Geometric camera models and calibration

15-463, 15-663, 15-862 Computational Photography Fall 2022, Lecture 15

Course announcements

- Homework 5 is due November 21st.
- Any questions?
- Reading group this Friday, 3-4:30 pm.
- Extra office hours by Yannis this Friday, 4:30-6:30 pm.

15-468/15-668/15-868 Physics-based Rendering

Learn all about modeling, simulating, differentiating, and inverting light!

theory and simulation of light transport

computational light transport, time-of-flight sensors

speckle imaging, specke
confocal microscopy

acousto-optics, tissue imaging
scientific imaging applications

rendering competition (win free SIGGRAPH registrations!)

differentiable, inverse, and neural rendering http://graphics.cs.cmu.edu/courses/15-468/

Topics to be covered

Basics of ray tracing:

- trace-intersect recursions
- basic camera and illumination models
- shading
- intersection queries
- texture mapping

Topics to be covered

Theory of light transport and materials:

- rendering equation
- radiative transfer equation
- path integral formulations
- microfacet reflectance models
- statistical scattering models

Topics to be covered

Monte Carlo rendering algorithms:

- unidirectional and bidirectional estimators
- Markov chain Monte Carlo techniques
- volumetric rendering
- importance sampling techniques
- quasi-Monte Carlo techniques

Topics to be covered

Advanced topics:

- differentiable rendering
- neural rendering

- rendering wave-optics effects
- rendering specular transport effects
- rendering eikonal transport effects

Overview of today's lecture

- Pinholes and lenses.
- Pinhole camera.
- Accidental pinholes.
- Camera matrix.
- Perspective.
- Other camera models.
- Pose estimation.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).

Some slides inspired from:

- Fredo Durand (MIT).

Pinhole and lens cameras

The lens camera

The pinhole camera

The pinhole camera

Central rays propagate in the same way for both models!

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.

Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

Remember: focal length f refers to different things for lens and pinhole cameras.

- In this lecture, we use it to refer to the aperture-sensor distance, as in the pinhole camera case.

Camera matrix

The camera as a coordinate transformation

The camera as a coordinate transformation

A camera is a mapping from:
the 3D world
to:

> 2D image point

a 2D image

What are the dimensions of each variable?

Reminder: 2D homogeneous coordinates

heterogeneous homogeneous
coordinates coordinates

- Represent 2D point with a 3D vector

Reminder: 2D homogeneous coordinates

heterogeneous homogeneous
coordinates coordinates

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \stackrel{\text { def }}{=}\left[\begin{array}{c}
a x \\
a y \\
a
\end{array}\right]
$$

- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

Reminder: 2D homogeneous coordinates

Conversion:

- heterogeneous \rightarrow homogeneous

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- homogeneous \rightarrow heterogeneous

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x / z \\
y / z
\end{array}\right]
$$

Scale invariance:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=a\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Special points:

- point at infinity
$\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]$
- undefined

Reminder: 2D projective geometry

heterogeneous

Through the scale invariance property, homogeneous coordinates map all points on a line passing through the origin to the point where this line intersects the reference plane.

Reminder: 3D homogeneous coordinates

- Represent 3D point with a 4D vector
- 4D vectors are only defined up to scale

Reminder: notation
heterogeneous coordinates
homogeneous coordinates

2D

coordinates

3D
coordinates

| 2D vector $\widetilde{\boldsymbol{x}}=\left[\begin{array}{l}x \\ y\end{array}\right]$ |
| :--- |\quad 3D vector \(\boldsymbol{x}=\left[\begin{array}{c}X

y

1\end{array}\right]\)

The camera as a coordinate transformation

A camera is a mapping from:
the 3D world
to:
a 2D image

> 2D image point

What does this transformation look like?

The pinhole camera

The (rearranged) pinhole camera

The (rearranged) pinhole camera

Where did we see a similar picture?

The (rearranged) pinhole camera

What is the equation for image coordinate $\widetilde{\boldsymbol{x}}$ in terms of $\widetilde{\boldsymbol{X}}$?

The 2D view of the (rearranged) pinhole camera

What is the equation for image coordinate $\widetilde{\boldsymbol{x}}$ in terms of $\widetilde{\boldsymbol{X}}$?

