
Gradient-domain image processing

15-463, 15-663, 15-862
Computational Photography

Fall 2022, Lecture 09http://graphics.cs.cmu.edu/courses/15-463

1

Course announcements

• Homework assignment 3 is out.
- Due October 17th.
- Generous bonus components.

• Extra reading group this Friday on color.

2

Overview of today’s lecture
• Leftover from bilateral filtering.

• Gradient-domain image processing.

• Basics on images and gradients.

• Integrable vector fields.

• Poisson blending.

• A more efficient Poisson solver.

• Poisson image editing examples.

• Flash/no-flash photography.

• Gradient-domain rendering and cameras.

3

Slide credits

Many of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).
• Fredo Durand (MIT).
• James Hays (Georgia Tech).
• Amit Agrawal (MERL).
• Jaakko Lehtinen (Aalto University).

4

Gradient-domain image processing

5

Application: Poisson blending

originals copy-paste Poisson blending

6

7

More applications

Removing Glass Reflections

Seamless Image Stitching

8

Yet more applications

Tonemapping

Fusing day and night photos

9

Entire suite of image editing tools

10

Main pipeline

Estimation
of Gradients

Manipulation of
Gradients

Edited
Gradient Fields

Integration of
Gradient Fields Edited ImagesOriginal Images

Basics of gradients and fields

11

12

Some vector calculus definitions in 2D
Scalar field: a function assigning a scalar to every point in space.

𝐼𝐼 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ

Vector field: a function assigning a vector to every point in space.

𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ2

Can you think of examples of scalar fields and vector fields?

13

Some vector calculus definitions in 2D
Scalar field: a function assigning a scalar to every point in space.

Vector field: a function assigning a vector to every point in space.

Can you think of examples of scalar fields and vector fields?
• A grayscale image is a scalar field.
• A two-channel image is a vector field.
• A three-channel (e.g., RGB) image is also a vector field, but of higher-dimensional range

than what we will consider here.

𝐼𝐼 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ

𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ2

14

Some vector calculus definitions in 2D
Nabla (or del): vector differential operator.

∇ =
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

Think of this as
a 2D vector.

15

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

Gradient (grad): product of nabla with a scalar field.

Curl: cross product of nabla with a vector field.

∇𝐼𝐼 𝑥𝑥,𝑦𝑦 = ?

∇ � 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 = ?

∇ × 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 = ?

Think of this as
a 2D vector.

16

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

Gradient (grad): product of nabla with a scalar field.

∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

∇ � 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 +
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

Curl: cross product of nabla with a vector field.

∇ × 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 −
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦 �𝑘𝑘

What is the
dimension of this?

Think of this as
a 2D vector.

What is the
dimension of this?

What is the
dimension of this?

17

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

Gradient (grad): product of nabla with a scalar field.

∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

∇ � 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 +
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

Curl: cross product of nabla with a vector field.

∇ × 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 −
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦 �𝑘𝑘

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.

18

Some vector calculus definitions in 2D

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

∇ =
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

Gradient (grad): product of nabla with a scalar field.

∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

∇ � 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 +
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

Curl: cross product of nabla with a vector field.

∇ × 𝑢𝑢 𝑥𝑥,𝑦𝑦 𝑣𝑣 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 −
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦 �𝑘𝑘

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.
This is a scalar field.

19

Combinations

Divergence of the gradient:

Curl of the gradient:

∇ � ∇𝐼𝐼 𝑥𝑥,𝑦𝑦 = ?

∇ × ∇𝐼𝐼 𝑥𝑥,𝑦𝑦 = ?

20

Combinations

Divergence of the gradient:

Curl of the gradient:

∇ � ∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2

𝜕𝜕𝑥𝑥2
𝐼𝐼 𝑥𝑥,𝑦𝑦 +

𝜕𝜕2

𝜕𝜕𝑦𝑦2
𝐼𝐼 𝑥𝑥,𝑦𝑦 ≡ ∆𝐼𝐼 𝑥𝑥,𝑦𝑦

∇ × ∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2

𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥
𝐼𝐼 𝑥𝑥,𝑦𝑦 −

𝜕𝜕2

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
𝐼𝐼 𝑥𝑥,𝑦𝑦

Laplacian: scalar differential operator.

∆ ≡ ∇ � ∇ =
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
Inner product of
del with itself!

21

Simplified notation

Divergence: inner product of nabla with a vector field.

Nabla (or del): vector differential operator.

Gradient (grad): product of nabla with a scalar field.

