilateral filter
Modern edge-aware filtering: local Laplacian pyramids
Modern edge-aware filtering: domain transform

Lots of great examples at: https://www.inf.ufrgs.br/~eslgastal/DomainTransform/
Modern edge-aware filtering: guided filter

Guided Image Filtering

Kaiming He, Member, IEEE, Jian Sun, Member, IEEE, and Xiaou Tang, Fellow, IEEE

filtering input p

$\text{filtering output } q$

$\text{filtering input } p$

$\text{filtering output } q$

$q_i = aI_i + b$

$q_i = p_i - n_i$

spatial kernel $G_s(x-s)$

range kernel $G_r(I-I_j)$

bilateral kernel G_sG_r
Non-local means
Redundancy in natural images
Non-local means

No need to stop at neighborhood. Instead search everywhere in the image.

\[\hat{x}(i) = \frac{1}{C_i} \sum_j w(i,j) y(j) e^{-\frac{SSD(y(N_i)-y(N_j))}{2\sigma^2}} \]
Non-local means vs bilateral filtering

Non-local means filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} r_{mn}[k, l] f[m + k, n + l] \]

Bilateral filtering

\[h[m, n] = \frac{1}{W_{mn}} \sum_{k,l} g[k, l] r_{mn}[k, l] f[m + k, n + l] \]

Intensity range weighting: favor similar pixels (patches in case of non-local means)

Spatial weighting: favor nearby pixels
Everything put together

Gaussian filtering

Smoother nearby (even edges)
Only depends on spatial distance

Bilateral filtering

Smoother ‘close’ pixels in space and intensity
Depends on spatial and intensity distance

Non-local means

Smoother similar patches no matter how far away
Only depends on intensity distance
Denoising example

noisy input Gaussian filtering bilateral filtering non-local means
Very general forms of “structural” filtering

We will see more in later lectures.
Is non-local means:

Linear?

Shift-invariant?
Is non-local means:

Linear?
• No.

Shift-invariant?
• No.

Non-local means is not a convolution, and is generally very very challenging to implement efficiently.

Efficient algorithms for non-local means are an active research area.
Flash/no-flash photography
Red Eye
Unflattering Lighting
A lot of Noise
Ruined Ambiance
Flash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

No-Flash

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look
Image acquisition

1. Lock Focus & Aperture

(time)
Image acquisition

1. Lock Focus & Aperture
2. No-Flash Image

1/30 s
ISO 3200
Image acquisition

1. Lock Focus & Aperture
2. No-Flash Image
3. Flash Image

1/30 s ISO 3200
1/125 s ISO 200
Denoising Result
Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?
Joint bilateral filtering
Denoising with bilateral filtering

noisy input bilateral filtering median filtering
Denoising with bilateral filtering

\[
A_{p\text{col}}^{\text{Base}} = \frac{1}{k(p(\text{col}))} \sum_{p' \in \Omega} g_d(|p - p'|) g_r \left(A_{p\text{col}} - A_{p'\text{col}} \right) A_{p'\text{col}}
\]

- However, results still have noise or blur (or both)
Denoising with joint bilateral filtering

\[A_{p_{(col)}}^{NR} = \frac{1}{k(p_{(col)})} \sum_{p' \in \Omega} g_d(|p - p'|) g_r(F_{p_{(col)}} - F_{p'_{(col)}}) A_{p'_{(col)}} \]

- In the flash image there are many more *details*
- Use the flash image F to find edges
Denoising with joint bilateral filtering

\[A^{NR}_{p(col)} = \frac{1}{k(p(col))} \sum_{p' \in \Omega} g_d(|p - p'|) \]

\[g_r(F_p(col) - F_{p'(col)}) A_{p'(col)} \]
Not all edges in the flash image are real

Can you think of any types of edges that may exist in the flash image but not the ambient one?
Not all edges in the flash image are real

- May cause over- or under-blur in joint bilateral filter
- We need to eliminate their effect
Detecting shadows

• **Observation**: the pixels in the flash shadow should be similar to the ambient image.

• Not identical:
 1. Noise.
 2. Inter-reflected flash.

• Compute a *shadow mask*.

• Take pixel p if $\frac{F_{p(col)}}{A_{p(col)}} - A_{p(col)} \leq \tau_{\text{Shadow}}$

• τ_{Shadow} is manually adjusted

• Mask is *smoothed* and *dilated*
Detecting specularities

• Take pixels where sensor input is close to maximum (very bright).
 • Over fixed threshold τ_{spec}

• Create a *specularity mask*.

• Also smoothed.

• M – the combination of shadow and specularity masks:

 Where $M_p=1$, we use A_{Base}. For other pixels we use A_{NR}.
Detail transfer

- Denoising cannot add details *missing* in the ambient image
- Exist in flash image because of high SNR
- We use a *quotient image*:

 \[F_{Detail}^{p(col)} = \frac{F_{p(col)} + \varepsilon}{F_{Base}^{p(col)} + \varepsilon} \]

- Multiply with \(A^{NR} \) to add the details
- Masked in the same way

Why does this quotient image make sense for detail?
Detail transfer

• Denoising cannot add details *missing* in the ambient image
• Exist in flash image because of high SNR
• We use a *quotient image*:

\[
F^{\text{Detail}}_{p(col)} = \frac{F_p(col) + \varepsilon}{F_{\text{Base}} + \varepsilon}
\]

Reduces the effect of noise in F
Full pipeline

\[A_{Final} = (1 - M) A_{NR} F_{Detail} + MA_{Base} \]
Demonstration

ambient-only

joint bilateral and detail transfer
Flash
Result
Result
Edge-aware depth denoising

\[A_p(col) = \frac{1}{k(p(col))} \sum_{p' \in \Omega} g_d(|p - p'|) \]

\[g_r(F_p(col) - F_{p'}(col)) A_{p'}(col) \]

Use joint bilateral filtering, with the input image as guide.

One of two input images
Depth from disparity
Guided filtering
Other applications of joint bilateral filtering

Deep Bilateral Learning for Real-Time Image Enhancement

MICHAËL GHRABI, MIT CSAIL
JIWEN CHEN, Google Research
JONATHAN T. BARRON, Google Research
SAMUEL W. HASINOFF, Google Research
FRÉDO DURAND, MIT CSAIL / Inria, Université Côte d’Azur
References

Basic reading:

• Eisemann and Durand, “Flash Photography Enhancement via Intrinsic Relighting,” SIGGRAPH 2004. The first two papers exploring the idea of photography with flash and no-flash pairs using the joint bilateral filter.

Additional reading:

• Chen et al., “Real-time edge-aware image processing with the bilateral grid,” SIGGRAPH 2007.

• Barnes et al., “PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing,” SIGGRAPH 2009. A paper on a very efficient implementation of non-local means, including a few amazing applications focusing on creative manipulation of images.

• He et al., “Guided image filtering,” PAMI 2013.

• Gastal and Oliveira, “Domain Transform for Edge-Aware Image and Video Processing,” SIGGRAPH 2011. The papers introducing the two different types of edge-aware filtering we mentioned.

• Barron and Poole, “The fast bilateral solver,” ECCV 2016. The above two papers show how to combine edge-aware filtering (and bilateral filtering in particular) with disparity matching for robust stereo. The first paper also shows how the resulting depth maps can be used to create synthetic defocus blur.