The 2D view of the (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the camera matrix \boldsymbol{P} for a pinhole camera?

$$
x=P X
$$

The pinhole camera matrix

Camera projection relationship expressed:

- in heterogeneous coordinates

$$
\widetilde{\boldsymbol{X}}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}
X / Z \\
Y / Z
\end{array}\right]
$$

- in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \rightarrow \boldsymbol{x}=?
$$

The pinhole camera matrix

Camera projection relationship expressed:

- in heterogeneous coordinates

$$
\widetilde{\boldsymbol{X}}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}
X / Z \\
Y / Z
\end{array}\right]
$$

- in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \rightarrow \boldsymbol{x}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
x=P X
$$

What does the pinhole camera projection look like?

$$
\boldsymbol{P}=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

The pinhole camera matrix

Camera projection relationship expressed:

- in heterogeneous coordinates

$$
\widetilde{\boldsymbol{X}}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}
X / Z \\
Y / Z
\end{array}\right]
$$

- in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \rightarrow \boldsymbol{x}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
x=P X
$$

What does the pinhole camera projection look like?

The perspective projection matrix

$$
\boldsymbol{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The pinhole camera matrix

Camera projection relationship expressed:

- in heterogeneous coordinates

$$
\widetilde{\boldsymbol{X}}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}
X / Z \\
Y / Z
\end{array}\right]
$$

- in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \rightarrow \boldsymbol{x}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
x=P X
$$

What does the pinhole camera projection look like? projection matrix

$$
\boldsymbol{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=[\boldsymbol{I} \mid \mathbf{0}] \begin{gathered}
\text { alternative way to } \\
\text { write the same thing }
\end{gathered}
$$

More general case: arbitrary focal length

What is the camera matrix \boldsymbol{P} for a pinhole camera?

$$
x=P X
$$

More general (2D) case: arbitrary focal length

What is the equation for image coordinate $\widetilde{\boldsymbol{x}}$ in terms of $\widetilde{\boldsymbol{X}}$?

More general (2D) case: arbitrary focal length

The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

- in heterogeneous coordinates

$$
\widetilde{\boldsymbol{X}}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}
f X / Z \\
f Y / Z
\end{array}\right]
$$

- in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \rightarrow \boldsymbol{x}=\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
x=P X
$$

What does the pinhole camera projection look like?

$$
\boldsymbol{P}=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

- in heterogeneous coordinates

$$
\widetilde{\boldsymbol{X}}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}
f X / Z \\
f Y / Z
\end{array}\right]
$$

- in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \rightarrow \boldsymbol{x}=\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
x=P X
$$

What does the pinhole camera projection look like?

$$
\boldsymbol{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

- in heterogeneous coordinates

$$
\widetilde{\boldsymbol{X}}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}
f X / Z \\
f Y / Z
\end{array}\right]
$$

- in homogeneous coordinates

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right] \rightarrow \boldsymbol{x}=\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right]
$$

General camera model in homogeneous coordinates:

$$
x=P X
$$

What does the pinhole camera projection look like?

Equivalently we
can write:

0 \& f \& 0

0 \& 0 \& 1\end{array}\right]\left[\begin{array}{llll}1 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0\end{array}\right]\)| combination of perspective |
| :---: |
| projection and a 2D scaling |
| transformation |

Generalizations: coordinate systems

2D camera coordinate system
3D camera coordinate system

- A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).

Generalizations: coordinate systems

3D camera coordinate system

- A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
- These coordinate systems may be different from the coordinate systems of our application.

Generalization: image coordinate system

 In particular, the camera origin and image origin may be different.- Can you think of a case when this happens?

How does the camera matrix change?

$$
\boldsymbol{P}=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalization: image coordinate system

 In particular, the camera origin and image origin may be different.- Can you think of a case when this happens?

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(homogeneous) transformation
from 2D to 2D, accounting for nonunit focal length and origin shift

Also written as:

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right][\boldsymbol{I} \mid \mathbf{0}]
$$

Generalizations: coordinate systems

3D camera coordinate system

- A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
- These coordinate systems may be different from the coordinate systems of our application.

World-to-camera coordinate system transformation

How do we express $\widetilde{\boldsymbol{X}}$ in the 3D camera coordinate system?
\widetilde{X}_{w}

World-to-camera coordinate system transformation

How do we express $\widetilde{\boldsymbol{X}}$ in the 3D camera coordinate system?

$$
\widetilde{X}_{w}-\widetilde{C}
$$

translate

World-to-camera coordinate system transformation

How do we express $\widetilde{\boldsymbol{X}}$ in the 3D camera coordinate system?

$$
R \cdot\left(\widetilde{X}_{w}-\widetilde{C}\right)
$$

Modeling the 3D coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{X}_{c}=R \cdot\left(\widetilde{X}_{w}-\widetilde{C}\right)
$$

How do we write this transformation in homogeneous coordinates?

