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Course announcements

Homework 5 is due today.
- Any questions?

Remember to vote on homework 3 competition.
Homework 6 will be posted tonight.

Project proposals due on Monday 10/27.
- See details here: http://graphics.cs.cmu.edu/courses/15-463/final project.html



http://graphics.cs.cmu.edu/courses/15-463/final_project.html

Overview of today’s lecture

Pinholes and lenses.
Pinhole camera.
Accidental pinholes.
Camera matrix.
Perspective.

Other camera models.

Pose estimation.



Slide credits

Most of these slides were adapted from:
e Kris Kitani (15-463, Fall 2016).
Some slides inspired from:

 Fredo Durand (MIT).



Pinhole and lens cameras



The lens camera




The pinhole camera




The pinhole camera

Central rays propagate in the same way for both models!



Describing both lens and pinhole cameras

We can derive properties and descriptions
that hold for both camera models if:

* We use only central rays.

* We assume the lens camera is in focus.




Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

focal length f
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Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect

Vo AL/ LS

>I<
object distance D focal length f

< _ >
focus distance D’
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Describing both lens and pinhole cameras

We can derive properties and descriptions
that hold for both camera models if:

We use only central rays.

We assume the lens camera is in focus.
We assume that the focus distance of
the lens camera is equal to the focal
length of the pinhole camera.

In this lecture, we use it to refer to the
aperture-sensor distance, as in the
pinhole camera case.
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Remember: focal length f refers to different
things for lens and pinhole cameras.



Camera matrix
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The camera as a coordinate transformation

3D object -
3D to 2D transform
(camera)
A camera is a mapping from:

the 3D world

to: 2D image . € . 2D image

s

a 2D image
2D to 2D transform
(image warping)



The camera as a coordinate transformation

homogeneous coordinates

A camera is a mapping from:
the 3D world x — ‘ X
to: 2D image camera 3D world

point matrix point
a 2D image

What are the dimensions of each variable?



Reminder: 2D homogeneous coordinates

heterogeneous  homogeneous
coordinates coordinates

X
[x] p— add a 1 here
y { —

* Represent 2D point with a 3D vector



Reminder: 2D homogeneous coordinates

heterogeneous  homogeneous

coordinates coordinates
X ax
X def
= |V — ay
Y
1 a

 Represent 2D point with a 3D vector
e 3D vectors are only defined up to scale



Reminder: 2D homogeneous coordinates

Conversion: Special points:
* heterogeneous - homogeneous e point at infinity
X
[y] =Y Y
1] 0
* homogeneous — heterogeneous e undefined
* x/z 0
)= | /z] )
Z Y 0
Scale invariance:
yry=aly
| Z | Z




Reminder: 2D projective geometry

ax
heterogeneous
: a
coorcilmates Y y 1 homogeneous -7 63]
Nx . coordinates
y x _1_

reference plane

_- /7 =
reference plane

-~y
~—y
". o

Through the scale invariance property, homogeneous coordinates map all points on a line passing
through the origin to the point where this line intersects the reference plane.



Reminder: 3D homogeneous coordinates

heterogeneous  homogeneous
coordinates coordinates

¥ X aXx
vl = Y. |aY
Z|l laZ
/
1 a

 Represent 3D point with a 4D vector
e 4D vectors are only defined up to scale



Reminder: notation

heterogeneous coordinates homogeneous coordinates
o
2D A X X =
coordinates 2D vector X = y 3D vector X = ::)l/

3D
coordinates

X
3Dvector X = |Y AD vector X =
/




The camera as a coordinate transformation

homogeneous coordinates

A camera is a mapping from:
the 3D world x — ‘ X
to: 2D image camera 3D world

point matrix point
a 2D image

What does this transformation look like?



real-world
object

The pinhole camera

image plane

camera i

center € >
(pinhole) ~ focal length f =1
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real-world
object

The (rearranged) pinhole camera

image plane

camera
center
(pinhole)

<€ >
focal lengthf=1
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The (rearranged) pinhole camera

image
Y% plane

.l

VA
principal axis

camera
center
(pinhole)

Where did we see a similar picture?
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The (rearranged) pinhole camera

image
Y% plane

.l

VA
principal axis

camera
center
(pinhole)

What is the equation for image coordinate ¥ in terms of X?
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The 2D view of the (rearranged) pinhole camera

image plane

What is the equation for image coordinate ¥ in terms of X?



