Radiometry and reflectance

15-463, 15-663, 15-862
Computational Photography Fall 2022, Lecture 13

Course announcements

- Homework assignment 4 due November $7^{\text {th }}$.
- Generally shorter to accommodate final project proposals.
- Two bonus parts.
- Homework assignment 5 will be posted tonight.
- No reading group this week, we'll do one next week.
- Go over mid-semester survey.

Overview of today's lecture

- Radiometric quantities.
- A little bit about color.
- Reflectance equation.
- Standard reflectance functions.

Slide credits

Most of these slides were directly adapted from:

- Wojciech Jarosz (Dartmouth).
- Todd Zickler (Harvard).
- Srinivasa Narasimhan (CMU).

Appearance

Appearance

"Physics-based" computer vision (a.k.a "inverse optics")

```
Our challenge: Invent computational representations of
shape, lighting, and reflectance that are efficient: simple
enough to make inference tractable, yet general enough to
capture the world's most important phenomena
```


$\mathbf{I} \Longleftrightarrow$ shape, illumination, reflectance

Example application: Photometric Stereo

Quantifying Light

Assumptions

Light sources, reflectance spectra, sensor sensitivity modeled separately at each wavelength

Geometric/ray optics
No polarization
No fluorescence, phosphorescence, ...

Radiometry

Radiometry studies the measurement of electromagnetic radiation, including visible light.

Radiometry

Assume light consists of photons with:

- X: Position
$-\vec{\omega}$: Direction of travel
$-\lambda$: Wavelength
Each photon has an energy of: $\frac{h c}{\lambda}$
$-h \approx 6.63 \times 10^{-34} \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$: Planck's constant
$-c=299,792,458 \mathrm{~m} / \mathrm{s}:$ speed of light in vacuum
- Unit of energy, Joule: $\quad\left[\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}\right]$

Radiometry

How do we measure the energy flow?

Radiometry

Basic quantities (depend on wavelength)

- flux Φ
- irradiance E
- radiosity B
- intensity I
- radiance L
will be the most important quantity for us

Flux (Radiant Flux, Power)

total amount of radiant energy passing through surface or space per unit time

$$
\Phi(A) \quad\left[\frac{\mathrm{J}}{\mathrm{~s}}=\mathrm{W}\right]
$$

examples:

- number of photons hitting a wall per second
- number of photons leaving a lightbulb per second (how do we quantify this exactly?)

Irradiance

area density of flux

flux per unit area arriving at a surface

$$
E(\mathbf{x})=\frac{\mathrm{d} \Phi(A)}{\mathrm{d} A(\mathbf{x})} \quad\left[\frac{\mathrm{W}}{\mathrm{~m}^{2}}\right]
$$

example:

- number of photons hitting a small patch of a wall per second, divided by size of patch

Radiosity (Radiant Exitance)

 area density of fluxflux per unit area leaving a surface

$$
B(\mathbf{x})=\frac{\mathrm{d} \Phi(A)}{\mathrm{d} A(\mathbf{x})} \quad\left[\frac{\mathrm{W}}{\mathrm{~m}^{2}}\right]
$$

example:

- number of photons reflecting off a small patch of a wall per second, divided by size of patch

Radiant Intensity

directional density of flux power (flux) per solid angle

$$
I(\vec{\omega})=\frac{\mathrm{d} \Phi}{\mathrm{~d} \vec{\omega}} \quad\left[\frac{\mathrm{~W}}{\mathrm{sr}}\right]
$$

Solid Angle

Angle

- circle: 2π radians

Solid angle

- sphere: 4π steradians

Subtended (Solid) Angle

Length/area of object's projection onto a unit circle/sphere

Solid angle

The solid angle subtended by a small surface patch with respect to point O is the area of its central projection onto the unit sphere about 0

Depends on:

- orientation of patch
- distance of patch

One can show:
" "surface foreshortening"
$d \omega=\frac{d A \cos \theta}{r^{2}}$
Units: steradians [sr]

