Light transport probing
conventional photography

photo \quad transport\text{ matrix} \quad [\text{Ng et al. 03}]

degrees of freedom = m
primal-dual coding photography

\[p = \Pi \cdot T \]

“probing matrix”

degrees of freedom = \(m \times n \)
primal-dual coding photography

\[p = \Pi \cdot T \]

"probing matrix"

degrees of freedom = \(m \times n \)
primal-dual coding photography

\[p = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot T \]

“probing matrix”

degrees of freedom = \(m \times n \)
primal-dual coding photography

degrees of freedom = $m \times n$
\[p = \Pi \cdot T \]
\[\mathbf{p} = \Pi \circ \mathbf{T} \]

\[\Pi = \sum_{i=1}^{K} m_i l_i \]
\[p = \sum_{i=1}^{K} m_i \cdot T \]

\[\Pi = \sum_{i=1}^{K} m_i \cdot l_i \]
experimental setup

scene

beamsplitter

SLR camera

LCD mask

projector
\[
p = \sum_{i=1}^{K} m_i \cdot T \cdot l_i
\]

Step 1: Open shutter

Step 2: Illuminate scene with vector \(l_i\) (primal code)

Step 3: Attenuate image with vector \(m_i\) (dual code)

Step 4: Repeat \(K\) times

Step 5: Close shutter
\[p = \sum_{i=1}^{K} m_i \odot T \]

- **step 1**: Open shutter
- **step 2**: Illuminate scene with vector \(l_i \) (primal code)
- **step 3**: Attenuate image with vector \(m_i \) (dual code)
- **step 4**: Repeat \(K \) times
- **step 5**: Close shutter
\[
p = \sum_{i=1}^{K} m_i \cdot T_i
\]

Step 1: Open shutter

Step 2: Illuminate scene with vector \(l_i \) (primal code)

Step 3: Attenuate image with vector \(m_i \) (dual code)

Step 4: Repeat \(K \) times

Step 5: Close shutter
\[p = \sum_{i=1}^{K} m_i \circ T \]

- **Step 1**: Open shutter
- **Step 2**: Illuminate scene with vector \(l_i \) (primal code)
- **Step 3**: Attenuate image with vector \(m_i \) (dual code)
- **Step 4**: Repeat \(K \) times
- **Step 5**: Close shutter
\[p = \sum_{i=1}^{K} m_i \cdot T \]

Step 1: Open shutter
Step 2: Illuminate scene with vector \(l_i \) (primal code)
Step 3: Attenuate image with vector \(m_i \) (dual code)
Step 4: Repeat \(K \) times
Step 5: Close shutter
\[p = \sum_{i=1}^{K} m_i \odot T \]

Step 1: Open shutter

Step 2: Illuminate scene with vector \(l_i \) (primal code)

Step 3: Attenuate image with vector \(m_i \) (dual code)

Step 4: Repeat \(K \) times

Step 5: Close shutter
step 1: open shutter
step 2: illuminate scene with vector \mathbf{l}_i (primal code)
step 3: attenuate image with vector \mathbf{m}_i (dual code)
step 4: repeat K times
step 5: close shutter
step 1
open shutter

step 2
illuminate scene with vector 1_i (primal code)

step 3
attenuate image with vector m_i (dual code)

step 4
repeat K times

step 5
close shutter
step 1
open shutter

step 2
illuminate scene with vector l_i (primal code)

step 3
attenuate image with vector m_i (dual code)

step 4
repeat K times

step 5
close shutter
$$\sum_{i=1}^{K}$$

step 1
open shutter

step 2
illuminate scene with vector \mathbf{l}_i (primal code)

step 3
attenuate image with vector \mathbf{m}_i (dual code)

step 4
repeat K times

step 5
close shutter
step 1
open shutter

step 2
illuminate scene with vector $\mathbf{1}_i$ (primal code)

step 3
attenuate image with vector \mathbf{m}_i (dual code)

step 4
repeat K times

step 5
close shutter
stochastic diagonal estimator \[\text{[Bekas et al. 07]} \]

primal codes are Rademacher random vectors: \(l_i \) = random vector in \(\{ -1, +1 \}^m \)

dual codes derive from primal code: \(m_i = l_i \)

codes converge to identity probing matrix: \((I \ominus T)1 \approx \frac{1}{K} \sum_{i=1}^{K} m_i \ominus T l_i \)

variance of pixel \(n \) for \(K \) primal-dual codes \(= \frac{1}{K} \sum_{i=1, n \neq m}^{M} T_{nm}^2 \)

aperture correlation (microscopy) is a diagonal estimator \[\text{[Wilson et al. 96, Levoy et al. 04]} \]

stochastic estimator for general probing

dual codes for general probing matrix \(\Pi \): \(m_i = \Pi l_i \)
Direct-global separation using diagonal probing (co-axial case)
designing probing matrices

transport matrix
Coaxial configuration: use a beamsplitter to make projector and camera effectively collocated
Coaxial configuration: use a beamsplitter to make projector and camera effectively collocated.

Designing probing matrices
coaxial example: contrast-enhancing direct light

conventional photo

all light paths
coaxial example: contrast-enhancing direct light

conventional photo direct + ½ indirect

direct + 1/2 indirect light paths
coaxial example: contrast-enhancing direct light

- conventional photo
- direct + ½ indirect
- direct + ¼ indirect
- direct + 1/16 indirect

light paths
coaxial example: capturing short to long range paths

conventional

all light paths
coaxial example: capturing short to long range paths

conventional

indirect

indirect light paths
coaxial example: capturing short to long range paths

conventional

indirect

mid-range indirect

medium to long range indirect light paths
coaxial example: capturing short to long range paths

conventional

long-range indirect

indirect

mid-range indirect

long range indirect light paths
coaxial example: separating light transport effects
coaxial example: separating light transport effects

conventional

indirect

indirect light paths
coaxial example: separating light transport effects

conventional

indirect

direct + backscatter

direct + back-scatter light paths
coaxial example: separating light transport effects

indirect [Nayar et al. 06]

direct [Nayar et al. 06]

indirect

direct + backscatter
coaxial example: separating light transport effects

low-freq. indirect + high-freq. indirect

indirect + direct + backscatter
What if my camera and projector are not co-axial?