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Course announcements

• Homework assignment 2 is due on Friday 9/27.
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Overview of today’s lecture

• A few motivating examples.

• Sensor noise.

• Noise calibration.

• Optimal weights for HDR.
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Slide credits

Many of these slides were inspired or adapted from:

• James Hays (Georgia Tech).
• Fredo Durand (MIT).
• Gordon Wetzstein (Stanford).
• Marc Levoy (Stanford, Google).
• Sylvain Paris (Adobe).
• Sam Hasinoff (Google).
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A few motivating questions from things we’ve seen
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Side-effects of increasing ISO
Image becomes very grainy because noise is amplified.
• Why does increasing ISO increase noise?
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Tonemapping for a single image

Careful not to “tonemap” noise.
• Why is this not a problem 

with multi-exposure HDR?

Modern DSLR sensors capture about 3 stops of dynamic range.
• Tonemap single RAW file instead of using camera’s default rendering.
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Merging non-linear exposure stacks

1. Calibrate response curve

2. Linearize images

For each pixel:

3. Find “valid” images

4. Weight valid pixel values appropriately

5. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

(pixel value) / ti

Same steps as in the RAW case.

Note: many possible weighting schemes
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Many possible weighting schemes
“Confidence” that pixel is noisy/clipped

• What are the optimal weights for 
merging an exposure stack?
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Sensor noise
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A quick note

• We will only consider per-pixel noise.

• We will not consider cross-pixel noise effects (blooming, smearing, cross-talk, and so on).
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Noise in images
Results in “grainy” appearance.
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The (in-camera) image processing pipeline
Which part introduces noise?

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)
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The (in-camera) image processing pipeline
Which part introduces noise?
• Noise is introduced in the green part.

analog front-
end

RAW image 
(mosaiced, 

linear, 12-bit)
white 

balance
CFA 

demosaicingdenoising

color 
transforms

tone 
reproduction compression

final RGB 
image (non-
linear, 8-bit)

14



The noisy image formation process

What are the various parts?
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The noisy image formation process

analog-to-digital 
converter (ADC)

analog 
voltage L

analog 
voltage G

discrete 
signal I

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

16



The noisy image formation process

analog-to-digital 
converter (ADC)

analog 
voltage L

analog 
voltage G

discrete 
signal I

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

introduces photon 
noise and dark noise

introduces 
read noise

introduces 
ADC noise

• We will be ignoring saturation, but it can be modeled using a clipping operation.
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Background: Normal distribution
Is it a continuous or discrete probability distribution?
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Background: Normal distribution
Is it a continuous or discrete probability distribution?
• It is continuous.

How many parameters does it depend on?
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Background: Normal distribution
Is it a continuous or discrete probability distribution?
• It is continuous.

What is its probability distribution function?

How many parameters does it depend on?
• Two parameters, the mean μ and the standard deviation σ.
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Background: Normal distribution
Is it a continuous or discrete probability distribution?
• It is continuous.

What is its probability distribution function?

𝑛𝑛 ∼ Normal(𝜇𝜇, 𝜎𝜎) ⇔ 𝑝𝑝(𝑛𝑛 = 𝑥𝑥; 𝜇𝜇, 𝜎𝜎) =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒− 𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

How many parameters does it depend on?
• Two parameters, the mean μ and the standard deviation σ.

What are its mean and variance?
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Background: Normal distribution
Is it a continuous or discrete probability distribution?
• It is continuous.

What is its probability distribution function?

𝑛𝑛 ∼ Normal(𝜇𝜇, 𝜎𝜎) ⇔ 𝑝𝑝(𝑛𝑛 = 𝑥𝑥; 𝜇𝜇, 𝜎𝜎) =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒− 𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

How many parameters does it depend on?
• Two parameters, the mean μ and the standard deviation σ.

What are its mean and variance?
• Mean: μ(n) = μ
• Variance: σ(n)2 = σ2

What is the distribution of the sum of two independent Normal random variables?
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Background: Normal distribution
Is it a continuous or discrete probability distribution?
• It is continuous.

What is its probability distribution function?

𝑛𝑛 ∼ Normal(𝜇𝜇, 𝜎𝜎) ⇔ 𝑝𝑝(𝑛𝑛 = 𝑥𝑥; 𝜇𝜇, 𝜎𝜎) =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒− 𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

How many parameters does it depend on?
• Two parameters, the mean μ and the standard deviation σ.

What are its mean and variance?
• Mean: μ(n) = μ
• Variance: σ(n)2 = σ2

What is the distribution of the sum of two independent Normal random variables?

𝑛𝑛1 ∼ Normal 0, 𝜎𝜎1 , 𝑛𝑛2 ∼ Normal 0, 𝜎𝜎2 ⇒ 𝑛𝑛1 + 𝑛𝑛2 ∼ Normal 0, 𝜎𝜎1
2 + 𝜎𝜎2

2
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Background: Poisson distribution
Is it a continuous or discrete probability distribution?
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Background: Poisson distribution
Is it a continuous or discrete probability distribution?
• It is discrete.

How many parameters does it depend on?
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Background: Poisson distribution
Is it a continuous or discrete probability distribution?
• It is discrete.