The 2D view of the (rearranged) pinhole camera

image plane

X/Z
Y/Z

Using similar triangles: X =

S <

—)%:[



The (rearranged) pinhole camera

image
Y% plane

camera
center
(pinhole)

What is the camera matrix P for a pinhole camera?

x = PX

VA
principal axis

.l
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The pinhole camera matrix

Camera projection relationship expressed:

* in heterogeneous coordinates * in homogeneous coordinates
o X
X
~ X/Z Y
X = - X = X = —> X =7?
Y [Y 17 7
/| 1




The pinhole camera matrix

Camera projection relationship expressed:

* in heterogeneous coordinates * in homogeneous coordinates
o X | o
X X
—~ X/Z
X=)’%§=[/ X=)/%x=)’
Y/Z 7
/| 1 A

General camera model in homogeneous coordinates:
x = PX

What does the pinhole camera projection look like?

p=|




The pinhole camera matrix

Camera projection relationship expressed:

* in heterogeneous coordinates * in homogeneous coordinates
o X | o
1 L sz y X
X = Y| > x = X = > x=1Y
Y/Z 7
A A
1]
General camera model in homogeneous coordinates:
x = PX
What does the pinhole camera projection look like?
o . 1 0 0 O]
e perspective _
projection matrix P=10 1 0 0
0 0 1 O




The pinhole camera matrix

Camera projection relationship expressed:

* in heterogeneous coordinates

X =

General camera model in homogeneous coordinates:

-

Y

VA

—>35=[

X/Z
Y/Z

* in homogeneous coordinates

X =

x = PX

What does the pinhole camera projection look like?

The perspective
projection matrix

P =

1 0 O

0 1 O
0 0 1

— N X

0
0
0.

Ve
- Xx=|Y

A
= [1]0]

alternative way to
write the same thing



More general case: arbitrary focal length

image
Y% plane

ol

VA
principal axis

camera
center
(pinhole)

What is the camera matrix P for a pinhole camera?

x = PX
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More general (2D) case: arbitrary focal length

image plane

What is the equation for image coordinate ¥ in terms of X?



More general (2D) case: arbitrary focal length

image plane

X
o R ~_ |[fX/Z
Using similar triangles: X = ; —> X = fY/Z




The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

* in heterogeneous coordinates * in homogeneous coordinates
o X | e
X fX
o _[fX/zZ _|r _
A 1 AN

General camera model in homogeneous coordinates:
x = PX

What does the pinhole camera projection look like?

P =




The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

* in heterogeneous coordinates * in homogeneous coordinates
. X e
S B 72,97/ Y X
fY/z Z
A A
1]
General camera model in homogeneous coordinates:
x = PX
What does the pinhole camera projection look like?

f 0 0 O
P=|0 F 0 0
0 0 1 0




The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

* in heterogeneous coordinates * in homogeneous coordinates
o X | e
X fX
o _[fX/zZ _|r _
A 1 AN

General camera model in homogeneous coordinates:
x = PX
What does the pinhole camera projection look like?

combination of perspective
projection and a 2D scaling
transformation

Equivalently we P =
can write:

O O R
O R O
—_ o O
O QO Q

o O
O~ O
= O O




Generalizations: coordinate systems
y vy image plane

- X
3D point

Z

image camera principal axis
plane center
. (pinhole)
\NN 7/
~~~~ ,/
2D camera coordinate system 3D camera coordinate system

A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
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Generalizations: coordinate systems

Ye v Ve image plane

- X

X, 3D point

. Z,
image camera principal axis

plane center

. . Yw
image coordinate system (pinhole) | X
V\\ w
el 0, Zyy

\\

-~
~

—~—

—

-~
— ’f
N o - -

world coordinate system

2D camera coordinate system 3D camera coordinate system

A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
 These coordinate systems may be different from the coordinate systems of our application.



Generalization: image coordinate system

In particular, the camera origin and image origin may be different.
* (Canyou think of a case when this happens?

image

plane coordinate system

image coordinate system

How does the camera matrix change?

f 0 011 0 0 O
P=|o F ollo 1 0 O
o o 1llo 0o 1 o.
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Generalization: image coordinate system

In particular, the camera origin and image origin may be different.
* (Canyou think of a case when this happens?

image

plane coordinate system

shift vector

image coordinate system transforming camera
. origin to image origin
How does the camera matrix change? S 8 S

f 0 pft 0 0 O
P=|0 f py,q(0 1 0 O
0o o0 1flo 0o 1 0




Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 pefL 0 0]0
P=|0 f py[10 1 0|0
0o o 1f/lo 0 110

What does each part of the matrix represent?



Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 pel[l 0O 00
P=|0 f py[10 1 0|0
O O 1 (L0 0 110.

(homogeneous) transformation (homogeneous) perspective projection
from 2D to 2D, accounting for non- from 3D to 2D, assuming image plane at
unit focal length and origin shift z =1 and shared camera/image origin

f 0 px

Also written as: P=]|0 f Py [I ‘O]
0 0 1
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Generalizations: coordinate systems

Ye v Ve image plane

- X

X, 3D point

. Z,
image camera principal axis

plane center

. . Yw
image coordinate system (pinhole) | X
V\\ w
el 0, Zyy

\\

-~
~

—~—

—

-~
— ’f
N o - -

world coordinate system

2D camera coordinate system 3D camera coordinate system

A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
 These coordinate systems may be different from the coordinate systems of our application.



World-to-camera coordinate system transformation

v Ve 3D camera

coordinate system . X 3D point in world
y W' coordinate system
camera 2

center ~
(pinhole)

C

> ZC

O,
[
/ principal axis

How do we express X in the 3D camera coordinate system?

Xy
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World-to-camera coordinate system transformation

v Ve 3D camera

coordinate system 3D point in world

coordinate system

- X,

camera
center ~
: Cc
(pinhole) S ~ Zc
~ e principal axis
¢ y
N s w
coordinates of camera @ e %
R T w
centerinworld %~ e
coordinate system 0 ) w

world coordinate system

How do we express X in the 3D camera coordinate system?
X, —C

translate
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World-to-camera coordinate system transformation

v Ve 3D camera
coordinate system

[ ]
...
L4
*

3D point in world
coordinate system

~, rotation to align
5 axes of two
coordinate systems

- X,

camera
center ~
: Cc
(pinhole) S ~ Zc
~ e principal axis
¢ y
N s w
coordinates of camera @ e %
R T w
centerinworld %~ e
coordinate system 0 ) w

world coordinate system

How do we express X in the 3D camera coordinate system?
R- (X, —C)

rotate translate



Modeling the 3D coordinate system transformation

In heterogeneous coordinates, we have:
X.=R- (X, —C)

How do we write this transformation in homogeneous coordinates?



Modeling the 3D coordinate system transformation

In heterogeneous coordinates, we have:
X.=R- (X, —C)

In homogeneous coordinates, we have:

R —RC
Xe = [o 1C] Aw



Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

f 0 b
x=PX: =10 f Py [I‘O]Xc
0o 0 1

We also just derived:

R —RC
Xe = [o 1C] Aw



Putting it all together

We can write everything into a single projection:

x = PX,,

The camera matrix now looks like:

f 0 py .
R —RC
P=0fpy[1\0]lo 1]
0 0 1
intrinsic parameters (3 x 3): perspective projection (3 x 4): extrinsic parameters (4 x 4):
correspond to camera maps 3D to 2D points correspond to camera
internals (2D image-to-image (camera-to-image externals (3D world-to-camera

transformation) transformation) transformation)
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Generalizations: coordinate systems

Ye v Ve image plane

- X

X, 3D point

. Z,