Solid angle

To calculate solid angle subtended by a surface S relative to O you must add up (integrate) contributions from all tiny patches (nasty integral)

$$
\Omega=\iint_{S} \frac{\overrightarrow{\mathbf{r}} \cdot \hat{\mathbf{n}} d S}{|\overrightarrow{\mathbf{r}}|^{3}}
$$

One can show:

" "surface foreshortening"

$$
d \omega=\frac{d A \cos \theta}{r^{2}}
$$

Units: steradians [sr]

Radiant Intensity

directional density of flux power (flux) per solid angle

$$
\begin{aligned}
I(\vec{\omega}) & =\frac{\mathrm{d} \Phi}{\mathrm{~d} \vec{\omega}} \quad\left[\frac{\mathrm{~W}}{\mathrm{sr}}\right] \\
\Phi & =\int_{S^{2}} I(\vec{\omega}) \mathrm{d} \vec{\omega}
\end{aligned}
$$

example: $\Phi=4 \pi I \quad$ (for an isotropic point source)

- power per unit solid angle emanating from a point source

A hypothetical measurement device

Radiance

flux density per unit solid angle, per perpendicular unit area

$$
\begin{aligned}
L(\mathbf{x}, \vec{\omega}) & =\frac{d^{2} \Phi(A)}{d \vec{\omega} d A^{\perp}(\mathbf{x}, \vec{\omega})}\left[\frac{W}{m^{2} s r}\right] \\
& =\frac{d^{2} \Phi(A)}{d \vec{\omega} d A(\mathbf{x}) \cos \theta}
\end{aligned}
$$

Radiance

fundamental quantity for vision and graphics
remains constant along a ray (in vacuum only!)
incident radiance L_{i} at one point can be expressed as outgoing radiance L_{o} at another point

$$
L_{i}(\mathbf{x}, \omega)=L_{o}(\mathbf{y},-\omega)
$$

Overview of Quantities

- flux:

$$
\Phi(A)
$$

$$
\left[\frac{J}{s}=W\right] \frac{1}{2}
$$

- irradiance:

$$
E(\mathbf{x})=\frac{d \Phi(A)}{d A(\mathbf{x})}
$$

$$
\left[\frac{W}{m^{2}}\right]
$$

- radiosity:

$$
B(\mathbf{x})=\frac{d \Phi(A)}{d A(\mathbf{x})} \quad\left[\frac{W}{m^{2}}\right]
$$

- intensity:

$$
I(\vec{\omega})=\frac{d \Phi}{d \vec{\omega}}
$$

$$
\left[\frac{W}{s r}\right]
$$

- radiance:

$$
L(\mathbf{x}, \vec{\omega})=\frac{d^{2} \Phi(A)}{\cos \theta d A(\mathbf{x}) d \vec{\omega}}\left[\frac{W}{m^{2} s r}\right]
$$

Radiance

expressing irradiance in terms of radiance:

$$
\begin{aligned}
& L(\mathbf{x}, \vec{\omega})=\frac{d^{2} \Phi(A)}{\cos \theta d A(\mathbf{x}) d \vec{\omega}} \quad E(\mathbf{x})=\frac{d \Phi(A)}{d A(\mathbf{x})} \\
& L(\mathbf{x}, \vec{\omega})=\frac{d E(\mathbf{x})}{\cos \theta d \vec{\omega}} \\
& L(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega}=d E(\mathbf{x}) \\
& \int_{H^{2}} L(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega}=E(\mathbf{x}) \\
& \text { Integrate cosine-weighted } \\
& \text { radiance over hemisphere }
\end{aligned}
$$