What is its probability mass function?

How many parameters does it depend on?
• One parameter, the rate λ.
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Background: Poisson distribution
Is it a continuous or discrete probability distribution?
• It is discrete.

What is its probability mass function?

𝑁𝑁 ∼ Poisson(𝜆𝜆) ⇔ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘; 𝜆𝜆) =
𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!

How many parameters does it depend on?
• One parameter, the rate λ.

What are its mean and variance?
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Background: Poisson distribution
Is it a continuous or discrete probability distribution?
• It is discrete.

What is its probability mass function?

𝑁𝑁 ∼ Poisson(𝜆𝜆) ⇔ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘; 𝜆𝜆) =
𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!

How many parameters does it depend on?
• One parameter, the rate λ.

What are its mean and variance?
• Mean: μ(N) = λ
• Variance: σ(N)2 = λ

The mean and variance of a Poisson 
random variable both equal the rate λ.

What is the distribution of the sum of two independent Poisson random variables?
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Background: Poisson distribution
Is it a continuous or discrete probability distribution?
• It is discrete.

What is its probability mass function?

𝑁𝑁 ∼ Poisson(𝜆𝜆) ⇔ 𝑃𝑃(𝑁𝑁 = 𝑘𝑘; 𝜆𝜆) =
𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!

How many parameters does it depend on?
• One parameter, the rate λ.

What are its mean and variance?
• Mean: μ(N) = λ
• Variance: σ(N)2 = λ

The mean and variance of a Poisson 
random variable both equal the rate λ.

What is the distribution of the sum of two independent Poisson random variables?

𝑁𝑁1 ∼ Poisson 𝜆𝜆1 , 𝑁𝑁2 ∼ Poisson 𝜆𝜆2 ⇒ 𝑁𝑁1 + 𝑁𝑁2 ∼ Poisson 𝜆𝜆1 + 𝜆𝜆2
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The noisy image formation process

analog-to-digital 
converter (ADC)

analog 
voltage L

analog 
voltage G

discrete 
signal I

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

introduces photon 
noise and dark noise

introduces 
read noise

introduces 
ADC noise

• We will be ignoring saturation, but it can be modeled using a clipping operation.
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simulated mean 
#photons/pixel

0.001 0.01 0.1

1 10 100

Photon noise
A consequence of the discrete (quantum) nature of light. 
• Photon detections are independent random events.
• Total number of detections is Poisson distributed.
• Also known as shot noise and Schott noise.

Ndetections ∼ Poisson[t ⋅ α ⋅ Φ]
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simulated mean 
#photons/pixel

0.001 0.01 0.1

1 10 100

Photon noise
A consequence of the discrete (quantum) nature of light. 
• Photon detections are independent random events.
• Total number of detections is Poisson distributed.
• Also known as shot noise and Schott noise.

Ndetections ∼ Poisson[t ⋅ α ⋅ Φ]

photon noise depends on 
scene flux and exposure

32



Dark noise
A consequence of “phantom detections” by the sensor. 
• Electrons are randomly released without any photons.
• Total number of detections is Poisson distributed.
• Increases exponentially with sensor temperature (+6°C ≈ doubling).

Ndetections ∼ Poisson[t ⋅ D]
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Can you think of examples when dark noise is important?

Dark noise
A consequence of “phantom detections” by the sensor. 
• Electrons are randomly released without any photons.
• Total number of detections is Poisson distributed.
• Increases exponentially with sensor temperature (+6°C ≈ doubling).

Ndetections ∼ Poisson[t ⋅ D]

dark noise depends on 
exposure but not on scene
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Can you think of examples when dark noise is important?
• Very long exposures (astrophotography, pinhole camera).

Dark noise
A consequence of “phantom detections” by the sensor. 
• Electrons are randomly released without any photons.
• Total number of detections is Poisson distributed.
• Increases exponentially with sensor temperature (+6°C ≈ doubling).

Ndetections ∼ Poisson[t ⋅ D]

dark noise depends on 
exposure but not on scene

Can you think of ways to mitigate dark noise?
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Can you think of examples when dark noise is important?
• Very long exposures (astrophotography, pinhole camera).

Dark noise
A consequence of “phantom detections” by the sensor. 
• Electrons are randomly released without any photons.
• Total number of detections is Poisson distributed.
• Increases exponentially with sensor temperature (+6°C ≈ doubling).

Ndetections ∼ Poisson[t ⋅ D]

dark noise depends on 
exposure but not on scene

Can you think of ways to mitigate dark noise?
• Cool the sensor.
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Fundamental question

Why are photon noise and dark noise Poisson random variables?
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The noisy image formation process

analog-to-digital 
converter (ADC)

analog 
voltage L

analog 
voltage G

discrete 
signal I

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

introduces photon 
noise and dark noise

introduces 
read noise

introduces 
ADC noise

• What is the distribution of the sensor readout L?
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The distribution of the sensor readout
We know that the sensor readout is the sum of all released electrons:

𝐿𝐿 = 𝑁𝑁photon_detections + 𝑁𝑁phantom_detections

What is the distribution of photon detections?
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The distribution of the sensor readout
We know that the sensor readout is the sum of all released electrons:

𝐿𝐿 = 𝑁𝑁photon_detections + 𝑁𝑁phantom_detections

What is the distribution of photon detections?

