Introduction

http://graphics.cs.cmu.edu/courses/15-463
Overview of today’s lecture

• Teaching staff introductions
• What is computational photography?
• Course fast-forward and logistics
Teaching staff introductions
Instructor: Ioannis (Yannis) Gkioulekas

I won’t hold it against you if you mispronounce my last name

Originally from Greece

National Technical University of Athens (2004-09)

Harvard University (2009-17)

Carnegie Mellon University (2017-now)

My website: http://www.cs.cmu.edu/~igkioule
Building a scatterometer

camera for measuring parameters of scattering materials

image synthesized from measurements

mixed soap

glycerine soap

olive oil

curacao

whole milk
Seeing light in flight

camera for capturing video at 10^{15} frames per second
Seeing inside objects

camera
thick smoke cloud

what a regular camera sees
what our camera sees
a slice through the cloud
Seeing around walls

wall

hidden object

camera

what a regular camera sees

what depth our camera sees

wall

hidden object

camera

what a regular camera sees

what depth our camera sees
TA: Alankar Kotwal

• RI PhD student
• Advisor: Yannis
• Research interests: seeing light in flight, seeing through objects
• Office Smith 220, usually found in lab Newell-Simon B526
• Education:
 EE Undergrad + Masters: Indian Institute of Technology Bombay (July 2012-2017)
 Robotics PhD: Carnegie Mellon University (Aug 2017-now)

My website: alankarkotwal.github.io, email: aloo@cmu.edu
What is computational photography?
Analog photography

- Optics to focus light on an image plane
- Film to capture focused light (chemical process)
- Dark room for limited post-processing (chemical process)
Digital photography

optics to focus light on an image plane
digital sensor to capture focused light (electrical process)
on-board processor for post-processing (digital process)
Computational photography

- optics to focus light on an image plane
- digital sensor to capture focused light (electrical process)
- arbitrary computation between sensor and image
Overcome limitations of digital photography

Image enhancement and photographic look

camera output

image after stylistic tonemapping

[Bae et al., SIGGRAPH 2006]
Overcome limitations of digital photography

High dynamic range (HDR) imaging

One of your homeworks!

[example from www.dpreview.com] [Debevec and Malik, SIGGRAPH 1997]
Create realistic new imagery

Image blending and harmonization

[Sunkavalli et al., SIGGRAPH 2010]
Post-capture image compositing

Computational zoom

images captured at three zoom settings

post-capture synthesis of new zoom views

One of your homeworks!

[Badki et al., SIGGRAPH 2017]
Process image collections

Auto-stitching images into panoramas

[Brown and Lowe, IJCV 2007]
Process (very) large image collections

Using the Internet as your camera

reconstructing cities from Internet photos

time-lapse from Internet photos

[Agarwal et al., ICCV 2009] [Martin-Brualla et al., SIGGRAPH 2015]
Computational photography

- optics to focus light on an image plane
- digital sensor to capture focused light (electrical process)
- arbitrary computation between sensor and image
Computational photography

- generalized optics between scene and sensor
- digital sensor to capture focused light (electrical process)
- arbitrary computation between sensor and image

Sometimes people discriminate between computational photography and computational imaging. We use them interchangeably.
Capture more than 2D images

Lightfield cameras for plenoptic imaging

post-capture refocusing

One of your homeworks!

[Ng et al., SIGGRAPH 2005] [Lytro Inc.]
Capture more than 2D images

Lightfield cameras for plenoptic imaging

[Ng et al., SIGGRAPH 2005] [Lytro Inc.]
Measure 3D from a single 2D image

Coded aperture for single-image depth and refocusing

conventional vs coded lens

[Levin et al., SIGGRAPH 2007]
Measure 3D from a single 2D image

Coded aperture for single-image depth and refocusing

Image and Depth from a Conventional Camera with a Coded Aperture

Novel view synthesis

Anat Levin, Rob Fergus, Fredo Durand, William Freeman
MIT CSAIL

[Levin et al., SIGGRAPH 2007]
Remove lenses altogether

FlatCam: replacing lenses with masks

[Asif et al. 2015]
Computational photography

generalized optics between scene and sensor
digital sensor to capture focused light (electrical process)
arbitrary computation between sensor and image
Computational photography

generalized optics between scene and sensor

unconventional sensing and illumination

arbitrary computation between sensor and image
Measure depth

Time-of-flight sensors for real-time depth sensing
Measure light in flight

Streak camera for femtophotography

[Velten et al., SIGGRAPH 2013]
Measure light in flight

Streak camera for femtophotography

[Velten et al., SIGGRAPH 2013]
Measure photons selectively

Structured light for epipolar imaging

[O’Toole et al., SIGGRAPH 2015]
Measure photons selectively

Structured light for epipolar imaging

One of your homeworks!