Modeling the 3D coordinate system transformation

In heterogeneous coordinates, we have:

$$
\widetilde{X}_{c}=R \cdot\left(\widetilde{X}_{w}-\widetilde{C}\right)
$$

In homogeneous coordinates, we have:

$$
X_{c}=\left[\begin{array}{cc}
R & -R \widetilde{C} \\
0 & 1
\end{array}\right] X_{w}
$$

Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

$$
\boldsymbol{x}=\boldsymbol{P}_{\boldsymbol{C}}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right][\boldsymbol{I} \mid \mathbf{0}] \boldsymbol{X}_{\boldsymbol{c}}
$$

We also just derived:

$$
X_{c}=\left[\begin{array}{cc}
R & -R \widetilde{C} \\
0 & 1
\end{array}\right] X_{w}
$$

Putting it all together

We can write everything into a single projection:

$$
x=P X_{w}
$$

The camera matrix now looks like:
intrinsic parameters (3×3): correspond to camera internals (2D image-to-image transformation)

perspective projection (3×4) : maps 3D to 2D points (camera-to-image transformation)
extrinsic parameters (4×4): correspond to camera externals (3D world-to-camera transformation)

Generalizations: coordinate systems

3D camera coordinate system

- A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
- These coordinate systems may be different from the coordinate systems of our application.

Putting it all together

We can write everything into a single projection:

$$
x=P X_{w}
$$

The camera matrix now looks like:
intrinsic parameters (3×3):
correspond to camera
internals (2D image-to-image transformation)

It is common to combine the perspective projection and extrinsics in one matrix.

The pinhole camera matrix

More compactly, we can write the pinhole camera matrix as:

$$
P=K[R \mid t]
$$

where

More general pinhole camera matrices

The following is the standard pinhole camera matrix we saw.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

More general pinhole camera matrices

The following is the standard pinhole camera matrix we saw.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

- 9 degrees of freedom (3 for intrinsics, 3 for rotation, 3 for translation).

More general pinhole camera matrices

The following is the standard pinhole camera matrix we saw.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

- 9 degrees of freedom (3 for intrinsics, 3 for rotation, 3 for translation).

We can get more general pinhole cameras with more degrees of freedom by generalizing the intrinsics matrix, while leaving everything else the same..

More general pinhole camera matrices

CCD camera: pixels may not be square.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{x} & 0 & p_{x} \\
0 & a_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

More general pinhole camera matrices

CCD camera: pixels may not be square.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{x} & 0 & p_{x} \\
0 & a_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

- 10 degrees of freedom (4 for intrinsics, 3 for rotation, 3 for translation).

More general pinhole camera matrices

Finite projective camera: sensor may be skewed.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{x} & s & p_{x} \\
0 & a_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

More general pinhole camera matrices

Finite projective camera: sensor may be skewed.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{x} & s & p_{x} \\
0 & a_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

- 11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a perspective projection camera with more degrees of freedom?

More general pinhole camera matrices

The finite projective
Finite projective camera: sensor may be skewed.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{x} & s & p_{x} \\
0 & a_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

- 11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a perspective projection camera with more degrees of freedom?

- No, as the entire camera matrix \boldsymbol{P} has 12 elements (3×4) and is defined up to scale.

More general pinhole camera matrices

The finite projective
Finite projective camera: sensor may be skewed.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{x} & s & p_{x} \\
0 & a_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

How many degrees of freedom does this matrix have?

- 11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a perspective projection camera with more degrees of freedom?

- No, as the entire camera matrix \boldsymbol{P} has 12 elements (3×4) and is defined up to scale.

Perspective distortion

Finite projective camera

Let's ignore intrinsics and extrinsics for now.

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{x} & s & p_{x} \\
0 & a_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
R & t \\
0 & 1
\end{array}\right]
$$

What is the effect of the perspective projection matrix?

The (rearranged) pinhole camera

What is the equation for image coordinate $\widetilde{\boldsymbol{x}}$ in terms of $\widetilde{\boldsymbol{X}}$?

The 2D view of the (rearranged) pinhole camera

The 2D view of the (rearranged) pinhole camera

Forced perspective

The Ames room illusion

The Ames room illusion

The arrow illusion

Is there a camera without perspective distortion?

Other camera models

What if...