𝑁𝑁photon_detections ∼ Poisson(𝑡𝑡 ⋅ 𝛼𝛼 ⋅ Φ)

What is the distribution of phantom detections?
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The distribution of the sensor readout
We know that the sensor readout is the sum of all released electrons:

𝐿𝐿 = 𝑁𝑁photon_detections + 𝑁𝑁phantom_detections

What is the distribution of photon detections?

𝑁𝑁photon_detections ∼ Poisson(𝑡𝑡 ⋅ 𝛼𝛼 ⋅ Φ)

What is the distribution of phantom detections?

𝑁𝑁phantom_detections ∼ Poisson(𝑡𝑡 ⋅ 𝐷𝐷)

What is the distribution of the sensor readout?
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The distribution of the sensor readout
We know that the sensor readout is the sum of all released electrons:

𝐿𝐿 = 𝑁𝑁photon_detections + 𝑁𝑁phantom_detections

What is the distribution of photon detections?

𝑁𝑁photon_detections ∼ Poisson(𝑡𝑡 ⋅ 𝛼𝛼 ⋅ Φ)

What is the distribution of phantom detections?

𝑁𝑁phantom_detections ∼ Poisson(𝑡𝑡 ⋅ 𝐷𝐷)

What is the distribution of the sensor readout?

𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))
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The noisy image formation process

analog-to-digital 
converter (ADC)

analog 
voltage G

discrete 
signal I

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

introduces photon 
noise and dark noise

introduces 
read noise

introduces 
ADC noise

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))
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Read and ADC noise
A consequence of random voltage fluctuations before and after amplifier. 
• Both are independent of scene and exposure.
• Both are normally (zero-mean Guassian) distributed. 
• ADC noise includes quantization errors.

nread ∼ Normal(0, σread)

Very important for dark pixels.

nADC ∼ Normal(0, σADC)
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The noisy image formation process

analog-to-digital 
converter (ADC)

analog 
voltage G

discrete 
signal I

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

introduces photon 
noise and dark noise

introduces 
read noise

introduces 
ADC noise

• How can we express the voltage G and discrete intensity I?

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))
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Expressions for the amplifier and ADC outputs
Both read noise and ADC noise are additive and zero-mean.

• How can we express the output of the amplifier? 
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Expressions for the amplifier and ADC outputs
Both read noise and ADC noise are additive and zero-mean.

• How can we express the output of the amplifier? 

𝐺𝐺 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔

• How can we express the output of the ADC?

don’t forget to account for 
the ISO-dependent gain
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Expressions for the amplifier and ADC outputs
Both read noise and ADC noise are additive and zero-mean.

• How can we express the output of the amplifier? 

𝐺𝐺 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔

• How can we express the output of the ADC?

𝐼𝐼 = 𝐺𝐺 + 𝑛𝑛ADC

don’t forget to account for 
the ISO-dependent gain
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The noisy image formation process

analog-to-digital 
converter (ADC)

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

introduces photon 
noise and dark noise

introduces 
read noise

introduces 
ADC noise

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))

analog voltage 𝐺𝐺 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔, 
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)

discrete signal 𝐼𝐼 = 𝐺𝐺 + 𝑛𝑛ADC,
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)
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Putting it all together
Without saturation, the digital intensity equals:

𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC

𝐿𝐿 ∼ Poisson 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

where

What is the mean of the digital intensity (assuming no saturation)?

𝐸𝐸 𝐼𝐼 =
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Putting it all together
Without saturation, the digital intensity equals:

𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC

𝐿𝐿 ∼ Poisson 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

where

What is the mean of the digital intensity (assuming no saturation)?

𝐸𝐸 𝐼𝐼 = 𝐸𝐸 𝐿𝐿 ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛read ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛ADC
         =
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Putting it all together
Without saturation, the digital intensity equals:

𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC

𝐿𝐿 ∼ Poisson 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

where

What is the mean of the digital intensity (assuming no saturation)?

𝐸𝐸 𝐼𝐼 = 𝐸𝐸 𝐿𝐿 ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛read ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛ADC
         = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

What is the variance of the digital intensity (assuming no saturation)?

𝜎𝜎 𝐼𝐼 2 =
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Putting it all together
Without saturation, the digital intensity equals:

𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC

𝐿𝐿 ∼ Poisson 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

where

What is the mean of the digital intensity (assuming no saturation)?

𝐸𝐸 𝐼𝐼 = 𝐸𝐸 𝐿𝐿 ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛read ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛ADC
         = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

What is the variance of the digital intensity (assuming no saturation)?

𝜎𝜎 𝐼𝐼 2 = 𝜎𝜎 𝐿𝐿 ⋅ 𝑔𝑔 2 + 𝜎𝜎 𝑛𝑛read ⋅ 𝑔𝑔 2 + 𝜎𝜎 𝑛𝑛ADC
2 

           =
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Putting it all together
Without saturation, the digital intensity equals:

𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC

𝐿𝐿 ∼ Poisson 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

where

What is the mean of the digital intensity (assuming no saturation)?