Radiance

expressing irradiance in terms of radiance:

$$
\int_{H^{2}} L(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega}=E(\mathbf{x})
$$

expressing flux in terms of radiance:

$$
\begin{aligned}
& \qquad \int_{A} E(\mathbf{x}) d A(\mathbf{x})=\Phi(A) \quad E(\mathbf{x})=\frac{d \Phi(A)}{d A(\mathbf{x})} \\
& \int_{A} \int_{H^{2}} L(\mathbf{x}, \vec{\omega}) \cos \theta d \vec{\omega} d A(\mathbf{x})=\Phi(A) \\
& \text { Integrate cosine-weighted radiance } \\
& \text { over hemisphere and area }
\end{aligned}
$$

Radiance

Allows computing the radiant flux measured by any sensor

$$
\Phi(W, X)=\int_{X} \int_{W} L(\hat{\boldsymbol{\omega}}, x) \cos \theta d \boldsymbol{\omega} d A
$$

Cameras measure integrals of radiance (after a one-time radiometric calibration). So RAW pixel values are proportional to (integrals of) radiance.

- "Processed" images (like PNG and JPEG) are not linear radiance measurements!!

Computing spherical integrals

Express function using spherical coordinates:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} f(\theta, \phi) \mathrm{d} \theta \mathrm{~d} \phi \text { ? }
$$

Warning: this is not correct!

Differential Solid Angle

Differential area on the unit sphere around direction $\vec{\omega}$

$$
\begin{aligned}
d A & =(r d \theta)(r \sin \theta d \phi) \\
d \vec{\omega} & =\frac{d A}{r^{2}}=\sin \theta d \theta d \phi \\
\Omega & =\int_{S^{2}} d \vec{\omega}=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \phi=4 \pi
\end{aligned}
$$

Overview of Quantities

- flux:

$$
\Phi(A)
$$

$$
\left[\frac{J}{s}=W\right]
$$

- irradiance:

$$
E(\mathbf{x})=\frac{d \Phi(A)}{d A(\mathbf{x})}
$$

$$
\left[\frac{W}{m^{2}}\right]
$$

- radiosity:

$$
B(\mathbf{x})=\frac{d \Phi(A)}{d A(\mathbf{x})}
$$

$$
\left[\frac{W}{m^{2}}\right]
$$

- intensity:

$$
I(\vec{\omega})=\frac{d \Phi}{d \vec{\omega}}
$$

$$
\left[\frac{W}{s r}\right]
$$

- radiance:

$$
L(\mathbf{x}, \vec{\omega})=\frac{d^{2} \Phi(A)}{\cos \theta d A(\mathbf{x}) d \vec{\omega}}\left[\frac{W}{m^{2} s r}\right]
$$

Handling color

- Any light sensor (digital or not) has different sensitivity to different wavelengths.
- This is described by the sensor's spectral sensitivity function (SSF).
- When measuring some incident spectral flux, the sensor produces a scalar color response:

$$
\left.\underset{\substack{\text { sensor } \\ \text { response }}}{\longrightarrow} \int_{\lambda}^{\substack{\text { spectral flux sensor ssF } \\ \downarrow \\ \downarrow \\ \lambda}}\right) f(\lambda) d \lambda
$$

Handling color - the human eye

- The human eye is a collection of light sensors called cone cells.
- There are three types of cells with different spectral sensitivity functions.
- Human color perception is three-dimensional (tristimulus color).

cone distribution

$$
\begin{aligned}
& \text { "short" } \\
& \text { "medium" } M=\int_{\lambda} \Phi(\lambda) M(\lambda) d \lambda \\
& \text { "long" } \\
& L=\int_{\lambda} \Phi(\lambda) L(\lambda) d \lambda
\end{aligned}
$$

for normal vision

Handling color - photography

Two design choices:

- What spectral sensitivity functions $f(\lambda)$ to use for each color filter?
- How to spatially arrange ("mosaic") different color filters

Bayer mosaic

Why more green pixels?

SSF for Canon 50D

Generally do not match human LMS.