Curl: cross product of nabla with a vector field.

This is a
vector field.

Think of this as
a 2D vector.

This is a
scalar field.

This is a vector field.
This is a scalar field.

∇ = 𝑥𝑥 𝑦𝑦

∇𝐼𝐼 = 𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦

∇ � 𝑢𝑢 𝑣𝑣 = 𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦

∇ × 𝑢𝑢 𝑣𝑣 = 𝑣𝑣𝑥𝑥 − 𝑢𝑢𝑦𝑦 �𝑘𝑘

22

Simplified notation

Divergence of the gradient:

Curl of the gradient:

∇ � ∇𝐼𝐼 = 𝐼𝐼𝑥𝑥𝑥𝑥 + 𝐼𝐼𝑦𝑦𝑦𝑦 ≡ ∆𝐼𝐼

∇ × ∇𝐼𝐼 = 𝐼𝐼𝑦𝑦𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑦𝑦

Laplacian: scalar differential operator.

∆ ≡ ∇ � ∇ =
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
Inner product of
del with itself!

23

Image representation
We can treat grayscale images as scalar fields (i.e., two dimensional functions)

𝐼𝐼 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ

24

Image gradients
Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼𝐼 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ ∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

25

Image gradients
Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼𝐼 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ ∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

• How do we do this differentiation in real discrete images?

Finite differences
26

What convolution kernel
does this correspond to?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = lim
ℎ→0

𝐼𝐼 𝑥𝑥 + ℎ,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦
ℎ

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = 𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦

Finite differences
27

?
?

High-school reminder: definition of a derivative using forward difference.

For discrete scalar fields: remove limit and set h = 1.

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = lim
ℎ→0

𝐼𝐼 𝑥𝑥 + ℎ,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦
ℎ

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = 𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦 1 -1

-1 1

Finite differences
High-school reminder: definition of a derivative using forward difference.

28

For discrete scalar fields: remove limit and set h = 1.

partial-x derivative filter

Note: common to use central difference, but we will not use it in this lecture.

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 =
𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 − 𝐼𝐼 𝑥𝑥 − 1,𝑦𝑦

2

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = lim
ℎ→0

𝐼𝐼 𝑥𝑥 + ℎ,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦
ℎ

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = 𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦 1 -1

Finite differences
High-school reminder: definition of a derivative using forward difference.

29

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = lim
ℎ→0

𝐼𝐼 𝑥𝑥 + ℎ,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦
ℎ

For discrete scalar fields: remove limit and set h = 1.

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = 𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 − 𝐼𝐼 𝑥𝑥,𝑦𝑦 1 -1

partial-x derivative filter

Similarly for partial-y derivative.

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 + ℎ − 𝐼𝐼 𝑥𝑥,𝑦𝑦 1
-1

partial-y derivative filter

Discrete Laplacian
How do we compute the image Laplacian?

30

∆𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

𝑥𝑥,𝑦𝑦 +
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

𝑥𝑥,𝑦𝑦

Discrete Laplacian
How do we compute the image Laplacian?

31

∆𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

𝑥𝑥,𝑦𝑦 +
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

𝑥𝑥,𝑦𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * = ?

What is this? What is this?

Discrete Laplacian
How do we compute the image Laplacian?

32

∆𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

𝑥𝑥,𝑦𝑦 +
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

𝑥𝑥,𝑦𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

𝑥𝑥,𝑦𝑦
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

𝑥𝑥,𝑦𝑦

Discrete Laplacian
How do we compute the image Laplacian?

33

∆𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

𝑥𝑥,𝑦𝑦 +
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

𝑥𝑥,𝑦𝑦

Use multiple applications of the discrete derivative filters:

1 -1 1 -1 1
-1

1
-1* + * =

0 1 0
1 -4 1
0 1 0

Laplacian filter

𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

𝑥𝑥,𝑦𝑦
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

𝑥𝑥,𝑦𝑦

Very important to:
• use consistent derivative

and Laplacian filters.
• account for boundary

shifting and padding
from convolution.

Very important for the techniques discussed in this lecture to:
• use consistent derivative and Laplacian filters.
• account for boundary shifting and padding from convolution.
A correct implementation of differential operators should pass the following test:

Warning!
34

Equality holds at all pixels except boundary
(first and last row, first and last column).

=∇ � ∇

Laplacian operatorgradient operator

divergence operator

∆

Typically requires implementing derivatives
in various differential operators differently.