Perspective camera: camera is close to object and has small focal length

weak perspective

Weak-perspective camera: camera is far from object and has large focal length
increasing focal length

Different cameras

perspective camera
weak perspective camera

Perspective versus weak-perspective camera

$\underset{\text { projection }}{\text { perspective }} \widetilde{\boldsymbol{X}}=\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}X / Z \\ Y / Z\end{array}\right]$

Perspective versus weak-perspective camera

Perspective versus weak-perspective camera

image intermediate
plane
plane
$\underset{\text { projection }}{\text { weak-perspective }} \widetilde{\boldsymbol{X}}=\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right] \rightarrow \widetilde{\boldsymbol{x}}=\left[\begin{array}{l}X / Z_{o} \\ Y / Z_{o}\end{array}\right]$

Perspective versus weak-perspective camera

image intermediate
plane
plane

Comparing camera projection matrices

Let's ignore intrinsics and extrinscis for now.

- The perspective projection matrix can be written as:

$$
\boldsymbol{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- What would the weak-perspective projection matrix look like?

Comparing camera projection matrices

Let's ignore intrinsics and extrinscis for now.

- The perspective projection matrix can be written as:

$$
\boldsymbol{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- The weak-perspective projection matrix can be written as:

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

Comparing camera matrices

Let's now incorporate intrinsics and extrinsics.

- The finite projective camera matrix can be written as:

$$
\boldsymbol{P}=\boldsymbol{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

- What would the matrix of the so-called affine camera look like?

Comparing camera matrices

Let's now incorporate intrinsics and extrinsics.

- The finite projective camera matrix can be written as:

$$
\boldsymbol{P}=\boldsymbol{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

- The affine camera matrix can be written as:

$$
\boldsymbol{P}=\boldsymbol{K}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

Change only the projection matrix, and use the exact same matrices for intrinsics and extrinsics.

Special case: orthographic projection

Let's now incorporate intrinsics and extrinsics.

- The finite projective camera matrix can be written as:

$$
\boldsymbol{P}=\boldsymbol{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

- The affine camera matrix can be written as:
$\begin{gathered}\text { What's the effect of } \\ \text { setting } Z_{o}=1 \text { ? }\end{gathered} \quad \boldsymbol{P}=\boldsymbol{K}\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{ll}\boldsymbol{R} & \boldsymbol{t} \\ \mathbf{0} & 1\end{array}\right] \leftarrow$
$\begin{gathered}\text { What's the effect of } \\ \text { setting } Z_{o}=1 \text { ? }\end{gathered} \quad \boldsymbol{P}=\boldsymbol{K}\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{ll}\boldsymbol{R} & \boldsymbol{t} \\ \mathbf{0} & 1\end{array}\right] \leftarrow$

$$
\boldsymbol{P}=\boldsymbol{K}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right]
$$

Change only the projection matrix, and use the exact same matrices for intrinsics and extrinsics.

Perspective versus weak-perspective camera

image intermediate
plane
plane

magnification independent of depth, depends only on Z_{0}
\downarrow

Perspective versus orthographic camera

When can we assume a weak-perspective camera?

When can we assume a weak-perspective camera?

1. When the scene (or parts of it) is very far away.

Weak-perspective projection applies to the mountains.

When can we assume a weak-perspective camera?

2. When we use a telecentric lens.

When can we assume a weak-perspective camera?

2. When we use a telecentric lens.

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.

Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

Many other types of cameras

(a) 3D view

(b) orthography

(c) scaled orthography

(d) para-perspective

(e) perspective

(f) object-centered

Geometric camera calibration

Geometric camera calibration

Given a set of matched points
$\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}$

$$
\begin{array}{cc}
\text { point in 3D } & \text { point in the } \\
\text { space } & \text { image }
\end{array}
$$

and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Mapping between 3D point and image points

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What are the unknowns?

Mapping between 3D point and image points

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{llll}
\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8}
\end{array} \\
\frac{p_{9}}{p_{10}} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ll}
-\boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top} \\
- & \underline{\boldsymbol{p}}_{3}^{3}
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\boldsymbol{T}
\end{array}\right]}
\end{aligned}
$$

Heterogeneous coordinates

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

(non-linear relation between coordinates)
How can we make these relations linear?

How can we make these relations linear?

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

Make them linear with algebraic manipulation...

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

Now we can setup a system of linear equations with multiple point correspondences

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

How do we proceed?

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

$$
\text { In matrix form } \ldots\left[\begin{array}{ccc}
\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\
\mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0}
$$

How do we proceed?

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

In matrix form $\ldots\left[\begin{array}{ccc}\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\ \mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{3}\end{array}\right]=\mathbf{0}$

For N points ...

$$
\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0} \begin{aligned}
& \text { How do we solve } \\
& \text { this system? }
\end{aligned}
$$

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Solve for camera matrix by

$$
\begin{aligned}
& \hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
& \mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]
\end{aligned}
$$

Solution \mathbf{x} is the column of \mathbf{V} corresponding to smallest singular value of
$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

Solve for camera matrix by

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2} \text { subject to }\|\boldsymbol{x}\|^{2}=1 \\
\mathbf{A}=\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right] & \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
\end{aligned}
$$

Equivalently, solution \boldsymbol{x} is the Eigenvector corresponding to smallest Eigenvalue of
$\mathbf{A}^{\top} \mathbf{A}$

Now we have: $\quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$

Are we done?

