
Homework assignment 2
15-463, 15-663, 15-862 Computational Photography, Fall 2023

Carnegie Mellon University

Due Friday, Sep. 29, at 11:59pm ET

The purpose of this assignment is to explore high dynamic range (HDR) imaging, noise calibration, color
calibration, and tonemapping. As we discussed in class, HDR imaging can be used to create floating-point
precision images that linearly map to scene radiance values. Noise calibration is the process of figuring out
your camera’s noise characteristics, and using them to improve your HDR images. Color calibration ensures
that the colors you see in the image match some groundtruth RGB values. Tonemapping algorithms compress
the dynamic range of HDR images to an 8-bit range, so that they can be shown on a display. To get full
credit, you will need to apply these steps to both an exposure stack provided by us, and one that you capture
yourselves. Finally, for extra credit, you can investigate HDR imaging using exposure brackets where you
vary both the shutter speed and ISO.

Throughout the assignment, we refer to a number of key papers that we also discussed in class. While the
assignment and class slides describe most of the steps you need to perform, we highly recommend that you
read the associated papers.

Towards the end of this document, you will find a “Deliverables” section describing what to submit.
Throughout the writeup, we also mark in red questions you should answer in your report. Lastly, there is a
“Hints and Information” section at the end of this document that is likely to help. We strongly recommend
that you read that section in full before you start to work on the assignment. The Python packages required
for this assignment are numpy, skimage, matplotlib, and cv2 (OpenCV, to read and write HDR files), and
you can use the functions provided in the ./src/cp hw2.py file of the homework ZIP archive.

1. HDR imaging (60 points)

For this and the following two parts (color correction, and tonemapping), you will use an exposure stack
we captured in Yannis’ office using one of the class cameras (Nikon D3300). The image files are in the
./data/door stack directory of the homework ZIP archive. Figure 1 shows two exposures, as well as a
(tonemapped) HDR composite.

While not particularly beautiful, the scene has a number of features that make it a good example for
HDR: First, there are two areas with very different illumination and dynamic range that no single exposure
can simultaneously capture correctly. Second, both areas include colorful items (Toy Story poster in the
background of the bright area, Plus-Plus pieces, SIGGRAPH mugs, and book covers in the dark area) that
you can use to evaluate the color rendition of your results. Third, the in-focus area has high-detail features
(lettering on the book covers and lens/camera markings) that you can use to evaluate the resolution of your
results. Finally, the scene includes a color checker than you can use for color calibration in bonus question.

Figure 1: From left to right: Two LDR exposures, and an HDR composite after photographic tonemapping.

You will notice that in, the data folder, there are two sets of images, RAW (.NEF) and rendered (.JPG).
As we discussed in class, the procedure for merging many low dynamic range (LDR) exposures into an HDR

1



image is different for RAW and rendered images. To appreciate the difference, in this assignment you will
create HDR images from both sets of images.

For reference, we captured both exposure stacks with fixed aperture and ISO, and with shutter speeds
equal to 1

2048 · 2k−1, where k ∈ {1, . . . , 16} is the index in an image’s file name.

Develop RAW images (5 points). Use dcraw to convert the RAW .NEF images into linear 16-bit
.TIFF images. For this, you should direct dcraw to do white balancing using the camera’s profile, do
demosaicing using high-quality interpolation, and use sRGB as the output color space. Read through dcraw’s
documentation to work out what the correct flags for this conversion are. Report the flags you use.

Linearize rendered images (25 points). Unlike the RAW images, which are linear, the rendered images
are non-linear. As we saw in class, before you can merge them into an HDR image, you first need to perform
radiometric calibration to undo this non-linearity. You will do this using the method by Debevec and Malik [1].
We describe how this works below, but we strongly encourage you to read at least Section 2.1 of this paper,
which explains the method.

An intensity Ikij ∈ {0, . . . , 255} at pixel {i, j} of image k relates to some unknown scene flux value Lij as

Ikij = f
(
tkLij

)
, (1)

where tk is the (known) exposure of image k and f is the unknown non-linearity applied by the camera. If
we knew f−1, we could convert Ikij back to linear measurements.