35

Image gradients
Convert the scalar field into a vector field through differentiation.

scalar field vector field𝐼𝐼 𝑥𝑥,𝑦𝑦 :ℝ2 → ℝ ∇𝐼𝐼 𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?

36

Vector field integration
Two fundamental questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

Integrable vector fields

37

38

Integrable fields
Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = 𝑢𝑢(𝑥𝑥,𝑦𝑦)

𝐼𝐼 𝑥𝑥,𝑦𝑦 : ℝ2 → ℝ 𝑣𝑣 𝑥𝑥,𝑦𝑦 : ℝ2 → ℝ𝑢𝑢 𝑥𝑥,𝑦𝑦 : ℝ2 → ℝ

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦 = 𝑣𝑣(𝑥𝑥,𝑦𝑦)

?

39

Property of twice-differentiable functions

Curl of the gradient field equals zero:

What does that mean intuitively?

∇ × ∇𝐼𝐼 = 𝐼𝐼𝑦𝑦𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑦𝑦 = 0

40

Property of twice-differentiable functions

Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇ × ∇𝐼𝐼 = 𝐼𝐼𝑦𝑦𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑦𝑦 = 0

𝐼𝐼𝑦𝑦𝑥𝑥 = 𝐼𝐼𝑥𝑥𝑦𝑦

41

Demonstration

=

∇ × ∇𝐼𝐼∆𝐼𝐼

𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦

𝐼𝐼𝑥𝑥𝑦𝑦 𝐼𝐼𝑦𝑦𝑥𝑥

image 𝐼𝐼

42

Property of twice-differentiable functions

Curl of the gradient field should be zero:

What does that mean intuitively?
• Same result independent of order of differentiation.

∇ × ∇𝐼𝐼 = 𝐼𝐼𝑦𝑦𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑦𝑦 = 0

𝐼𝐼𝑦𝑦𝑥𝑥 = 𝐼𝐼𝑥𝑥𝑦𝑦

Can you use this property to derive an integrability condition?

43

Integrable fields
Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦 = 𝑢𝑢(𝑥𝑥,𝑦𝑦)

𝐼𝐼 𝑥𝑥,𝑦𝑦 : ℝ2 → ℝ 𝑣𝑣 𝑥𝑥,𝑦𝑦 : ℝ2 → ℝ𝑢𝑢 𝑥𝑥,𝑦𝑦 : ℝ2 → ℝ

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦 = 𝑣𝑣(𝑥𝑥,𝑦𝑦)

?

∇ × 𝑢𝑢 𝑥𝑥,𝑦𝑦
𝑣𝑣 𝑥𝑥,𝑦𝑦 = 0 ⇒

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

𝑥𝑥,𝑦𝑦 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

𝑥𝑥,𝑦𝑦

Only if:

44

Vector field integration
Two fundamental questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?

45

Different types of integration problems

• Reconstructing height fields from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.

A prototypical integration problem: Poisson blending

46

Application: Poisson blending

originals copy-paste Poisson blending

47

When blending, retain the gradient information as best as possible

4
8

Key idea

source destination copy-paste Poisson blending

Definitions and notation

add image
here

Which one is the unknown?

49

𝑔𝑔: source function

Ω: destination domain

𝑓𝑓: interpolant function

𝑓𝑓∗: destination function

Notation

𝑆𝑆: destination

Definitions and notation

add image
here

50

𝑔𝑔: source function

Ω: destination domain

𝑓𝑓: interpolant function

𝑓𝑓∗: destination function

Notation

𝑆𝑆: destination

How should we determine 𝑓𝑓?
• Should it be similar to 𝑔𝑔?
• Should it be similar to 𝑓𝑓∗?

Definitions and notation

add image
here

Find 𝑓𝑓 such that:
• ∇𝑓𝑓 = ∇𝑔𝑔 inside Ω.
• 𝑓𝑓 = 𝑓𝑓∗ at the boundary 𝜕𝜕Ω.

51

𝑆𝑆: destination

𝑔𝑔: source function

Ω: destination domain

𝑓𝑓: interpolant function

𝑓𝑓∗: destination function

Notation

Poisson blending: integrate vector
field ∇𝑔𝑔 with Dirichlet boundary

conditions 𝑓𝑓∗.

Least-squares integration and the Poisson problem

52

Variational problem

what does this
term do?

what does this
term do?

Nabla operator definition

Recall ...

Least-squares integration

is this known?