Almost there $\ldots \quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$
How do you get the intrinsic and extrinsic parameters from the projection matrix?

Decomposition of the Camera Matrix

$$
\mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}= {\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] } \\
& \mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{aligned}
\mathbf{P}= & \begin{array}{ccc}
{\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
p_{5} & p_{6} & p_{7} \\
p_{4} & p_{4} \\
p_{8} \\
p_{10} & p_{11} & p_{12}
\end{array}\right]} \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}]
\end{aligned} \\
& =[\mathbf{M} \mid-\mathbf{M} \mathbf{C}]
\end{array}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{array}{c}
\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
\\
=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
\\
=[\mathbf{M} \mid-\mathbf{M c}]
\end{array}
\end{aligned}
$$

Find the camera center \mathbf{C}
$\mathbf{P c}=\mathbf{0}$
SVD of P!
c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

Any useful properties of K and R we can use?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{array}{c}
\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
\\
=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
\\
=[\mathbf{M} \mid-\mathbf{M c}]
\end{array}
\end{aligned}
$$

Find the camera center \mathbf{C}
$\mathbf{P c}=\mathbf{0}$
SVD of P!
c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}
$\mathbf{M}=\mathbf{K R}$
right upper orthogonal

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}
$\mathbf{P c}=\mathbf{0}$
SVD of P!
c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

QR decomposition

Geometric camera calibration

Given a set of matched points
$\left\{\mathbf{X}_{i}, \boldsymbol{x}_{i}\right\}$
point in 3D point in the
space image
and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
$-E$ is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Minimizing reprojection error

$$
\left(u_{i}-\frac{m_{1} \cdot P_{i}}{m_{3} \cdot P_{i}}\right)^{2}+\left(v_{i}-\frac{m_{2} \cdot P_{i}}{m_{3} \cdot P_{i}}\right)^{2} \quad \searrow_{t}
$$

Is this equivalent to what

Radial distortion

What causes this distortion?

no distortion

barrel distortion

pincushion distortion

Radial distortion model

Ideal:

$$
\begin{array}{ll}
x^{\prime}=f \frac{x}{z} & x^{\prime \prime}=\frac{1}{\lambda} x \\
y^{\prime}=f \frac{y}{z} & y^{\prime \prime}=\frac{1}{\lambda} y^{\prime}
\end{array}
$$

$$
\lambda=1+k_{1} r^{2}+k_{2} r^{4}+\cdots
$$

Minimizing reprojection error with radial distortion

Correcting radial distortion

Alternative: Multi-plane calibration

Advantages:

- Only requires a plane
- Don't have to know positions/orientations
- Great code available online!
- Matlab version: http://www.vision.caltech.edu/bouguetj/calib doc/index.html
- Also available on OpenCV.

Disadvantage: Need to solve non-linear optimization problem.

Step-by-step demonstration

Calibration images

Step-by-step demonstration

Click on the four extreme corners of the rectangular pattern.

Click on the four extreme cormers of the rectangular patten (frst comer $=$ origin). Image 1

Step-by-step demonstration

Step-by-step demonstration

Step-by-step demonstration

Extrinsic parameters

world
Switch to camera-centered view

What does it mean to "calibrate a camera"?

What does it mean to "calibrate a camera"?

Many different ways to calibrate a camera:

- Radiometric calibration.
- Color calibration.
- Geometric calibration.
- Noise calibration.
- Lens (or aberration) calibration.

References

Basic reading:

- Szeliski textbook, Section 2.1.5, 6.2.
- Bouguet, "Camera calibration toolbox for Matlab," available at http://www.vision.caltech.edu/bouguetj/calib doc/

The main resource for camera calibration in Matlab, where the screenshots in this lecture were taken from. It also has a detailed of the camera calibration algorithm and an extensive reference section.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004.

Chapter 6 of this book has a very thorough treatment of camera models.

- Gortler, "Foundations of 3D Computer Graphics," MIT Press 2012.

Chapter 10 of this book has a nice discussion of pinhole cameras from a graphics point of view.

- Zhang, "A flexible new technique for camera calibration," PAMI 2000.

The paper that introduced camera calibration from multiple views of a planar target.