$f(\lambda)$

Radiometry versus photometry

- All radiometric quantities have equivalents in photometry
- Photometry: accounts for response of human visual system to electromagnetic radiation
- Luminance (Y) is photometric quantity that corresponds to radiance: integrate radiance over
 all wavelengths, weight by eye's luminous efficacy curve, e.g.:

$$
Y(\mathrm{p}, \omega)=\int_{0}^{\infty} L(\mathrm{p}, \omega, \lambda) V(\lambda) \mathrm{d} \lambda
$$

Radiometry versus photometry

Physics	Radiometry	Photometry
Energy	Radiant Energy	Luminous Energy
Flux (Power)	Radiant Power	Luminous Power
Flux Density	Irradiance (incoming) Radiosity (outgoing)	Illuminance (incoming) Luminosity (outgoing)
Angular Flux Density	Radiance	Luminance
Intensity	Radiant Intensity	Luminous Intensity

Radiometry versus photometry

Photometry	MKS	CGS	British
Luminous Energy	Talbot	Talbot	Talbot
Luminous Power	Lumen	Lumen	Lumen
Illuminance Luminosity	Lux	Phot	Footcandle
Luminance	Nit, Apostlib, Blondel	Stilb Lambert	Footlambert
Luminous Intensity	Candela	Candela	Candela

Modern LED light

Input power: 11 W
Output: 815 lumens
(~ 80 lumens / Watt)

Incandescent bulbs:
~15 lumens/ Watt)

Reflection equation

Light-Material Interactions

The BRDF

Bidirectional Reflectance Distribution Function

- how much light gets scattered from one direction into each other direction
- formally: ratio of outgoing radiance to incident irradiance

(2)

The reflection equation

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{\mathrm{H}^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

Where does the

This describes a local illumination model

Motivation

BRDF Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

$$
\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i} \leq 1, \quad \forall \vec{\omega}_{r}
$$

Where does the cosine come from?

Helmholtz Reciprocity

BRDFs Properties

Real/physically-plausible BRDFs obey:

- Energy conservation

$$
\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i} \leq 1, \quad \forall \vec{\omega}_{r}
$$

- Helmholtz reciprocity

$$
\begin{gathered}
f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right)=f_{r}\left(\mathbf{x}, \vec{\omega}_{r}, \vec{\omega}_{i}\right) \\
f_{r}\left(\mathbf{x}, \vec{\omega}_{i} \leftrightarrow \vec{\omega}_{r}\right)
\end{gathered}
$$

BRDFs Properties

If the BRDF is unchanged as the material is rotated around the normal, then it is isotropic, otherwise it is anisotropic.

Isotropic BRDFs are functions of just 3 variables

$$
\left(\theta_{i}, \theta_{r}, \Delta \phi\right)
$$

Isotropic vs Anisotropic Reflection

Idealized materials

Diffuse reflection

Diffuse reflection

Lambertian reflection

Also called ideal diffuse reflection

BRDF for ideal diffuse reflection?

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$
\begin{gathered}
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} \frac{f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right)}{} L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i} \\
\text { Scatters light equal in all directions } \\
\text { BRDF is a constant }
\end{gathered}
$$

Ideal Diffuse BRDF

For Lambertian reflection, the BRDF is a constant:

Note: we can

$$
\begin{aligned}
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right) & =\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i} \\
L_{r}(\mathbf{x}) & =f_{r} \int_{H^{2}} L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
\end{aligned}
$$ drop ω_{r}

$$
L_{r}(\mathbf{x})=f_{r} E(\mathbf{x})
$$

If all incoming light is reflected:

Note: can also be derived from energy
conservation

$$
E(\mathbf{x})=B(\mathbf{x})
$$

$$
\begin{aligned}
& E(\mathbf{x})=\int_{H^{2}} L_{r}(\mathbf{x}) \cos \theta d \vec{\omega} \\
& E(\mathbf{x})=L_{r}(\mathbf{x}) \int_{H^{2}} \cos \theta d \vec{\omega} \\
& E(\mathbf{x})=L_{r}(\mathbf{x}) \pi
\end{aligned}
$$