“Variational” means
optimization where
the unknown is an

entire function

53

Variational problem

gradient of f looks
like vector field v

f is equivalent to f*
at the boundaries

Least-squares integration

Yes, this is the vector
field we are integrating

“Variational” means
optimization where
the unknown is an

entire function

54

Nabla operator definition

Recall ...

Why do we need
boundary conditions

for least-squares
integration?

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Equivalently

Divergence

what does this term do?

55

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the: This can be
derived

using the
Euler-

Lagrange
equation.

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Equivalently

Divergence

Laplacian of f same as
divergence of vector field v

56

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the: This can be
derived

using the
Euler-

Lagrange
equation.

Poisson equation (with Dirichlet boundary conditions)

In the Poisson blending example…
57

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

Find 𝑓𝑓 such that:
• ∇𝑓𝑓 = ∇𝑔𝑔 inside Ω.
• 𝑓𝑓 = 𝑓𝑓∗ at the boundary 𝜕𝜕Ω.

Poisson equation (with Dirichlet boundary conditions)

In the Poisson blending example…
58

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

Find 𝑓𝑓 such that:
• ∇𝑓𝑓 = ∇𝑔𝑔 inside Ω.
• 𝑓𝑓 = 𝑓𝑓∗ at the boundary 𝜕𝜕Ω.

What does the divergence of the input
vector field equal in Poisson blending?

Poisson equation (with Dirichlet boundary conditions)

In the Poisson blending example…
59

What does the input vector field equal
in Poisson blending?

The stationary point of the variational loss is the solution to the:

Find 𝑓𝑓 such that:
• ∇𝑓𝑓 = ∇𝑔𝑔 inside Ω.
• 𝑓𝑓 = 𝑓𝑓∗ at the boundary 𝜕𝜕Ω.

What does the divergence of the input
vector field equal in Poisson blending?

so make these ...

equal

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Equivalently

Divergence

60

Recall ...

Input vector field:

The stationary point of the variational loss is the solution to the:

How do we solve the Poisson equation?

∆𝑓𝑓 𝑥𝑥,𝑦𝑦 = ∇ � 𝐯𝐯 𝑥𝑥,𝑦𝑦

Poisson equation (with Dirichlet boundary conditions)

Discretization of the Poisson equation

So for each pixel, do:

Or for discrete images:

61

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

∆𝑓𝑓 𝑥𝑥,𝑦𝑦 = ∇ � 𝐯𝐯 𝑥𝑥,𝑦𝑦

Poisson equation (with Dirichlet boundary conditions)

Discretization of the Poisson equation

So for each pixel, do:

Or for discrete images:

62

−4𝑓𝑓 𝑥𝑥,𝑦𝑦 + 𝑓𝑓 𝑥𝑥 + 1,𝑦𝑦 + 𝑓𝑓 𝑥𝑥 − 1,𝑦𝑦
+𝑓𝑓 𝑥𝑥,𝑦𝑦 + 1 + 𝑓𝑓 𝑥𝑥,𝑦𝑦 − 1

= 𝑢𝑢 𝑥𝑥 + 1,𝑦𝑦 − 𝑢𝑢 𝑥𝑥,𝑦𝑦 + 𝑣𝑣 𝑥𝑥,𝑦𝑦 + 1
− 𝑣𝑣 𝑥𝑥,𝑦𝑦

1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

∆𝑓𝑓 𝑝𝑝 = ∇ � 𝐯𝐯 𝑝𝑝

Poisson equation (with Dirichlet boundary conditions)

Discretization of the Poisson equation

So for each pixel, do (more compact notation):

Or for discrete images (more compact notation):

63

−4𝑓𝑓𝑝𝑝 + �
𝑞𝑞∈𝑁𝑁𝑝𝑝

𝑓𝑓𝑞𝑞 = 𝑢𝑢𝑥𝑥 𝑝𝑝 + 𝑣𝑣𝑦𝑦 𝑝𝑝
1 -1

1
-1

0 1 0
1 -4 1
0 1 0

Laplacian
filter

partial-x
derivative filter

Recall ...

partial-y
derivative filter

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …, P

We can rewrite this as
64

−4𝑓𝑓𝑝𝑝 + �
𝑞𝑞∈𝑁𝑁𝑝𝑝

𝑓𝑓𝑞𝑞 = 𝑢𝑢𝑥𝑥 𝑝𝑝 + 𝑣𝑣𝑦𝑦 𝑝𝑝

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

𝐴𝐴 𝑓𝑓 𝑏𝑏

(each pixel adds another ‘sparse’ row here)

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

𝐴𝐴 𝑓𝑓 𝑏𝑏

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …, P

We can rewrite this as

what is this?