image camera principal axis

plane center

. . Yw
image coordinate system (pinhole) | X
V\\ w
el 0, Zyy

\\

-~
~

—~—

—

-~
— ’f
N o - -

world coordinate system

2D camera coordinate system 3D camera coordinate system

A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
 These coordinate systems may be different from the coordinate systems of our application.



Putting it all together

We can write everything into a single projection:

x = PX,,

The camera matrix now looks like:

P =

intrinsic parameters (3 x 3):
correspond to camera
internals (2D image-to-image
transformation)

f 0 py N It is common to combine
0 f Py IR ‘ —RC] the perspective projection
0 0O 1 and extrinsics in one matrix.

\ extrinsic parameters (3 x 4):
correspond to camera externals (3D
world-to-camera transformation)
and perspective projection



The pinhole camera matrix

More compactly, we can write the pinhole camera matrix as:

P = K[R | t]
where
f 0 Dy rmn Ty T3 B tl
K=[0 f p| R=|n r 1| t=-RC=|L
0 0 1 rm Tg Tg9 L3
2D Euclidean transform 3D rotation 3D translation

intrinsic parameters extrinsic parameters



More general pinhole camera matrices

The following is the standard pinhole camera matrix we saw.

f 0 px- 1 0 0| 0] R t
P=|0 f p 0 1 0|0 0 1
0o 0 1] O 0 1710

How many degrees of freedom does this matrix have?



More general pinhole camera matrices

The following is the standard pinhole camera matrix we saw.

f 0 px- 1 0 0| 0] R t
P=|0 f p 0 1 0|0 0 1
0o 0 1] O 0 1710

How many degrees of freedom does this matrix have?
9 degrees of freedom (3 for intrinsics, 3 for rotation, 3 for translation).



More general pinhole camera matrices

The following is the standard pinhole camera matrix we saw.

f 0 py 1 0 0| 0] R t
P=|0 f p 0 1 0|0 0 1
0o 0 1) O 0 1710

How many degrees of freedom does this matrix have?
9 degrees of freedom (3 for intrinsics, 3 for rotation, 3 for translation).

We can get more general pinhole cameras with more degrees of freedom by
generalizing the intrinsics matrix, while leaving everything else the same..



More general pinhole camera matrices

CCD camera: pixels may not be square.

a, 0 p.Jr1 0 0 0 p +
P=anpy010001
0o 0 1flo o 11]0.

How many degrees of freedom does this matrix have?



More general pinhole camera matrices

CCD camera: pixels may not be square.

a, 0 p.Jr1 0 0 0 p +
P=anpy010001
0o 0 1flo o 11]0.

How many degrees of freedom does this matrix have?
10 degrees of freedom (4 for intrinsics, 3 for rotation, 3 for translation).



More general pinhole camera matrices

Finite projective camera: sensor may be skewed.

Ay S DPx1[1 0 0|0 R t
P=|0 Ay DPyl|0O 1 010 0 1
0 0 1110 0 110

How many degrees of freedom does this matrix have?



More general pinhole camera matrices

Finite projective camera: sensor may be skewed.

Ay S DPx1[1 0 0|0 R t
P=|0 Ay DPyl|0O 1 010 0 1
0 0 1110 0 110

How many degrees of freedom does this matrix have?
11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a perspective projection camera with more degrees of freedom?



More general pinhole camera matrices

The finite projective
camera is the most general
camera implementing
perspective projection.

Finite projective camera: sensor may be skewed.

Ay S DPx]l[1 0 0| O]
P=0aypy0100§ﬂ
o o 1llo o 10

How many degrees of freedom does this matrix have?
11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a perspective projection camera with more degrees of freedom?
* No, as the entire camera matrix P has 12 elements (3x4) and is defined up to scale.



More general pinhole camera matrices

The finite projective
camera is the most general
camera implementing
perspective projection.

Finite projective camera: sensor may be skewed.

Ay S DPxl[1 O O | O]
P=0aypy0100§ﬂ
o o 1llo o 1]o0.

How many degrees of freedom does this matrix have?
11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a perspective projection camera with more degrees of freedom?
* No, as the entire camera matrix P has 12 elements (3x4) and is defined up to scale.



Perspective distortion



Finite projective camera

Let’s ignore intrinsics and extrinsics for now.

1 0 0| O]
P = 0O 1 00
0 0 110

What is the effect of the perspective projection matrix?



The (rearranged) pinhole camera

image
Y% plane

.l

VA
principal axis

camera
center
(pinhole)

What is the equation for image coordinate ¥ in terms of X?
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The 2D view of the (rearranged) pinhole camera

image plane

X/Z
Y/Z

Using similar triangles: X =

S <

—)%:[



The 2D view of the (rearranged) pinhole camera

image plane

Perspective
distortion:
magnification
changes with

Using similar triangles: X =

S <

} dep\t{h
L [X/'Z'
=lvz



Forced perspective
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The Ames room illusion