Instead of f−1, you will recover the function g ≡ log
(
f−1

)
that maps pixel values Ikij to g

(
Ikij

)
=

log (Lij) + log
(
tk
)
. This is motivated by the fact that the human visual systems responds to logarithmic,

instead of linear, intensity. As the domain of g is the set of discrete intensity values {0, . . . , 255}, g is
essentially just a 256-dimensional vector.

Solving for these 256 values may seem impossible, because we know neither g nor Lij . However, if the
imaged scene remains static while capturing the exposure stack, we can take advantage of the fact that the
value Lij is constant across all LDR images. Then, we can recover g by solving the following least-squares
optimization problem,

min
g,Lij

∑
i,j

∑
k

{
w
(
Ikij/255

) [
g
(
Ikij

)
− log (Lij)− log

(
tk
)]}2

+ λ

255∑
z=0

{
w (z/255)∇2g (z)

}2
. (2)

The first term in Equation (2) is the data term, and encourages values g and Lij to be such that intensities
in linear images would scale linearly with exposure time. As we discussed in class, the weights w have to do
with the fact that the linear estimates should rely more on well-exposed pixels than on under-exposed or
over-exposed pixels. See later in Problem 1 (“Weighting schemes”) about what weights exactly you should
use. Note that the input to w is divided by 255, because the definitions of the weights assume that the input
intensities are in the range [0, 1], whereas the ones you use here are in the range {0, . . . , 255}.

The second term in Equation (2) is a regularization term, and encourages g to be smooth by penalizing
solutions g that have large second-derivative magnitudes. Given that g is discrete, the second derivative can
be approximated using a Laplacian filter, that is, ∇2g (z) = g (z + 1)− 2g (z) + g (z − 1). The parameter λ
controls how strongly this regularization affects the final result; it is a hyperparameter that you will need to
experiment with. Note that, when using the photon-optimal weights wphoton that require knowing exposure
time, you can set the weights of the regularization term only to a constant, w(z) = 1.

Solve the least-squares optimization problem of Equation (2) by expressing it in matrix form:

∥Av − b∥2 , (3)

where A is a matrix, v = [g; log (Lij)] are the unknowns, and b is a known vector. Then, use one of numpy’s
solvers to recover the unknowns. (See numpy function numpy.linalg.lstsq.)

While Debevec and Malik [1] recover a different g for each color channel, for this homework we recommend
that you process pixels from all three channels simultaneously to recover a single g for all channels. This
helps reduce color artifacts in the final HDR composite.

2

https://www.dechifro.org/dcraw/


Use the function to convert the non-linear images Ikij into linear ones,

Ikij,lin = exp
(
g
(
Ikij

))
. (4)

You will not use the values Lij you recover from solving (2). Include a plot of the function g you recovered.

Merge exposure stack into HDR image (30 points). Now that we have two sets of (approximately)
linear images, coming from the RAW and rendered files, it is time to merge each one of them into an HDR
image. This part will be common for both sets of linear images. Make sure that each HDR image you create
only uses images from one or the other set.

Given a set of k LDR linear images corresponding to different exposures tk, we can merge them into an
HDR image either in the linear or in the logarithmic domain. The motivation for linear merging is physical
accuracy, whereas the motivation for logarithmic merging is, as mentioned above, human visual perception.

We first introduce some notation. We use Ikij,LDR to refer to the intensity value of pixel {i, j} of the k-th

original LDR input image, read directly from either a .JPG or a .TIFF file. We use Ikij,lin to refer to the
intensity of pixel {i, j} of the k-th linear LDR input image; this is either the intensity from Equation (4)
when using .JPG files, or the same as Ikij,LDR when using .TIFF files. Additionally, from this point on we

assume that Ikij,LDR ∈ [0, 1]. Therefore, you need to normalize the original LDR input images to the [0, 1]

range, which you can do by dividing with 255 when using .JPG files, and by 216 − 1 when using .TIFF files.
With this notation at hand, when using linear merging, we form the HDR image as:

Iij,HDR =

∑
k w

(
Ikij,LDR

)
Ikij,lin/t

k∑
k w

(
Ikij,LDR

) . (5)

When using logarithmic merging, we form the HDR image as:

Iij,HDR = exp

∑
k w

(
Ikij,LDR

) (
log

(
Ikij,lin + ϵ

)
− log

(
tk
))

∑
k w

(
Ikij,LDR

)
 , (6)

where ϵ is a small constant to avoid the singularity of the logarithm function at 0. As before, the weights w
in Equations (5) and (6) place more emphasis on well-exposed pixels, and less emphasis on under-exposed or
over-exposed ones. See below about what weights to use.