65

−4𝑓𝑓𝑝𝑝 + �
𝑞𝑞∈𝑁𝑁𝑝𝑝

𝑓𝑓𝑞𝑞 = 𝑢𝑢𝑥𝑥 𝑝𝑝 + 𝑣𝑣𝑦𝑦 𝑝𝑝

what are the sizes of these?

(each pixel adds another ‘sparse’ row here)

⋮
0 ⋯ 1 ⋯ 1 −4 1 ⋯ 1 ⋯ 0

⋮
�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

𝐴𝐴 𝑓𝑓 𝑏𝑏

In vector form:

linear equation
of P variables

one for each
pixel p = 1, …, P

We can rewrite this as
66

−4𝑓𝑓𝑝𝑝 + �
𝑞𝑞∈𝑁𝑁𝑝𝑝

𝑓𝑓𝑞𝑞 = 𝑢𝑢𝑥𝑥 𝑝𝑝 + 𝑣𝑣𝑦𝑦 𝑝𝑝

We call this the
Laplacian matrix

(each pixel adds another ‘sparse’ row here)

𝐷𝐷𝑚𝑚×𝑚𝑚 =

−4 1 0 0 0 ⋯ 0
1 −4 1 0 0 ⋯ 0
0 1 −4 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 −4 1 0
0 ⋯ ⋯ 0 1 −4 1
0 ⋯ ⋯ ⋯ 0 1 −4

Laplacian matrix
67

For a 𝑚𝑚 × 𝑛𝑛 image, we can re-organize this matrix into block tridiagonal form as:

𝐴𝐴𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚 =

𝐷𝐷 𝐼𝐼 0 0 0 ⋯ 0
𝐼𝐼 𝐷𝐷 𝐼𝐼 0 0 ⋯ 0
0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0
0 ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼
0 ⋯ ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷

This requires ordering pixels in
column-major order.

𝐼𝐼𝑚𝑚×𝑚𝑚 is the𝑚𝑚 × 𝑚𝑚
identity matrix

Poisson equation (with Dirichlet boundary conditions)

Discrete Poisson equation
68

𝐴𝐴𝑓𝑓 = 𝑏𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

𝐷𝐷 𝐼𝐼 0 0 0 ⋯ 0
𝐼𝐼 𝐷𝐷 𝐼𝐼 0 0 ⋯ 0
0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0
0 ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼
0 ⋯ ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷

�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

Linear system of equations:

How would you solve this?

Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to
compute the inverse of a matrix.

69

Poisson equation (with Dirichlet boundary conditions)

Discrete the Poisson equation
70

𝐴𝐴𝑓𝑓 = 𝑏𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

Linear system of equations:

What is the size of this matrix?

𝐷𝐷 𝐼𝐼 0 0 0 ⋯ 0
𝐼𝐼 𝐷𝐷 𝐼𝐼 0 0 ⋯ 0
0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0
0 ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼
0 ⋯ ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷

�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

Poisson equation (with Dirichlet boundary conditions)

Discrete Poisson equation
71

𝐴𝐴𝑓𝑓 = 𝑏𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

Linear system of equations:𝐷𝐷 𝐼𝐼 0 0 0 ⋯ 0
𝐼𝐼 𝐷𝐷 𝐼𝐼 0 0 ⋯ 0
0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0
0 ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼
0 ⋯ ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷

�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

Matrix is 𝑃𝑃 × 𝑃𝑃 → billions of entries

72

Integration procedures

• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
…

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.

A more efficient Poisson solver

73

Variational problem

gradient of f looks
like vector field v

f is equivalent to f*
at the boundaries

Let’s look again at our optimization problem
74

Nabla operator definition

Recall ...

Input vector field:

Variational problem

gradient of f looks
like vector field v

f is equivalent to f*
at the boundaries

Let’s look again at our optimization problem
75

Nabla operator definition

Recall ...

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Input vector field:

Discrete problem
What are G, f, and v?

Let’s look again at our optimization problem

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
𝑓𝑓

𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

76

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Nabla operator definition

Recall ...

Discrete problem
matrix G formed by stacking
together discrete gradients

Let’s look again at our optimization problem

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
𝑓𝑓

𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ...

77

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

Discrete problem
matrix G formed by stacking
together discrete gradients

Let’s look again at our optimization problem

We can use the
gradient

approximation to
discretize the

variational problem

min
𝑓𝑓

𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ...