WAW.PUZZLI HEF“BE.EE.““
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The Ames room illusion

Actual position of

Ferson A ———__ |

Apparent position
of person & —

v \"“"‘\Hﬁ Actual and
! apparent position
o of person B

Apparent /

shape of room

!

iewRg
peephole
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The arrow illusion
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s there a camera without perspective distortion?



Other camera models



real-world
object

What if...

focal
length f

77

... we continue increasing Z
and f while maintaining
same magnification?

f — o and 7= constant



Weak-perspective
camera: camera is far
from object and has
large focal length

Perspective camera: -« 4
camerais closeto =
object and has
small focal length

perspective weak perspective

increasing focal length -

increasing distance from camera




Different cameras

l.l’

|

AR
VR 1L

g
—
—
—
e
—
—
—
-
—
—
o
| ——
T

i} XTREN

| I‘q
1 ﬂili‘!";“i Py
|

Trad . LEAALAML Yidad o biALARR

k|
-
-
-
L

perspective camera weak perspective camera



Perspective versus weak-perspective camera
Image
NS/ plane

X
Y
VA

Zo
Y-
ive =~ X/Z
pers.pec.tlve %=lylsw= /
projection P Y/Z




Perspective versus weak-perspective camera

image intermediate
Y plane plane
parallel

N X
orojection X =1|Y
i A

weak-perspective
projection

X =

S =%
l
=
1
~




Perspective versus weak-perspective camera

image intermediate
plane plane

parallel

weak-perspective

projection

X =

N =
)
&=
|l

N X
orojection X =1|Y
i A




Perspective versus weak-perspective camera

image intermediate
Y plane plane
parallel

N X
orojection X =1|Y
i A

magnification
independent of
. depth, depends
Z onlyon Z,

\

~ X/!ZO-
“X= vz,

weak-perspective
projection

X =

S =%




Comparing camera projection matrices

Let’s ignore intrinsics and extrinscis for now.

* The perspective projection matrix can be written as:

1 0 0 O]
P=|0 1 0 O
0 0 1 O

 What would the weak-perspective projection matrix look like?



Comparing camera projection matrices

Let’s ignore intrinsics and extrinscis for now.

* The perspective projection matrix can be written as:

1 0 0 O]
P=|0 1 0 O
0 0 1 O

* The weak-perspective projection matrix can be written as:
0
0
Zo

~

|l
O O
O R O
O oo




Comparing camera matrices

Let’s now incorporate intrinsics and extrinsics.

* The finite projective camera matrix can be written as:

1 0 0 0
P=KOlOO§ﬂ
00 1 o0

 What would the matrix of the so-called affine camera look like?



Comparing camera matrices

Let’s now incorporate intrinsics and extrinsics.

* The finite projective camera matrix can be written as:

1 0 0 0 t
P=Ko10001]\

0 0 1 0 Change only the projection
matrix, and use the exact
same matrices for intrinsics
and extrinsics.

o il <

* The affine camera matrix can be written as:
0
P=K 0

O = O
o O O

OO

Zo



Special case: orthographic projection

Let’s now incorporate intrinsics and extrinsics.

* The finite projective camera matrix can be written as:

1.0 0 0], |,
P=Ko10001]\
00 1 0

Change only the projection
matrix, and use the exact
same matrices for intrinsics
and extrinsics.

* The affine camera matrix can be written as:

setting Z, =17

What's the effect of 10 00 R t
at’s the effect o Pp=klo 1 o O[O 1]/
0o 0 0 1




Perspective versus weak-perspective camera

image intermediate
Y plane plane
parallel

N X
orojection X =1|Y
i A

magnification
independent of
. depth, depends
Z onlyon Z,

\

~ X/!ZO-
“X= vz,

weak-perspective
projection

X =

S =%




Perspective versus orthographic camera

image and
Y intermediate plane
! X
Z I parallel projection X=|Y
.......................................................................................................... o
| Z
| %= [* Y
X = 5 L
I y magnification
I equalto 1
I (real-life size)
z=1
4
S |

weak-perspective
projection

X =

S =%

-z



When can we assume a weak-perspective camera?



When can we assume a weak-perspective camera?

1. When the scene (or parts of it) is very far away.

Weak-perspective projection applies to the mountains.
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When can we assume a weak-perspective camera?

2. When we use a telecentric lens.

| |
&
| |
| |
Place a pinhole at | |
| |
focal length, so | | What does Z,
that only rays [T RO OO IR K i . .
. equal in this case?
parallel to primary 1 |
ray pass through. : :
| |
'
'¢ >l > |
object distance S focal length f :
<€ > |

sensor distance S’



When can we assume a weak-perspective camera?

2. When we use a telecentric lens.

| |
T P Zo=T
Place a pinhole at : :
focal length, so ' '
that only rays : ----------------------------------------------------------------- :
parallel to primary 1 I remember that focal
ray pass through. : : length f refers to
I  different things in