Diffuse BRDF

For Lambertian reflection, the BRDF is a constant:

$$
\begin{aligned}
L_{r}\left(\mathrm{x}, \vec{\omega}_{r}\right) & =\int_{H^{2}} f_{r}\left(\mathrm{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathrm{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i} \\
L_{r}(\mathbf{x}) & =\frac{\rho}{\pi} \int_{H^{2}} L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} d \vec{\omega}_{i}
\end{aligned}
$$

ρ : Diffuse reflectance (albedo) [0...1)

Specular/Mirror reflection

Mirror reflection

What two properties defined reflection direction?

Mirror reflection

What two properties defined reflection direction?

- co-planar view direction, reflected direction, and normal direction
- equal angles between normal-view directions, and normal-reflected directions

Mirror reflection

Mirror reflection

Mirror reflection

Mirror reflection

Specular BRDF?

Reflected radiance is a (hemi)spherical integral of incident radiance from all directions

$$
\begin{gathered}
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) \\
i
\end{gathered} L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

What is the BRDF for specular reflection/refraction?

Dirac delta functions

$$
\int_{-\infty}^{\infty} f(x) \delta(x-a) \mathrm{d} x=f(a)
$$

Note: careful when performing changes of variables in Dirac delta functions!

BRDF of Ideal Specular Reflection

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{\mathrm{H}^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

What is the BRDF for specular reflection?

Specular refraction

Reflection vs. Refraction

The BSDF

Bidirectional Scattering Distribution Function

- informally: how much the material scatters light coming from one direction \mathbf{l} into some other direction \mathbf{v}, at each point \mathbf{p}

Refraction

Refraction

Index of Refraction

Speed of light in vacuum / speed of light in medium

Some values of	
Vacuum	1
Air at STP	1.00029
Ice	1.31
Water	1.33
Crown glass	$1.52-1.65$
Diamond	2.417

These are actually wavelength dependent!

Dispersion

Double rainbow all the way across the sky!

Dispersion: "Halos" and "Sun dogs"

Halos and Sundogs

Sundogs are produced by hexagonal plate shaped ice crystals drifting with their large faces nearly horizontal.

Sundograys pass through crystal faces inclined 60 to each other.

Rays are deviated by 22° or more. Red is deviated least, giving the 'dog' a redinner edge.

All crystals refract the sun's rays but we see only those that glint the ir light towards our eyes. They are the crystals that, to us, are 22° or more from the sur and at the same altitude. Their collective glints form the sundogs.

Specular transmission/refraction

 Snell's law
$\eta_{1} \sin \theta_{1}=\eta_{2} \sin \theta_{2}$

Specular transmission/refraction

 Snell's law

What is this dark circle?

What is this dark circle?

Called
"Snell's window"
Caused by total internal reflection

Recall...

Snell's law

Can only happen when the ray starts in the higher index medium

Total Internal Reflection

Total Internal Reflection

Total Internal Reflection

BTDF of Ideal Specular Refraction

$$
L_{r}\left(\mathbf{x}, \vec{\omega}_{r}\right)=\int_{H^{2}} f_{r}\left(\mathbf{x}, \vec{\omega}_{i}, \vec{\omega}_{r}\right) L_{i}\left(\mathbf{x}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \vec{\omega}_{i}
$$

What is the BTDF for specular refraction?

Reflection vs. Refraction

How much light is reflected vs. refracted?