78

1 -1

1
-1

partial-x
derivative filter

partial-y
derivative filter

And for discrete images:

How do we solve
this optimization

problem?

Approach 1: Compute stationary points
Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

… we compute its derivative:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

=?

79

Approach 1: Compute stationary points
Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

… we compute its derivative:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑇𝑇𝑣𝑣

… and we do what with it?

80

Approach 1: Compute stationary points
Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

… we compute its derivative:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑇𝑇𝑣𝑣

… and we set that to zero:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 0 ⇒ 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 = 𝐺𝐺𝑇𝑇𝑣𝑣
What is this matrix?

What is this vector?

81

Approach 1: Compute stationary points
Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

… we compute its derivative:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑇𝑇𝑣𝑣

… and we set that to zero:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 0 ⇒ 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 = 𝐺𝐺𝑇𝑇𝑣𝑣
It is equal to the

Laplacian matrix A we
derived previously!

It is equal to the vector
b we derived previously!

82

Poisson equation (with Dirichlet boundary conditions)

Reminder from variational case
83

𝐴𝐴𝑓𝑓 = 𝑏𝑏

After discretization, equivalent to:

Linear system of equations:

We arrive at the same system, no matter whether we discretize the
continuous Poisson equation or the variational optimization problem.

Same system as:
𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 = 𝐺𝐺𝑇𝑇𝑣𝑣

𝐷𝐷 𝐼𝐼 0 0 0 ⋯ 0
𝐼𝐼 𝐷𝐷 𝐼𝐼 0 0 ⋯ 0
0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0
0 ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼
0 ⋯ ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷

�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

Approach 1: Compute stationary points
Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

… we compute its derivative:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑇𝑇𝑣𝑣

… and we set that to zero:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 0 ⇒ 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 = 𝐺𝐺𝑇𝑇𝑣𝑣
Solving this is exactly as
expensive as what we

had before.

84

Approach 2: Use gradient descent
Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

… we compute its derivative:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑇𝑇𝑣𝑣 = 𝐴𝐴𝑓𝑓 − 𝑏𝑏 ≡ −𝑟𝑟 We call this term
the residual

85

Approach 2: Use gradient descent
Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

… we compute its derivative:

𝜕𝜕𝐸𝐸
𝜕𝜕𝑓𝑓

= 𝐺𝐺𝑇𝑇𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑇𝑇𝑣𝑣 = 𝐴𝐴𝑓𝑓 − 𝑏𝑏 ≡ −𝑟𝑟

… and then we iteratively compute a solution:

𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖
are positive step sizesη𝑖𝑖

for i = 0, 1, …, N, where

86

We call this term
the residual

Selecting optimal step sizes

Make derivative of loss function with respect to equal to zero:η𝑖𝑖

𝐸𝐸 𝑓𝑓𝑖𝑖+1 = 𝐺𝐺 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖 − 𝑣𝑣 2

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

87

Selecting optimal step sizes

Make derivative of loss function with respect to equal to zero:η𝑖𝑖

𝐸𝐸 𝑓𝑓𝑖𝑖+1 = 𝐺𝐺 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖 − 𝑣𝑣 2

𝜕𝜕𝐸𝐸 𝑓𝑓𝑖𝑖+1

𝜕𝜕η𝑖𝑖
= 𝑏𝑏 − 𝐴𝐴 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖 𝑇𝑇𝑟𝑟𝑖𝑖 = 0 ⇒ η𝑖𝑖 =

𝑟𝑟𝑖𝑖 𝑇𝑇𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖 𝑇𝑇𝐴𝐴𝑟𝑟𝑖𝑖

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

88

Gradient descent

Minimize by iteratively computing:

𝑟𝑟𝑖𝑖 = 𝑏𝑏 − 𝐴𝐴𝑓𝑓𝑖𝑖, η𝑖𝑖 = 𝑟𝑟𝑖𝑖
𝑇𝑇
𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖 𝑇𝑇𝐴𝐴𝑟𝑟𝑖𝑖
, 𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖, 𝑖𝑖 = 0, … ,𝑁𝑁

Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

Is this cheaper than the pseudo-inverse approach?