Implement both linear and logarithmic merging for each of the two exposure stacks. Then, store the
resulting HDR images as .HDR files, which is an open source high dynamic range file format. (See the provided
function writeHDR in ./src/cp hw2.py)

Weighting schemes. There are many possible weighting scheme choices [3]. You will implement four:

wuniform (z) =

{
1, if Zmin ≤ z ≤ Zmax

0, otherwise
,

wtent (z) =

{
min (z, 1− z) , if Zmin ≤ z ≤ Zmax

0, otherwise
,

wGaussian (z) =

{
exp

(
−4 (z−0.5)2

0.52

)
, if Zmin ≤ z ≤ Zmax

0, otherwise
,

wphoton

(
z, tk

)
=

{
tk, if Zmin ≤ z ≤ Zmax

0, otherwise
. (7)

All weighting schemes assume that intensity values z ∈ [0, 1]. You can experiment with different clipping
values Zmin and Zmax, but we recommend using Zmin = 0.05, Zmax = 0.95. Report the values you used.
Unlike the other schemes, the weights wphoton also depend on the exposure under which a pixel was captured.

3



Note that, when creating an HDR image from the .JPG stack, you need to use the same weighting scheme
in both Equations (2) (linearization) and (5)-(6) (merging).

Implement all the above weighting schemes, and use them to create HDR images. In total, you will create
16 HDR images: 2 sets of images (RAW and rendered) × 2 merging schemes (linear and logarithmic) × 4
weighting schemes (uniform, tent, Gaussian, and photon-noise optimal).

Make your pick. Select one out of the sixteen HDR images you created. You can select, for example, the
one that you find the most aesthetically pleasing. Make sure to comment on why you selected the image you
did. Note that, as you have not yet tonemapped your HDR images, if you display them directly they will not
look very nice; see “Hints and Information”.

2. Color correction and white balancing (20 points)

Figure 2: Tonemapped HDR image without (left) and with (right) color correction.

For this part, you will use the HDR image you selected at the end of Part 1. As shown to the left of
Figure 2, your tonemapped images will tend to have an orange cast in the dark parts of the room. This is
because the very low light inside the room and the large contrast with the light outside the room are throwing
the camera’s automatic white balancing off. Additionally, even if the white balancing worked perfectly, we
have not been very careful about the color space the various image composites reside in.

You could apply any of the automatic white balancing algorithms we discussed in Homework Assignment
1 to ameliorate the issue. But, given that the images include a color checker (Figure 3), it is possible to do
better than that and perform accurate color correction.

Figure 3: Color checker and patch numbering.

4



In particular, the color checker is designed so that its patches have a specific set of RGB coordinates
in the (linear) sRGB color space, when the color checker is viewed under a standard illuminant (so called
“D65” illumination, roughly corresponding to daylight at noon). The function read colorchecker gm, which
we provide in the ./src/cp hw2.py file of the homework ZIP archive, returns these ground-truth RGB
coordinate values, with the patches numbered as shown in Figure 3.

Then, to have your HDR image show color correctly, you can apply a linear transform on its three channels,
so that the color checker’s RGB coordinates in the image match the ground-truth coordinates as closely as
possible. You can do this as follows.

1. For each color checker patch, crop a square that is fully contained within the patch. (See matplotlib
function matplotlib.pyplot.ginput for interactively recording image coordinates.) Make sure to
store the coordinates of these cropped squares, so that you can re-use them. Use the resulting 24 crops
to compute average RGB coordinates for each of the color checker’s 24 patches.

2. Convert these computed RGB coordinates into homogeneous 4× 1 coordinates, by appending a 1 as
their fourth coordinate.