𝐸𝐸 𝐼𝐼 = 𝐸𝐸 𝐿𝐿 ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛read ⋅ 𝑔𝑔 + 𝐸𝐸 𝑛𝑛ADC
         = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

What is the variance of the digital intensity (assuming no saturation)?

𝜎𝜎 𝐼𝐼 2 = 𝜎𝜎 𝐿𝐿 ⋅ 𝑔𝑔 2 + 𝜎𝜎 𝑛𝑛read ⋅ 𝑔𝑔 2 + 𝜎𝜎 𝑛𝑛ADC
2 

           = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2
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How do we compute mean and variance in practice?
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How do we compute mean and variance in practice?
56

Mean: capture multiple linear images with identical settings and average.

̅𝐼𝐼 =
1
𝑁𝑁

�
𝑛𝑛=1

𝑁𝑁

𝐼𝐼𝑛𝑛
𝑁𝑁→∞

𝐸𝐸 𝐼𝐼



How do we compute mean and variance in practice?
57

Mean: capture multiple linear images with identical settings and average.

Variance: capture multiple linear images with identical settings and form variance estimator.

̅𝐼𝐼 =
1
𝑁𝑁

�
𝑛𝑛=1

𝑁𝑁

𝐼𝐼𝑛𝑛
𝑁𝑁→∞

𝐸𝐸 𝐼𝐼

�Σ =
1

𝑁𝑁 − 1
�
𝑛𝑛=1

𝑁𝑁

𝐼𝐼𝑛𝑛 − ̅𝐼𝐼 2 𝑁𝑁→∞
𝜎𝜎 𝐼𝐼 2



The noisy image formation process

analog-to-digital 
converter (ADC)

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))

analog voltage 𝐺𝐺 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔, 
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)

discrete signal 𝐼𝐼 = 𝐺𝐺 + 𝑛𝑛ADC,
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

discrete image intensity (with saturation): intensity mean and variance (without saturation):

saturation level
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Affine noise model
Combine read and ADC noise into a single additive noise term: 

What is the distribution of the additive noise term?

𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛add 𝑛𝑛add = 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADCwhere
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Affine noise model
Combine read and ADC noise into a single additive noise term: 

𝑛𝑛add ∼ Normal(0, 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2 )

What is the distribution of the additive noise term?
• Sum of two independent, normal random variables.

𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛add 𝑛𝑛add = 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADCwhere
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Affine noise model

analog-to-digital 
converter (ADC)

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))

discrete signal 𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛add,
𝑛𝑛add ∼ Normal(0, 𝜎𝜎add)

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛add, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔2 + 𝜎𝜎add
2

discrete image intensity (with saturation): intensity mean and variance (without saturation):
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Some observations
Is image intensity an unbiased estimator of (scaled) scene radiant flux?
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Some observations
Is image intensity an unbiased estimator of (scaled) scene radiant flux?
• No, because of dark noise (term 𝑡𝑡 ⋅ 𝐷𝐷 ⋅ 𝑔𝑔 in the mean).
• Averaging multiple images cancels out read and ADC noise, but not dark noise.

63

When are photon noise and additive noise dominant?



Some observations
Is image intensity an unbiased estimator of (scaled) scene radiant flux?
• No, because of dark noise (term 𝑡𝑡 ⋅ 𝐷𝐷 ⋅ 𝑔𝑔 in the mean).
• Averaging multiple images cancels out read and ADC noise, but not dark noise.
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Can we ever completely remove noise?

When are photon noise and additive noise dominant?
• Photon noise is dominant in very bright scenes.
• Additive noise is dominant in very dark scenes.



Some observations
Is image intensity an unbiased estimator of (scaled) scene radiant flux?
• No, because of dark noise (term 𝑡𝑡 ⋅ 𝐷𝐷 ⋅ 𝑔𝑔 in the mean).
• Averaging multiple images cancels out read and ADC noise, but not dark noise.

Can we ever completely remove noise?
• We cannot eliminate photon noise.
• Super-sensitive detectors have pure Poisson photon noise.

single-photon avalanche photodiode (SPAD)

When are photon noise and additive noise dominant?
• Photon noise is dominant in very bright scenes.
• Additive noise is dominant in very dark scenes.
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Summary: noise regimes
regime            dominant noise                  notes

bright pixels            photon noise                    scene-dependent
dark pixels            read and ADC noise            scene-independent

low ISO            ADC noise                       post-gain
high ISO            photon and read noise         pre-gain

long exposures            dark noise                       thermal dependence

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

discrete image intensity (with saturation): intensity mean and variance (without saturation):
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Summary: noise regimes
regime            dominant noise                  notes

bright pixels            photon noise                    scene-dependent
dark pixels            read and ADC noise            scene-independent

low ISO            ADC noise                       post-gain
high ISO            photon and read noise         pre-gain

long exposures            dark noise                       thermal dependence

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

discrete image intensity (with saturation): intensity mean and variance (without saturation):
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Does this 
mean 

that using 
high 

exposure 
makes 
images 
more 

“noisy”?



Signal-to-noise ratio



Variance versus signal-to-noise ratio
Variance?