89

𝑟𝑟𝑖𝑖 = 𝑏𝑏 − 𝐴𝐴𝑓𝑓𝑖𝑖, η𝑖𝑖 = 𝑟𝑟𝑖𝑖
𝑇𝑇
𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖 𝑇𝑇𝐴𝐴𝑟𝑟𝑖𝑖
, 𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖, 𝑖𝑖 = 0, … ,𝑁𝑁

Gradient descent

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?
• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

90

Gradient descent

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?
• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

91

𝑟𝑟𝑖𝑖 = 𝑏𝑏 − 𝐴𝐴𝑓𝑓𝑖𝑖, η𝑖𝑖 = 𝑟𝑟𝑖𝑖
𝑇𝑇
𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖 𝑇𝑇𝐴𝐴𝑟𝑟𝑖𝑖
, 𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖, 𝑖𝑖 = 0, … ,𝑁𝑁

Gradient descent

Minimize by iteratively computing:

Is this cheaper than the pseudo-inverse approach?
• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed

using convolutions with the Laplacian kernel.

Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

92

𝑟𝑟𝑖𝑖 = 𝑏𝑏 − 𝐴𝐴𝑓𝑓𝑖𝑖, η𝑖𝑖 = 𝑟𝑟𝑖𝑖
𝑇𝑇
𝑟𝑟𝑖𝑖

𝑟𝑟𝑖𝑖 𝑇𝑇𝐴𝐴𝑟𝑟𝑖𝑖
, 𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑟𝑟𝑖𝑖, 𝑖𝑖 = 0, … ,𝑁𝑁

In practice: conjugate gradient descent

Minimize by iteratively computing:

Given the loss function:

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

93

𝑑𝑑𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑑𝑑𝑖𝑖, η𝑖𝑖 = 𝑟𝑟𝑖𝑖
𝑇𝑇
𝑟𝑟𝑖𝑖

𝑑𝑑𝑖𝑖 𝑇𝑇𝐴𝐴𝑑𝑑𝑖𝑖
, 𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + η𝑖𝑖𝑑𝑑𝑖𝑖, 𝑖𝑖 = 0, … ,𝑁𝑁

𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 − η𝑖𝑖𝐴𝐴𝑑𝑑𝑖𝑖, 𝛽𝛽𝑖𝑖 = 𝑟𝑟𝑖𝑖+1
𝑇𝑇
𝑟𝑟𝑖𝑖+1

𝑟𝑟𝑖𝑖 𝑇𝑇𝑟𝑟𝑖𝑖

• Smarter way for selecting
update directions

• Everything can still be done
using convolutions

• Only one convolution needed
per iteration

Note: initialization
Does the initialization f0 matter?

94

Note: initialization
Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex.

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

95

Note: initialization
Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex.

𝐸𝐸 𝑓𝑓 = 𝐺𝐺𝑓𝑓 − 𝑣𝑣 2

• It does matter in terms of convergence speed.
• We can use a multi-resolution approach:

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution PxP.

• Multi-grid algorithms alternative between higher and lower resolutions during the
(conjugate) gradient descent iterative procedure.

96

Poisson equation (with Dirichlet boundary conditions)

Reminder from variational case
97

𝐴𝐴𝑓𝑓 = 𝑏𝑏

After discretization, equivalent to:

Linear system of equations:

Remember that what we are
doing is equivalent to solving

this linear system.

𝐷𝐷 𝐼𝐼 0 0 0 ⋯ 0
𝐼𝐼 𝐷𝐷 𝐼𝐼 0 0 ⋯ 0
0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0
0 ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼
0 ⋯ ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷

�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

Note: preconditioning
We are solving this linear system:

𝐴𝐴𝑓𝑓 = 𝑏𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃𝑃−1𝐴𝐴𝑓𝑓 = 𝑃𝑃−1𝑏𝑏
When is it preferable to solve this alternative linear system?

98

Note: preconditioning
We are solving this linear system:

𝐴𝐴𝑓𝑓 = 𝑏𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃𝑃−1𝐴𝐴𝑓𝑓 = 𝑃𝑃−1𝑏𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?

99

Note: preconditioning
We are solving this linear system:

𝐴𝐴𝑓𝑓 = 𝑏𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃𝑃−1𝐴𝐴𝑓𝑓 = 𝑃𝑃−1𝑏𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research.

100

𝑃𝑃Jacobi = diag 𝐴𝐴

Note: preconditioning
We are solving this linear system:

𝐴𝐴𝑓𝑓 = 𝑏𝑏
For any invertible matrix P, this is equivalent to solving:

𝑃𝑃−1𝐴𝐴𝑓𝑓 = 𝑃𝑃−1𝑏𝑏
When is it preferable to solve this alternative linear system?
• Ideally: If A is invertible, and P is the same as A, the linear system becomes trivial! But

computing the inverse of A is even more expensive than solving the original linear system.
• In practice: If the matrix P-1A has a better condition number, or its singular values are more

uniformly distributed, the linear system becomes more numerically stable.