3. Solve a least-squares problem to compute an affine transformation, mapping the measured to the
ground-truth homogeneous coordinates.

4. Apply the computed affine transform to your original RGB HDR image. Note that the transformed
image may have some negative values, which you should clip to 0.

5. Finally, apply an additional white balancing transform (i.e., multiply each channel with a scalar), so
that the RGB coordinates of patch 4 are equal to each other. This is analogous to the manual white
balancing in Homework Assignment 1, where now we use patch 4 as the white object in the scene.

Store the color corrected and white balanced HDR image in an .HDR file. You should now have two HDR
images total: The one from Part 1 that has not been color-corrected, and the one you just created. Compare
the color-corrected image with the original, and discuss which one you like the best.

3. Photographic tonemapping (20 points)

Now that you have a couple of HDR images, you need to tonemap them so that you can display them. For
this part, you can use whichever of the two HDR images at the end of Part 2 you liked the best.

You will implement the tonemapping operator proposed by Reinhard et al. [4], which is a good tonemapping
baseline. We describe how to do this below, but we strongly encourage you to read at least Sections 2 and 3
of this paper, which explain the rationale behind the specific form of this tonemapping operator, the effect of
the various parameters, and its relationship to the zone system used when developing film.

Given pixel values Iij,HDR of a linear HDR image, photographic tonemapping is performed as

Iij,TM =
Ĩij,HDR

(
1 +

Ĩij,HDR

Ĩ2
white

)
1 + Ĩij,HDR

, (8)

where1

Ĩwhite = B ·max
i,j

(
Ĩij,HDR

)
, (9)

Ĩij,HDR =
K

Im,HDR
Iij,HDR, (10)

Im,HDR = exp

 1

N

∑
i,j

log (Iij,HDR + ϵ)

 . (11)

1Equation (11) is different from the corresponding Equation (1) in Reinhard et al. [4]. The version we give here is correct,
and the version in the paper is incorrect.

5



The parameter K is the key, and determines how bright or dark the resulting tonemapped rendition is. The
parameter B is the burn, and can be used to suppress the contrast of the result. Finally, N is the number of
pixels, and ϵ is a small constant to avoid the singularity of the logarithm function at 0.

Implement the photographic operator and apply it to your RGB HDR images in two ways: First, apply it
by tonemapping all color channels simultaneously in the same way. Second, apply it only to the luminance
channel Y. For the latter, you can use the provided function lRGB2XYZ to convert the HDR image from RGB
to XYZ, and then convert it to xyY using the definition we discussed in class. While in xyY, tonemap the
luminance Y while leaving the chromaticity channels x, y untouched. Then, invert the color transform to go
back to RGB using the provided function XYZ2lRGB.

Experiment with different key and burn values. Some reasonable starting values for the parameters
are K = 0.15 and B = 0.95, but to get good tonemaps you will need to explore different values. Plot
representative tonemaps for both the RGB and luminance methods, and discuss your results. Make sure to
mention which tonemap you like the most.

4. Create and tonemap your own HDR photo (50 points)

It is now time to apply what you implemented above to your own pictures. To create results which are
clearly better than any single exposure, you should take pictures of a scene that actually has a high dynamic
range! Good examples include: scenes that have both indoor and outdoor elements (a room with windows),
indoor scenes with two different illuminations (like the data you used in parts 1-3), scenes with very strong
backlighting, or outdoors scenes during a sunny day with strong shadows. Note that you must use the same
camera settings for the data you capture in this part and Part 5; make sure to read the suggestions in Hints
and Information on what camera settings to use.

Once you select the scene, capture exposure stacks in RAW and JPEG formats. We suggest using
exposures that are equally spaced in the logarithmic domain. For example, start with some very low base
exposure, and then use exposures that are 2× the base, 4×, 8×, and so on. You can either exhaust the
exposure range (i.e., start from the lowest shutter speed possible, and go all the way to the maximum shutter
speed in 2x steps), or select an exposure range that works for your scene.

Use the exposure stacks you captured to create two HDR images, one from the RAW and one from the
JPEG images. You can use whichever of the HDR variants you implemented in Part 1 you prefer—or you
can try out all of them and decide which one looks the best. Store these two images in .HDR format. Since
you do not have a color checker, you can skip the color calibration step.