- in reality determined by "Fresnel equations"

Fresnel Equations

Reflection and refraction from smooth dielectric (e.g. glass) surfaces

Reflection from conducting (e.g. metal) surfaces
Derived from Maxwell equations
Involves polarization of the wave

Fresnel Equations for Dielectrics

Reflection of light polarized parallel and perpendicular to the plane of refraction

$$
\begin{aligned}
\rho_{\|} & =\frac{\eta_{2} \cos \theta_{1}-\eta_{1} \cos \theta_{2}}{\eta_{2} \cos \theta_{1}+\eta_{1} \cos \theta_{2}} \\
\rho_{\perp} & =\frac{\eta_{1} \cos \theta_{1}-\eta_{2} \cos \theta_{2}}{\eta_{1} \cos \theta_{1}+\eta_{2} \cos \theta_{2}}
\end{aligned}
$$

reflected: $\quad F_{r}=\frac{1}{2}\left(\rho_{\| \mid}^{2}+\rho_{\perp}^{2}\right)$
refracted: $\quad F_{t}=1-F_{r}$

What's happening in this photo?

Polarizing Filter

Polarization

Without Polarizer

With Polarizing Filter

Polarization

Without Polarizer
With Polarizing Filter

So Far: Idealized BRDF Models

 Diffuse

Specular Reflection and Refraction

Real-world materials
Metals

Real-world materials
Metals

Real materials are more complex

Phong BRDF

Reflection direction distributed over an exponentiated cosine lobe:

$$
\begin{aligned}
f_{r}\left(\vec{\omega}_{o}, \vec{\omega}_{i}\right) & =\frac{e+2}{2 \pi}\left(\vec{\omega}_{r} \cdot \vec{\omega}_{o}\right)^{e} \\
\vec{\omega}_{r} & =\left(2 \overrightarrow{\mathbf{n}}\left(\overrightarrow{\mathbf{n}} \cdot \vec{\omega}_{i}\right)-\vec{\omega}_{i}\right)
\end{aligned}
$$

Blinn-Phong BRDF

Distribution of normals instead of reflection directions

$$
\begin{aligned}
f_{r}\left(\vec{\omega}_{0}, \vec{\omega}_{i}\right) & =\frac{e+2}{2 \pi}\left(\vec{\omega}_{h} \cdot \overrightarrow{\mathbf{n}}\right)^{e} \\
\vec{\omega}_{h} & =\frac{\vec{\omega}_{i}+\vec{\omega}_{0}}{\left\|\vec{\omega}_{i}+\vec{\omega}_{0}\right\|}
\end{aligned}
$$

Microfacet Theory

Key idea:

- transition from individual interactions to statistical averages

Microfacet Theory

Assume surface consists of tiny facets
Assume that the differential area being viewed/illuminated is relatively large compared to the size of microfacets

A facet can be perfectly specular or diffuse

General Microfacet Model

GGX and Beckmann

anti-glare (Beckman, $\alpha_{b}=0.023$)

ground (GGX, $\left.\alpha_{g}=0.394\right)$

etched (GGX, $\left.\alpha_{g}=0.553\right)$

Interesting grazing angle behavior

Extension: Anisotropic Reflection

The Oren-Nayar Model

Same concept as the microfacet models, but assumes that the facets are diffuse

Shadowing/masking + interreflections
No analytic solution; fitted approximation

$$
\begin{array}{rlrl}
f_{r}\left(\vec{\omega}_{o}, \vec{\omega}_{i}\right) & =\frac{\rho}{\pi}\left(A+B \max \left(0, \cos \left(\phi_{i}-\phi_{o}\right)\right) \sin \alpha \tan \beta\right) \\
A & =1-\frac{\sigma^{2}}{2\left(\sigma^{2}+0.33\right)} & B & =\frac{0.45 \sigma^{2}}{\sigma^{2}+0.09} \\
\alpha & =\max \left(\theta_{i}, \theta_{o}\right) & \beta & =\min \left(\theta_{i}, \theta_{o}\right)
\end{array}
$$

Ideal Lambertian is just a special case $(\sigma=0)$

Measuring BRDFs

Measuring BRDFs

The MERL Database

"A Data-Driven Reflectance Model"
Wojciech Matusik, Hanspeter Pfister, Matt Brand and Leonard McMillan.
ACM Transactions on Graphics 22, 3(2003), 759-769.

- http://www.merl.com/brdf/