Variance versus signal-to-noise ratio
Variance is an absolute measure of the (squared) magnitude of noise:

𝜎𝜎 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼 − 𝐸𝐸 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼2 − 𝐸𝐸 𝐼𝐼 2

Signal-to-noise ratio (SNR)?



Variance versus signal-to-noise ratio
Variance is an absolute measure of the (squared) magnitude of noise:

𝜎𝜎 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼 − 𝐸𝐸 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼2 − 𝐸𝐸 𝐼𝐼 2

Signal-to-noise ratio (SNR) is a relative measure of the (inverse squared) magnitude of noise:

SNR =
𝐸𝐸 𝐼𝐼 2

𝜎𝜎 𝐼𝐼 2

When noise decreases:
• The variance…
• The SNR…



Variance versus signal-to-noise ratio
Variance is an absolute measure of the (squared) magnitude of noise:

𝜎𝜎 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼 − 𝐸𝐸 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼2 − 𝐸𝐸 𝐼𝐼 2

Signal-to-noise ratio (SNR) is a relative measure of the (inverse squared) magnitude of noise:

SNR =
𝐸𝐸 𝐼𝐼 2

𝜎𝜎 𝐼𝐼 2

When noise decreases:
• The variance decreases.
• The SNR increases.



The case of sensor noise
Assuming for simplicity that there is no dark current:

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

What happens when the exposure time or flux are very large?

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2



The case of sensor noise
Assuming for simplicity that there is no dark current:

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

What happens when the exposure time or flux are very large?
• We can ignore additive (read and ADC) noise terms.

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ

What happens when the flux or exposure time are very small?

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2



The case of sensor noise
Assuming for simplicity that there is no dark current:

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

What happens when the exposure time or flux are very large?
• We can ignore additive (read and ADC) noise terms.

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ

What happens when the flux or exposure time are very small?
• We can ignore scene-dependent noise terms.

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2

𝜎𝜎 𝐼𝐼 2 = 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2



The case of sensor noise
Assuming for simplicity that there is no dark current:

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

What happens when the exposure time or flux are very large?
• We can ignore additive (read and ADC) noise terms.

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ

What happens when the flux or exposure time are very small?
• We can ignore scene-dependent noise terms.

SNR =
𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔 2

𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ

SN
R

additive-noise-
limited case

photon-noise-
limited case

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2



The case of sensor noise
As flux or exposure time increase:

• The noise variance increases.
• The SNR also increases.

Even though the absolute magnitude of noise increases, its relative magnitude compared to 
the signal we are measuring decreases. 

→ Our measurements become less noisy as flux or exposure time increase.

(For the case of exposure time, we need to be careful to also take into account dark noise.)



Pop quiz
Is it better to use one long exposure or multiple short exposures?



Pop quiz
Is it better to use one long exposure or multiple short exposures?
• Using one long exposure is better, because additive noise is only added once.
• Using multiple short exposures is worse, because the result (after summing all 

images) will have additive noise variance increased by number of exposures.
• This assumes no saturation, and using RAW images.



Pop quiz
Is it better to increase the exposure, increase the ISO, or brighten digitally?



Pop quiz
Is it better to increase the exposure, increase the ISO, or brighten digitally?
• Increasing the exposure is the best, as it increases Poisson noise but leaves read noise 

and ADC noise fixed.
• Increasing the ISO is the second best, as it increases Poisson noise and read noise, but 

leaves ADC noise fixed.
• Brightening digitally is the worst, as it increases all three types of noise.
• This assumes no motion blur, no saturation, and using RAW images.



Pop quiz
Is it better to downsample digitally, or use a sensor with fewer pixels?



Pop quiz
Is it better to downsample digitally, or use a sensor with fewer pixels?
• Decreasing the number of pixels is better, as it increases the Poisson, but leaves 

additive noise fixed. 
• Downsampling digitally is worse, as it increases both the Poisson noise and additive 

noise.
• This assumes that the total photosensitive area remains the same, the per-pixel 

additive noise remains the same, and no saturation.



Pop quiz
What is the best exposure to use?



Pop quiz
What is the best exposure to use?
• During capture, use the largest exposure that does not produce more saturation than 

you can tolerate.
• Adjust exposure in post-processing to produce properly-exposed image.
• This is called expose-to-the-right.



Noise calibration
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How can we estimate the various parameters?

analog-to-digital 
converter (ADC)

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))

analog voltage 𝐺𝐺 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔, 
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)

discrete signal 𝐼𝐼 = 𝐺𝐺 + 𝑛𝑛ADC,
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

discrete image intensity (with saturation): intensity mean and variance:

saturation level

87



Estimating the dark current
Can you think of a procedure for estimating the dark current D?
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Estimating the dark current
Can you think of a procedure for estimating the dark current D?
• Capture multiple images with the sensor completely blocked and average 

to form the dark frame.

Why is the dark frame a valid estimator of the dark current D?

89



Estimating the dark current
Can you think of a procedure for estimating the dark current D?
• Capture multiple images with the sensor completely blocked and average 

to form the dark frame.