Then, process these images using the tonemapping algorithms you implemented in Part 3 (photographic,
in RGB or luminance-only). Experiment with different parameters, show a few representative tonemaps,
discuss your results, and determine which result you like the most. The total number of points you will get
for this part will depend on how visually compelling the final tonemapped image you create is.

5. Noise calibration and optimal weights (50 points)

As a last step in your HDR pipeline, you will attempt to further improve the fidelity of your HDR composite
by implementing a simple noise calibration procedure. We will be following the noise model we discussed in
class, but we will assume that the dark current term is zero and can be ignored.

To start the noise calibration procedure, you should print out a ramp intensity image as in Figure 4. You
can generate such an image using the numpy function numpy.tile(numpy.linspace(0, 1, 255), (255,

1)). You should rescale the pattern as needed for it to fill out an entire page after printing.

Noise calibration (30 points). Throughout this section, you should use a single shutter speed (one where
the entire ramp image is well-exposed), and the same ISO and aperture setting as you did in Part 4.

First, capture about 50 RAW images with the lens cap on. Convert these RAW images into linear 16-bit
.TIFF images, as you did in Part 1. Then, average the images to compute the dark frame. Make sure to
store the dark frame, as you will be using it shortly.

6



Figure 4: Ramp pattern for noise calibration.

Now remove the lens cap and capture about N = 50 RAW images of the ramp print-out. Convert these
RAW images into linear 16-bit .TIFF images, as in Part 1. Then, subtract from each image the dark frame
you computed. For the rest of noise calibration, you will use only the images after dark frame subtraction.

For a few pixels, plot the histogram of their values across the various images you captured. Discuss what
shape these histograms approximately have, and why.

Then, for each pixel, compute its mean value and variance,

µij =
1

N

∑
n

Inij , (12)

σ2
ij =

1

N − 1

∑
n

(
Inij − µij

)2
. (13)

Round the mean to the nearest integer, which will result in several pixels having the same mean value.
Calculate the average variance for this mean value.

As we discussed in class, the variance relates to the mean value as

σ2
ij = µijg + σ2

readg
2 + σ2

ADC︸ ︷︷ ︸
σ2
additive

, (14)

where g is the camera gain, σ2
read is the variance of the read noise, and σ2

ADC is the variance of ADC noise.
Therefore, if you plot the variance you computed above as a function of different unique mean values, the
result should be approximately a straight line. Fit a line to your unique mean-variance points, and use it to
estimate the camera gain g and the total additive noise variance σ2

additive. Show the mean-variance plot and
the fitted line, and report the estimated gain and variance.

Merging with optimal weights (20 points.) Use the RAW exposure stack you captured in Part 4 to
form one last HDR image, this time using the noise-optimal weighting scheme we discussed in class.

For this, first perform dark-frame subtraction, accounting for shutter speed differences: Let’s say you
computed a dark frame Idark by performing noise calibration using shutter speed tnc. From each image Ik in

your exposure stack, subtract the frame tk

tnc
Idark.

Then, merge the dark-frame-corrected exposure stack using the weights:

woptimal

(
z, tk

)
=

 (tk)
2

gz+σ2
additive

, if Zmin ≤ z ≤ Zmax

0, otherwise
. (15)

Compare the resulting image (after tonemapping) with the best result you obtained in Part 4. Which parts
of your image did the noise calibration make the biggest difference at?

7



6. Bonus: HDR by varying both shutter speed and ISO (100 points)

As we discussed in class, we can compose HDR images using exposure brackets created by varying either the
shutter speed, or ISO, or even both. When varying both shutter speed and ISO, one needs to answer two
questions: First, how do I decide what combinations of shutter speed and ISO to use? Second, how do I
merge the resulting exposure stack into an HDR image? In answering these two questions, it is important to
take into account the different noise characteristics of these two mechanisms for controlling exposure.