[O’Toole et al., SIGGRAPH 2015]
Computational photography

- generalized optics between scene and sensor
- unconventional sensing and illumination
- arbitrary computation between sensor and image
Computational photography

- Generalized optics between scene and sensor
- Unconventional sensing and illumination
- Arbitrary computation between sensor and image

Joint design of optics, illumination, sensors, and computation
Putting it all together

Looking around corners

One of your homeworks!
Putting it all together

Looking through tissue

Opportunity

- Light travels deep inside the body
- It is non-ionizing (400-1100nm)
- Cheap to produce and control

Scattering Barrier

- Most pass-through photons are scattered
- Avg 10 scattering events per mm
- By 50mm, avg 500 scattering events!
- Large-scale inverse problem with low SNR

Practical imaging up to 50mm

- Wearables (1-10mm)
- Non-invasive point of care devices (10-50mm)

[NSF Expedition]
Computational photography

- Generalized optics between scene and sensor
- Unconventional sensing and illumination
- Arbitrary computation between sensor and image

Joint design of optics, illumination, sensors, and computation
Course fast-forward and logistics
Course fast-forward

Tentative syllabus at:

http://graphics.cs.cmu.edu/courses/15-463

- schedule and exact topics will most likely change during semester
- keep an eye out on the website for updates
Topics to be covered

Digital photography:

• optics and lenses
• color
• exposure
• aperture
• focus and depth of field
• image processing pipeline

[Photo from Gordon Wetzstein]
Topics to be covered

Image manipulation and merging:

• image filtering
• image compositing
• image blending
• image warping
• morphing
• high-performance image processing

[Banerjee et al., SIGGRAPH 2014]
Topics to be covered

Types of cameras:

- geometric camera models
- light-field cameras
- coded cameras
- lensless cameras
- compressive cameras
- hyperspectral cameras
Topics to be covered

Active illumination and sensing:

- time-of-flight sensors
- structured light
- computational light transport
- transient imaging
- non-line-of-sight imaging
- optical computing

[Sen et al., SIGGRAPH 2005]
Course logistics

• Course website:

 http://graphics.cs.cmu.edu/courses/15-463

• Piazza for discussion and announcements (sign up!):

 https://piazza.com/class/jl5ah6igcqp1ez

• Canvas for homework submissions:

 https://canvas.cmu.edu/courses/7047
Prerequisites

At least one of the following:

- A computer vision course at the level of 16-385 or 16-720.
- A computer graphics course at the level of 15-420.
- An image processing course at the level of 18-793.
Pop quiz

How many of you know or have heard of the following terms:

• Gaussian and box filtering.
• Convolution and Fourier transform.
• Aliasing and anti-aliasing.
• Laplacian pyramid.
• Poisson blending.
• Homogeneous coordinates.
• Homography.
• RANSAC.
• Epipolar geometry.
• XYZ space.
• Radiance and radiometry.
• Lambertian, diffuse, and specular reflectance.
• n-dot-l lighting.
• Monte Carlo rendering.
• Thin lens, prime lens, and zoom lens.
• Demosaicing.
• Refraction and diffraction.
Evaluation

• Seven homework assignments (70%):
 o programming and capturing your own photographs.
 o all programming will be in Matlab.
 o first assignment will serve as a gentle introduction to Matlab.
 o four late days, you can use them as you want.

• Final project (25%):
 o we will provide more information near the end of September.
 o 15-663, 15-862 require more substantive project.
 o if your ideas require imaging equipment, talk to us in advance.

• Class and Piazza participation (5%):
 o be around for lectures.
 o participate in Piazza discussions.
 o ask questions.
Do I need a camera?

- You will need to take your own photographs for assignments 1-7 (all of them):
 - Assignment 1: pinhole camera – you need a high-sensitivity camera.
 - Assignment 2: HDR – you need a camera with manual controls.
 - Assignment 3: computational zoom – you need a camera with a manual zoom lens.
 - Assignment 4: lightfields – you can use your phone camera.
 - Assignment 5: deblurring – you can (probably) use your phone camera.
 - Assignment 6: light transport – you need a camera with RAW support.
 - Assignment 7: corner cameras – you need a high-sensitivity camera.

- We have 20 Nikon D3300/3400 kits (camera + lens + tripod) for students.
 - If you have your own camera, please use that!
Contact information and office hours

• Feel free to email us about administrative questions.
 o please use [15463] in email title!

• Technical questions should be asked on Piazza.
 o we won’t answer technical questions through email.
 o you can post anonymously if you prefer.

• Office hours will be determined by poll.
 o feel free to email Yannis about additional office hours.
 o you can also just drop by Yannis’ office (Smith Hall (EDSH) Rm 225).
Please take the course survey (posted on Piazza) before the next lecture!