Why is the dark frame a valid estimator of the dark current D?
• By blocking the sensor, we effectively set Φ = 0.
• Average intensity becomes:

𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ 0 + 𝐷𝐷 ⋅ 𝑔𝑔 = 𝑡𝑡 ⋅ 𝐷𝐷 ⋅ 𝑔𝑔
• The dark frame needs to be computed separately for each ISO setting, unless we 

can also calibrate the gain g.

For the rest of these slides, we assume that we have calibrated D and removed it 
from captured images (by subtracting from them the dark frame).
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Noise model before dark frame subtraction

analog-to-digital 
converter (ADC)

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

dark 
current D

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ + 𝐷𝐷))

analog voltage 𝐺𝐺 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔, 
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)

discrete signal 𝐼𝐼 = 𝐺𝐺 + 𝑛𝑛ADC,
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ + 𝐷𝐷 ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

discrete image intensity (with saturation): intensity mean and variance:

saturation level
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Noise model after dark frame subtraction

analog-to-digital 
converter (ADC)

scene radiant 
flux Φ

analog amplifier 
(gain g = k ⋅ ISO)

sensor (exposure t, 
quantum efficiency α)

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ))

analog voltage 𝐺𝐺 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔, 
𝑛𝑛read ∼ Normal(0, 𝜎𝜎read)

discrete signal 𝐼𝐼 = 𝐺𝐺 + 𝑛𝑛ADC,
𝑛𝑛ADC ∼ Normal(0, 𝜎𝜎ADC)

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛read ⋅ 𝑔𝑔 + 𝑛𝑛ADC, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎read
2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC

2

discrete image intensity (with saturation): intensity mean and variance:

saturation level
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discrete signal 𝐼𝐼 = 𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛add,
𝑛𝑛add ∼ Normal(0, 𝜎𝜎add)

analog-to-digital 
converter (ADC)

analog amplifier 
(gain g = k ⋅ ISO)

Affine noise model after dark frame subtraction

scene radiant 
flux Φ

sensor (exposure t, 
quantum efficiency α)

analog voltage 𝐿𝐿,
𝐿𝐿 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ))

𝐼𝐼 = min(𝐿𝐿 ⋅ 𝑔𝑔 + 𝑛𝑛add, 𝐼𝐼max) 𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎add
2

discrete image intensity (with saturation): intensity mean and variance:
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Estimating the gain and additive noise variance
Can you think of a procedure for estimating these quantities?
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Estimating the gain and additive noise variance
1. Capture a large 

number of images of 
a grayscale target.
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Estimating the gain and additive noise variance

What do you expect 
the measurements 

to look like?

1. Capture a large 
number of images of 
a grayscale target.

2. Compute the empirical mean 
and variance for each pixel, then 
form a mean-variance plot.

mean

va
ria

nc
e
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Estimating the gain and additive noise variance
1. Capture a large 

number of images of 
a grayscale target.

2. Compute the empirical mean 
and variance for each pixel, then 
form a mean-variance plot.

mean

va
ria

nc
e

𝐸𝐸 𝐼𝐼 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔

𝜎𝜎 𝐼𝐼 2 = 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ ⋅ 𝑔𝑔2 + 𝜎𝜎add
2

⇒ 𝜎𝜎 𝐼𝐼 2= 𝐸𝐸 𝐼𝐼 ⋅ 𝑔𝑔 + 𝜎𝜎add
2
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Estimating the gain and additive noise variance
1. Capture a large 

number of images of 
a grayscale target.

2. Compute the empirical mean 
and variance for each pixel, then 
form a mean-variance plot.

mean

va
ria

nc
e

𝜎𝜎 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼 ⋅ 𝑔𝑔 + 𝜎𝜎add
2

3. Fit a line and use slope 
and intercept to estimate 
the gain and variance.

equal to line slope

equal to line intercept
𝜎𝜎add

2

𝑔𝑔

How would you modify this procedure to separately estimate read and ADC noise?
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Estimating the gain and additive noise variance
1. Capture a large 

number of images of 
a grayscale target.

2. Compute the empirical mean 
and variance for each pixel, then 
form a mean-variance plot.

mean

va
ria

nc
e

𝜎𝜎 𝐼𝐼 2 = 𝐸𝐸 𝐼𝐼 ⋅ 𝑔𝑔 + 𝜎𝜎add
2

3. Fit a line and use slope 
and intercept to estimate 
the gain and variance.

equal to line slope

equal to line intercept
𝜎𝜎add

2

𝑔𝑔

How would you modify this procedure to separately estimate read and ADC noise?
• Perform it for a few different ISO settings (i.e., gains g).
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Important notes
Noise calibration should be performed with RAW images!

100

The above procedure assumes that all pixels have the same noise characteristics.
• If that is not the case, then you need to capture multiple images under multiple 

exposure times, and use those to form the mean-variance plot for each pixel.



Optimal weights for HDR merging
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Merging non-linear exposure stacks

1. Calibrate response curve

2. Linearize images

For each pixel:

3. Find “valid” images

4. Weight valid pixel values appropriately

5. Form a new pixel value as the weighted average of valid pixel values

(noise) 0.05 < pixel < 0.95 (clipping)

(pixel value) / ti

Same steps as in the RAW case.