Hasinoff et al. [2] provide a detailed analysis of this kind of mixed exposure bracketing. Read this paper
and try to reproduce their algorithm for capturing and merging an exposure bracket where you vary both
shutter speed and ISO. For full credit, you will need to capture two RAW exposure stacks of the same scene:
One where you only vary shutter speed, and another where you vary both ISO and shutter speed. Then, you
should merge each of the two stacks into an HDR image, using the procedure described in Section 4.1 of
the paper, which corresponds to the noise-optimal weights in Part 5. Finally, you will need to compare the
results. For a fair comparison, the total capture time for both stacks should be (approximately) the same.
You do not need to implement Section 4.2: You can use either the ISO and shutter speeds the paper reports,
or ones you come up with on your own.

Note that, to implement dark-frame subtraction and noise-optimal mixing in the case of varying ISO, you
need to separately estimate the terms σ2

read and σ2
ADC in Equation (14). We previously combined these in

σ2
additive, but this is no longer sufficient when we use ISO to vary the gain g. For full credit, you will need to

think of, describe, and implement a modified noise calibration procedure that allows you to estimate the two
terms. But you can get partial credit by either approximating these terms with reasonable guesses (which
you should justify in your write-up), or by searching for them online.

Deliverables

When submitting your solution, make sure to follow the homework submission guidelines available on the
course website. Your submitted solution should include the following:

• A PDF report explaining what you did for each problem, including answers to all questions asked
throughout Parts 1-5, as well as any of the bonus problems you choose to do. The report should include
any figures and intermediate results that you think may help. Make sure to include explanations of any
issues that you may have run into that prevented you from fully solving the assignment, as this will
help us determine partial credit. The report should also explain any additional image files you include
in your solution (see below).

• Your Python code, including code for the bonus problems, and a README file explaining how to use the
code.

• The HDR images that you create in parts 1 (only the one you pick at the end), 2, 4, and 5, as well as
at least one RAW and corresponding .JPG LDR image you capture in Part 4. You can also include
additional image files, LDR or HDR, for various experiments (e.g., tonemapping with different values)
other than your final ones, if you think they show something important.

• If you do Bonus Part 6: Include in your PDF report a detailed description of the parts of Hasinoff et
al. [2] you implemented, any issues you ran into, and any approximations or other decisions you made
in reproducing their algorithm. Additionally, include the two HDR images you create, and at least one
RAW image you capture for this part.

• For the photography competition: Submit one of the tonemapped photographs you produced for either
Part 4 or Part 5, named as competition entry.png.

8

http://graphics.cs.cmu.edu/courses/15-463/assignments/submission_guidelines.pdf


Hints and Information

dcraw version. Make sure to download and install the latest version of dcraw. In particular, the default
version that comes in older Windows versions does not support the cameras used in this class, and will
produce results with a strong purple hue.

Memory management. When working with the provided and captured exposure stacks, you will notice
that your algorithms will be using a lot of memory. This is a common issue when processing photographs
captured with modern cameras, due to the very large number of pixels these cameras have. At 24 Megapixels,
the Nikon D3300 used for this assignment is at the mid-range of megapixels. Still, at this resolution, a
3-channel HDR image takes up more than 0.5 GB of memory.

This has two implications. First, you should be careful about how many of these images you create in
your Python code, as otherwise you run the risk of filling up your memory and crippling your computer.
Second, when processing an image, you need to make sure you use vectorized code that processes all of its
pixels in parallel, as trying to process all 25 million pixels one-by-one with a double for loop will take ages.

In particular, when performing HDR merging, you can apply Equations (5)- (6) each of the k exposure
images independently. Therefore, instead of loading the entire exposure stack at once, you can load and
process its images one by one. Additionally, within each image, Equations (5)- (6) apply to each pixel in a
parallel way. Thus, you can process each image with a single vectorized call, instead of a double for loop.

One place where, no matter how careful you are, you will run out of memory is when solving the
linear system (3) to recover the non-linear map g. As Debevec and Malik [1] suggest, you should greatly
downsample the input images before forming the linear system. You should not resize the image with
skimage.transform.resize, or try to blur it before downsampling. For inferring g, all you have to do is
downsample an input image I with I[::n, ::n], for some n. We recommend using n = 200.