\ g pinhole and lens
'¢ >l > | cameras
object distance S focal length f :
<€ > |

sensor distance S’



Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

| |
&
| |
| |
| |
| |
| |
AV eSS’ U i
| |
| |
| |
| |
'
'¢ >l > |
object distance S focal length f :
<€ >

sensor distance S’
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Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

|
&

object distance S

)I<

<€

>
focal length f

sensor distance S’

We set the sensor
distance as:

§' =2f

in order to achieve
unit magnification.



Many other types of cameras

¥

(a) 3D view

A\

(b) orthography

(e) perspective

<

A

—

(c) scaled orthography

£

&

(f) object-centered

7%

I\

(d) para-perspective
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Geometric camera calibration



Geometric camera calibration

Given a set of matched points

{Xi, @i}

point in 3D point in the
space image

and camera model

z = f(X;p) =PX

iacti Camera
projection parameters )
model matrix

Find the (pose) estimate of

We'll use a perspective camera
model for pose estimation



Mapping between 3D point and image points

<

P1r P2 P33 P4
Ps DPe Pr D8

D9 Pio Piu1 P12 |

What are the unknowns?

X

Y
Z
1
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Mapping between 3D point and image points

- - - - X
&L P1 P2 P33 P4 v
Yy | = | P55 Pe Pt D8 7

2 | P9 P10 P11 P12 | 1

i _—pir—- - -
y |=| —p— || X

2] L—mps— L |

Heterogeneous coordinates

,_piX P X

(non-linear relation between coordinates)

How can we make these relations linear?
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How can we make these relations linear?

Make them linear with algebraic manipulation...
py X —p3 Xy' =0
pl X —p; Xz’ =0

Now we can setup a system of linear equations with
multiple point correspondences
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103
ps X —p3 Xy =0

p{ X —p3 Xz' =0

How do we proceed?



In matrix form ...

How do we proceed?

D,
Do
D3
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In matrix form ...

For N points ...

0 —-zX'
.XT _yfxT
0 —z'X,
X, —-yX{
| T
OT —:I:’X_ﬂy
Xy —yXy

D,
Do
Ds3

D,
Do
D3

105

=0

How do we solve
this system?
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Solve for camera matrix by

& = argmin ||Az||? subject to ||z]|* =1

£
" X! 0 —2'X] ]
T T — -
0 X, -vX, P
A=| . I T=| P2
Xy 0 —2'Xy | P3|
L 0 Xy —yXpy
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Solve for camera matrix by

Eat

& = argmin ||Az||? subject to ||z]|* =1

£
" X! 0 —2'X] ]
T T — -
A= | . I T=| P2
Xy 0 —2'Xy | P3|
0 X5 —YXy

Solution x is the column of V -
corresponding to smallest singular A=0UXXV

value of
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Solve for camera matrix by

& = argmin ||Az||? subject to ||z]|* =1

£
" X! 0 —2'X] ]
T T — -
A= . E T=| P
Xy 0 —2'Xy | P3|
0 X5 —YXy

Equivalently, solution x is the
Eigenvector corresponding to ATA
smallest Eigenvalue of



Now we have:

P11 P2
P=| p5s Dpes
P9 P10

Are we done?

P3
P7
P11

P4
Psg
P12
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P1 P2 P3 P4
Almost there ... P=|ps ps pr pPs

P9 Pio P11 P12

How do you get the intrinsic and extrinsic
parameters from the projection matrix?
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Decomposition of the Camera Matrix

P =

P1
P5
P9

P2
Pe
P10

P3
Pr
P11

P4
P8
P12
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Decomposition of the Camera Matrix

P =

P11 D2
P5s D6
P9 P10

P = K[R[t]

P3
Pr
P11

P4
P8
P12
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Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps ps D7 | D8
P9 Pio P11 | P12

P = K[R|t]
— K[R| — R]
— [M]| — Mc]




Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps pe p7r | Ds
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= [M| — Mc]

Find the camera center C

What is the projection of the
camera center?

~

s

Find intrinsic K and rotation R




Decomposition of the Camera Matrix

_Pl P2 P3| P4 ]
P=|ps pe p7r | Ds

P9 Pio P11 | P12 _

P = K[R|t]

= K[R| — Rc]

= [M| — Mc]

Find the camera center C

Pc=0

How do we compute the
camera center from this?

~

s

Find intrinsic K and rotation R
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Decomposition of the

c is the Eigenvector corresponding to

Camera Matrix

P1 P2 P3| P4
P=|ps pe Dpr | ps
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= [M]| — Mc]
Find the camera center C 1 r Find intrinsic K and rotation R
Pc=0
SVD of P!

smallest Eigenvalue
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Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps pe Dpr | ps
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= [M]| — Mc]
Find the camera center C 1 r Find intrinsic K and rotation R
Pc=0 M — KR
SVD of P!