Note: many possible weighting schemes

102



Many possible weighting schemes
“Confidence” that pixel is noisy/clipped

• What are the optimal weights for 
merging an exposure stack?
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RAW (linear) image formation model

Exposure time:
t5 t4 t3 t2 t1

(Weighted) radiant flux for image pixel (x,y):    α ⋅ Φ(x, y) 

What weights should we use to merge these 
images, so that the resulting HDR image is an 
optimal estimator of the weighted radiant flux?

Different images in the 
exposure stack will have 

different noise characteristics
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Simple estimation example
105

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.
What does unbiased mean?



Simple estimation example

Assume we form a new estimator from the convex combination of the other two:

106

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z = a ⋅ x + (1 – a) ⋅ y

What does unbiased mean?

E[x] = E[y] = I

Is the new estimator z unbiased?



Simple estimation example

Assume we form a new estimator from the convex combination of the other two:

How should we select a?

107

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z = a ⋅ x + (1 – a) ⋅ y

What does unbiased mean?

E[x] = E[y] = I

Is the new estimator z unbiased? → Yes, convex combination preserves unbiasedness.

E[z] = E[a ⋅ x + (1 – a) ⋅ y] = a ⋅ E[x] + (1 – a) ⋅ E[y] = I



Simple estimation example

Assume we form a new estimator from the convex combination of the other two:

How should we select a? → Minimize variance (= expected squared error for unbiased estimators).

What is the variance of z as a function of a?

108

We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z = a ⋅ x + (1 – a) ⋅ y

What does unbiased mean?

E[x] = E[y] = I

Is the new estimator z unbiased? → Yes, convex combination preserves unbiasedness.

E[z] = E[a ⋅ x + (1 – a) ⋅ y] = a ⋅ E[x] + (1 – a) ⋅ E[y] = I

E[(z – I)2] = E[z2] – 2 ⋅ E[z] ⋅ I + I2 = E[z2] – E[z]2 = σ[z]2



Simple estimation example

Assume we form a new estimator from the convex combination of the other two:

How should we select a? → Minimize variance (= expected squared error for unbiased estimators).

What is the variance of z as a function of a?
σ[z]2 = a2 ⋅ σ[x]2 + (1 – a)2 ⋅ σ[y]2

What value of a minimizes σ[z]2?
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We have two independent unbiased estimators x and y of the same quantity I (e.g., pixel 
intensity) with variance σ[x]2 and σ[y]2.

z = a ⋅ x + (1 – a) ⋅ y

What does unbiased mean?

E[x] = E[y] = I

Is the new estimator z unbiased? → Yes, convex combination preserves unbiasedness.

E[z] = E[a ⋅ x + (1 – a) ⋅ y] = a ⋅ E[x] + (1 – a) ⋅ E[y] = I

E[(z – I)2] = E[z2] – 2 ⋅ E[z] ⋅ I + I2 = E[z2] – E[z]2 = σ[z]2



Simple estimation example
Simple optimization problem:

𝜕𝜕σ[z]2

𝜕𝜕𝑎𝑎
= 0

𝜕𝜕(𝑎𝑎2 ⋅ σ[x]2 + (1 –𝑎𝑎)2 ⋅ σ[y]2)
𝜕𝜕𝑎𝑎

= 0

2 ⋅ 𝑎𝑎 ⋅ σ[x]2 − 2 ⋅ (1 –𝑎𝑎) ⋅ σ[y]2= 0

𝑎𝑎 =
σ[y]2

σ[x]2 +σ[y]2 1 − 𝑎𝑎 =
σ[x]2

σ[x]2 +σ[y]2and

⇒

⇒

⇒
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Simple estimation example
Putting it all together, the optimal linear combination of the two estimators is

normalization 
factor

weights inversely 
proportional to variance

111

𝑧𝑧 =
σ[x]2σ[y]2

σ[x]2 + σ[y]2
⋅

1
σ[x]2 

𝑥𝑥 +
1

σ[y]2 𝑦𝑦



Simple estimation example
Putting it all together, the optimal linear combination of the two estimators is

weights inversely 
proportional to variance

This is weighting scheme is called Fisher weighting and is a BLUE.

More generally, for more than two estimators,

𝑧𝑧 =
1

∑𝑖𝑖=1
𝑁𝑁 1

σ[𝑥𝑥𝑖𝑖]2

⋅ �
𝑖𝑖=1

𝑁𝑁
1

σ[𝑥𝑥𝑖𝑖]2 𝑥𝑥𝑖𝑖
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normalization 
factor

𝑧𝑧 =
σ[x]2σ[y]2

σ[x]2 + σ[y]2
⋅

1
σ[x]2 

𝑥𝑥 +
1

σ[y]2 𝑦𝑦



Back to HDR
Given unclipped and dark-frame-corrected intensity measurements Ii[x, y] at pixel [x, y] and 
exposures ti, how can we merge them optimally into a single HDR intensity I[x, y]?
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𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦

⋅ �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⋅ �
𝑖𝑖=1

𝑁𝑁
1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦



Back to HDR
Given unclipped and dark-frame-corrected intensity measurements Ii[x, y] at pixel [x, y] and 
exposures ti, we can merge them optimally into a single HDR intensity I[x, y] as

The per-pixel weights 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦  should be selected to be inversely proportional to the variance 
σ[ 1

𝑡𝑡i
𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 at each image in the exposure stack.