More generally, while you are still debugging your code, we strongly recommend that you work on
downsampled images to accelerate the development process. Once you know your code is correct, you can
run it one more time on the full-resolution image, to produce your final results.

Zero weights. When merging many LDR images to HDR ones, you may end up with pixels for which
there are not any well-exposed values (i.e., the sum of weights in the denominators of Equations (5)- (6) is
exactly 0). You can set those pixels to equal the maximum or minimum valid pixel value of your HDR image,
respectively for problematic pixels that are always over-exposed or always under-exposed.

Gamma encoding. Even with tonemapping, your images may appear too dark. In practice, after
tonemapping, you still need to apply gamma encoding for images to be displayed correctly. As a reminder
from Homework Assignment 1, gamma encoding is the following non-linear operator:

Cnon-linear =

{
12.92 · Clinear, Clinear ≤ 0.0031308

(1 + 0.055) · C
1

2.4

linear − 0.055, Clinear > 0.0031308
(16)

You should implement this in a script, and use it to gamma-encode tonemapped or HDR images before
displaying them. Gamma encoding will help also when displaying intermediate results (see below).

Visualizing results. As in Homework Assignment 1, you will likely find it helpful to display intermediate
results. If you directly display the HDR images you create, they may appear very bright (potentially
fully-white) or very dark (potentially fully-black). This is not a problem: as we discussed in class, HDR
images are linear with respect to incident flux, but are scaled by a (somewhat) arbitrary scaling factor. All
you have to do is multiply your image with an appropriate scaling factor of your own (smaller than 1 if the
image is very bright, larger than 1 otherwise), apply gamma encoding, and then use the clip and imshow

functions as in Homework Assignment 1. You will likely need to experiment with a few different values for
the scaling factor you apply, until you find the one that correctly exposes your image.

HDR viewer. If you want to view the .HDR files you create, you cannot do so with a standard image viewer.
Instead, you should use a dedicated viewer for .HDR files, such as OpenHDR. This viewer provides interactive

9

https://viewer.openhdr.org/


sliders for controlling exposure (the scaling factor you apply to the image) and gamma encoding, making it
easier to find good settings for examining your HDR image. Alternatively, you can use the function readHDR

in the code we provide to load the .HDR in Python, then display it as we describe in the previous step.

Tonemapping RGB images. When applying photographic tonemapping to each RGB channel separately,
you may get better results by using the same scalars Im,HDR and Ĩwhite for all three channels. You can do
this by using pixels from all three channels in Equations (9) and (11).

Additionally, evaluating Equation (11) as written (i.e., by first computing the average of logarithms, and
then exponentiating) may result in zero, NaN, or Inf values due to finite numerical precision. You may get
more stable results by recognizing that Equation (11) is equivalent to computing the geometric mean of all
pixels Ii,j,HDR, and changing your implementation accordingly. For more information about this type of
numerical issues, look up “log-average form of geometric mean”.

White balancing. When capturing your own exposure stack and noise calibration data, you should set its
white balancing option to a fixed preset, as appropriate for the lighting in the scene you selected, and its
output color space to sRGB. Additionally, if your camera supports this, set it to store both RAW and .JPG

files for each image you capture (the Nikon D3300 has this option). That way, you will have perfectly paired
RAW and .JPG exposure stacks, and you can use them to compare doing HDR with one or the other.

Fixing camera parameters. While capturing your exposure stack and noise calibration data, it is critical
that no camera parameters other than shutter speed change. Therefore, you should set the camera to manual
mode, and disable auto-focus for the duration of the capture. If you do not take these steps, then the camera
may automatically change parameters such as aperture, ISO, and focus, making your data unusable.

Regarding aperture, you should use an aperture setting that gives you good depth of field for the scene
you selected for your exposure stack.

Regarding ISO, you should use a low ISO setting, as that makes noise calibration more reliable. In
particular, make sure that your camera does not have a high ISO setting as a leftover from Homework
Assignment 1, when you were building the pinhole camera.