c is the Eigenvector corresponding to
smallest Eigenvalue

Any useful properties of K
and R we can use?
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Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps pe p7r | Ds
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= [M| — Mc]|
Find the camera center C Find intrinsic K and rotation R
Pc=0
M = KR
SVD of P! ]- ;\
c is the Eigenvector corresponding to right upper  orthogonal

smallest Eigenvalue

triangle

118

How do we find K
and R?



Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps pe Dpr | ps
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= [M]| — Mc]
Find the camera center C 1 r Find intrinsic K and rotation R
Pc=0 M — KR
SVD of P!

c is the Eigenvector corresponding to
smallest Eigenvalue

QR decomposition
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Geometric camera calibration

Given a set of matched points
, . Where do we get these
{X;, x; }
y

matched points from?

point in 3D point in the
space image

and camera model

z = f(X;p) =PX

iati Camera
projection parameters i

Find the (pose) estimate of

P We'll use a perspective camera
model for pose estimation



121

Calibration using a reference object

Place a known object in the scene:
* identify correspondences between image and scene
* compute mapping from scene to image

Issues:
 must know geometry very accurately
 must know 3D->2D correspondence
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Geometric camera calibration

Advantages:
* Verysimple to formulate.
* Analytical solution.

Disadvantages:
 Doesn’t model radial distortion.
* Hard to impose constraints (e.g., known f).
 Doesn’t minimize the correct error function.

For these reasons, nonlinear methods are preferred
e Define error function E between projected 3D points and image positions
— E is nonlinear function of intrinsics, extrinsics, radial distortion

e Minimize E using nonlinear optimization techniques
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Minimizing reprojection error

Pi
" /
,/A.
P]
b
<
2 >
( ml-l’i] [ mz'P,-]
u, — +| v, — x
|s this equivalent to what ms - F, my -

we were doing previously?
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Ra_dial distortion

What causes this distortion?

A

|t

am T

no distortion barrel distortion pincushion distortion




Radial distortion model

Ideal: Distorted:
b ’ x n 1 b
X = — X =—X
< % /1=1+k1r2-|—k2r4-|--.-
I _ ’
y — v y!l__y

z A
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Minimizing reprojection error with radial distortion

2 2
1 myq Pl 1 mo - Pl -
Add distortions to U; + v, — =

reprojection error:
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Correcting radial distortion

before after
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Alternative: Multi-plane calibration

L imanel [1-4] MR ET|| L 1man-- 11-4] EEE Qwaoe -4 ERE|| D inao-d 1-4] ERE ] L inaoes 14 9 E

Advantages:
e Only requires a plane
e Don’t have to know positions/orientations
e Great code available online!

— Matlab version: http://www.vision.caltech.edu/bouguetj/calib doc/index.html

— Also available on OpenCV.

Disadvantage: Need to solve non-linear optimization problem.


http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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Step-by-step demonstration

Calibration images
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Step-by-step demonstration

Click on the fouwr extreme comers of the rectanguiar pattam (first comer = ongin). _ Image | Click on the four extrema comers of the rectangular pattem (irs? comer = ongin) . Image 1

Click on the four extreme corners of the rectangular pattern...

50
100

150

Chck on the four extreme comers of the rectanguiar pattem (first comer = ongin). . Image 1

100 200 300 400 500 600
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Step-by-step demonstration

Extracted corners

300 400 500

Xc (in camera frame)

100

(BLiel) BIBWIED UI) 2

600

200
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Extrinsic parameters
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Step-by-step demonstration

Extrinsic parameters
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yworld
Switch to camera-centered view I
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What does it mean to “calibrate a camera”?
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What does it mean to “calibrate a camera”?

Many different ways to calibrate a camera:

« Radiometric calibration. <€ lecture 5-ish
* Color calibration. < lecture 7-ish
* Geometric calibration. <€ lecture 19 (this lecture)
* Noise calibration. <€ lecture 6-ish

* Lens (or aberration) calibration. <€ lecture 12-ish, (maybe) later lecture
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