• How do we compute this variance?
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𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦

⋅ �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⋅ �
𝑖𝑖=1

𝑁𝑁
1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦



The per-pixel weights 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦  should be selected to be inversely proportional to the variance 
σ[ 1

𝑡𝑡i
𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.

Back to HDR
Given unclipped and dark-frame-corrected intensity measurements Ii[x, y] at pixel [x, y] and 
exposures ti, we can merge them optimally into a single HDR intensity I[x, y] as

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = ?
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𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦

⋅ �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⋅ �
𝑖𝑖=1

𝑁𝑁
1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦



Back to HDR

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 σ[𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⇒ σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = ?

Given unclipped and dark-frame-corrected intensity measurements Ii[x, y] at pixel [x, y] and 
exposures ti, we can merge them optimally into a single HDR intensity I[x, y] as

116

𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦

⋅ �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⋅ �
𝑖𝑖=1

𝑁𝑁
1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦

The per-pixel weights 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦  should be selected to be inversely proportional to the variance 
σ[ 1

𝑡𝑡i
𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.



Back to HDR

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 σ[𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⇒ σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2

Computing the optimal weights requires:
1. calibrated noise characteristics.
2. knowing the radiant flux 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦].

Given unclipped and dark-frame-corrected intensity measurements Ii[x, y] at pixel [x, y] and 
exposures ti, we can merge them optimally into a single HDR intensity I[x, y] as
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𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
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𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2
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𝑁𝑁
1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦

The per-pixel weights 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦  should be selected to be inversely proportional to the variance 
σ[ 1

𝑡𝑡i
𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.



Back to HDR

𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
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𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦
1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⋅ �
𝑖𝑖=1

𝑁𝑁
1

σ[ 1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

1
𝑡𝑡i

𝐼𝐼𝑖𝑖 𝑥𝑥, 𝑦𝑦

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 σ[𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2

⇒ σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2

Computing the optimal weights requires:
1. calibrated noise characteristics.
2. knowing the radiant flux 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦].

Given unclipped and dark-frame-corrected intensity measurements Ii[x, y] at pixel [x, y] and 
exposures ti, we can merge them optimally into a single HDR intensity I[x, y] as

This is what we wanted to estimate!
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The per-pixel weights 𝑤𝑤𝑖𝑖 𝑥𝑥, 𝑦𝑦  should be selected to be inversely proportional to the variance 
σ[ 1

𝑡𝑡i
𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 at each image in the exposure stack.

• How do we compute this variance?   → Use affine noise model.



Simplification: only photon noise

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2 ≃ ?
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If we assume that our measurements are dominated by photon noise, the variance becomes:



Simplification: only photon noise

If we assume that our measurements are dominated by photon noise, the variance becomes:

By replacing in the merging formula and assuming only valid pixels, the HDR estimate becomes:

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2 ≃ 1

𝑡𝑡i
𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2
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𝐼𝐼 𝑥𝑥, 𝑦𝑦 =
1

∑𝑖𝑖=1
𝑁𝑁 1

1
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𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2
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𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]



Simplification: only photon noise

If we assume that our measurements are dominated by photon noise, the variance becomes:

By replacing in the merging formula and assuming only valid pixels, the HDR estimate becomes:

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2 ≃ 1

𝑡𝑡i
𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2
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Simplification: only photon noise

If we assume that our measurements are dominated by photon noise, the variance becomes:

By replacing in the merging formula and assuming only valid pixels, the HDR estimate becomes:

Notice that we no longer weight each image in the exposure stack by its exposure time!

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2 ≃ 1

𝑡𝑡i
𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2
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Some comparisons

original weights optimal weights assuming 
only photon noise
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Simplification: only photon noise

When is this a good assumption?
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More general case

Where does this approximation come from?

If we cannot assume that our measurements are dominated by photon noise, we can 
approximate the variance as:

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2 ≃ 1

𝑡𝑡i
2 𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔 + σadd

2
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More general case

Where does this approximation come from?
• We use the fact that each pixel intensity (after dark frame subtraction) is an unbiased 

estimate of the radiant flux, weighted by exposure and gain:

E[𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]] = 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ g

If we cannot assume that our measurements are dominated by photon noise, we can 
approximate the variance as:

σ[1
𝑡𝑡i

𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦]]2 = 1
𝑡𝑡i

2 𝑡𝑡i ⋅ 𝛼𝛼 ⋅ Φ[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔2+ σadd
2 ≃ 1

𝑡𝑡i
2 𝐼𝐼𝑖𝑖[𝑥𝑥, 𝑦𝑦] ⋅ 𝑔𝑔 + σadd

2
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What about ISO?

• We need to separately account for 
read and ADC noise, as read noise 
is gain-dependent.

• We can optimize our exposure 
bracket by varying both shutter 
speed and ISO

Bonus part of Homework 2 (+ 50%!)
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Real capture results
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