Regarding focusing, you can use autofocus while framing the scene you will use for your exposure stack,
to make sure that your captured images will be sharp. Once the lens has been focused, you can then disable
autofocus, switch to manual, and start capturing your exposure stack. You can use the same procedure to
focus the lens before capturing your noise calibration data. It is fine if you need to change the lens focus
between capturing the exposure stack and noise calibration data; but you should make sure to use the same
settings for everything else besides focus and shutter speed (ISO, aperture, white balancing).

Lastly, when capturing noise calibration data, you should use a shutter speed that is lower than what
auto-exposure would select for the calibration target—that is, make your images somewhat darker than ideal.

Tethering. As discussed in both class and above, it is very important that both your camera and your
scene remain static while capturing your exposure stack. Thus we strongly recommend that you mount your
camera on a tripod, or at the very least on a very stable surface (e.g., a table) when taking images.

While capturing your exposure stack, you will need to adjust the camera’s shutter speed several times.
Doing this manually requires touching the camera to rotate the shutter speed dial. You will also need to
activate the shutter release, which means further touching the camera and pressing buttons. All of these
manual actions can result in considerable camera movement, and therefore in your captured LDR images
being misaligned. Using a tripod does not protect you from this type of camera motion.

Therefore, we strongly recommend that you tether, i.e., connect, the camera to your laptop, so that you
can control its settings and shutter release electronically, without touching the camera. Each of the class
cameras comes with a USB cable you can use for this purpose.

To control the camera, you can try using the software provided by each manufacturer on their website
(here is the corresponding Nikon page for the class camera).

As an alternative, we recommend that you try gphoto2. This is a very powerful command-line tool that
can be used to script your camera and implement very complicated capture procedures. For example, the
following lines auto-detect a connected camera, capture an image at shutter speed 1/2048, and then download

10

http://downloadcenter.nikonimglib.com/en/products/21/D3300.html
http://gphoto.org/proj/gphoto2/


the images from the camera to your computer and store them with filename exposure1. If your camera is set
to capture both RAW and .JPG, this excerpt will download both images and store them as exposure1.nef
and exposure.jpg, respectively.

gphoto2 --auto-detect

gphoto2 --set-config-value /main/capturesettings/shutterspeed=1/2048

gphoto2 --capture-image-and-download --filename exposure1.%C

If you are using a Nikon D3500 camera, there is a known issue with gphoto2 that results in the camera
failing after a few capture commands. If you face this issue, you can solve it by killing the gphoto2 process (by
pressing ”Ctrl+C” twice) and running gphoto2 --reset. Refer to the corresponding issue page for details.

Outliers in noise calibration. When processing the data for noise calibration, it can help to remove high
mean values. As at high flux regions values Poisson noise becomes dominant, high mean values have very
high variance and may produce strong outliers. These outliers may skew the line you are fitting towards
having a negative intercept. If that happens, you are welcome to reduce the range of mean values you use for
your fit to just the lower mean values, which are more reliable for additive noise estimation.

Lighting conditions. When performing noise calibration, you should make sure that you do not have any
fluorescent lamps lighting your scene. The light output of these lamps varies with time, albeit at very high
frequencies that we cannot perceive. This temporal variation may invalidate your noise calibration results.

Calibrated optimal weights. When using your noise calibration results to do merging with optimal weights,
you should adjust gain and variance values, as appropriate to account for differences in how you normalize
image data in different parts of the homework. Additionally, due to white balancing, noise calibration results
will be different for each color channel, so you should use the correct values for each channel.

Credits

Some inspiration for this assignment and the write-up came from James Hays’ and Oliver Cossairt’s
computational photography courses at Brown University and Northwestern University, respectively. The code
for reading ground-truth color checker RGB values is from Ivo Ihrke’s color calibration toolbox.

References

[1] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs. In
Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’97, pages 369–378, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[2] S. W. Hasinoff, F. Durand, and W. T. Freeman. Noise-optimal capture for high dynamic range photography.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 553–560. IEEE,
2010.

[3] K. Kirk and H. J. Andersen. Noise characterization of weighting schemes for combination of multiple
exposures. In BMVC, volume 3, pages 1129–1138, 2006.

[4] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone reproduction for digital images. In
Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’02, pages 267–276, New York, NY, USA, 2002. ACM.

11

https://github.com/gphoto/libgphoto2/issues/311