What preconditioner P should we use?
• Standard preconditioners like Jacobi.
• More effective preconditioners. Active area of research.

101

𝑃𝑃Jacobi = diag 𝐴𝐴

Preconditioning can be
incorporated in the conjugate
gradient descent algorithm.

Is this effective for Poisson solvers?

Poisson equation (with Dirichlet boundary conditions)

Discrete Poisson equation
102

𝐴𝐴𝑓𝑓 = 𝑏𝑏

WARNING: requires special treatment at the borders
(target boundary values are same as source)

After discretization, equivalent to:

Linear system of equations:𝐷𝐷 𝐼𝐼 0 0 0 ⋯ 0
𝐼𝐼 𝐷𝐷 𝐼𝐼 0 0 ⋯ 0
0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼 0
0 ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷 𝐼𝐼
0 ⋯ ⋯ ⋯ 0 𝐼𝐼 𝐷𝐷

�

𝑓𝑓1
⋮
𝑓𝑓𝑞𝑞1
⋮
𝑓𝑓𝑞𝑞2
𝑓𝑓𝑝𝑝
𝑓𝑓𝑞𝑞3
⋮
𝑓𝑓𝑞𝑞4
⋮
𝑓𝑓𝑃𝑃

=

∇ � 𝐯𝐯 1
⋮

∇ � 𝐯𝐯 𝑞𝑞1
⋮

∇ � 𝐯𝐯 𝑞𝑞2
∇ � 𝐯𝐯 𝑝𝑝
∇ � 𝐯𝐯 𝑞𝑞3
⋮

∇ � 𝐯𝐯 𝑞𝑞4
⋮

∇ � 𝐯𝐯 𝑃𝑃

Matrix is 𝑃𝑃 × 𝑃𝑃 → billions of entries

Note: handling (Dirichlet) boundary conditions

• Form a mask B that is 0 for pixels that should not be
updated (pixels on S-Ω and 𝜕𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over
the entire image.

• Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + 𝐵𝐵η𝑖𝑖𝑟𝑟𝑖𝑖

𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + 𝐵𝐵η𝑖𝑖𝑑𝑑𝑖𝑖
(gradient descent)

(conjugate gradient descent)

103

Note: handling (Dirichlet) boundary conditions

• Form a mask B that is 0 for pixels that should not be
updated (pixels on S-Ω and 𝜕𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over
the entire image.

• Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + 𝐵𝐵η𝑖𝑖𝑟𝑟𝑖𝑖

𝑓𝑓𝑖𝑖+1 = 𝑓𝑓𝑖𝑖 + 𝐵𝐵η𝑖𝑖𝑑𝑑𝑖𝑖
(gradient descent)

(conjugate gradient descent)

104

In practice, masking is also required
at other steps of (conjugate)

gradient descent, to deal with invalid
boundaries (e.g., from convolutions).

See homework assignment 3.

Poisson image editing examples

105

Photoshop’s “healing brush”

Slightly more advanced version
of what we covered here:
• Uses higher-order derivatives

106

Contrast problem
Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

107

Contrast problem
Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.
Solution: Do blending in log-domain.

108

More blending

copy-paste Poisson blendingoriginals

109

Blending transparent objects
110

Blending objects with holes
111

Editing
112

Concealment

How would you do this
with Poisson blending?

113

Concealment

How would you do this
with Poisson blending?
• Insert a copy of the

background.

114

Texture swapping
115

Special case: membrane interpolation

How would you do this?

116

Special case: membrane interpolation

How would you do this?

Poisson problem

Laplacian problem

117

118

Entire suite of image editing tools

Flash/no-flash photography

119

No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

120

Denoising Result

121

No-Flash

122

Denoising Result

123

Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image.

124

Can we do similar flash/no-flash fusion tasks with
gradient-domain processing?

Removing self-reflections and hot-spots
Ambient Flash

125

Removing self-reflections and hot-spots
Ambient Flash

Hands

Face

Tripod

126

Removing self-reflections and hot-spots
ResultAmbient

Flash

Reflection Layer

127

Idea: look at how gradients are affected
Same gradient
vector direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections

128

Idea: look at how gradients are affected
Reflection Ambient Gradient

VectorDifferent gradient
vector direction

With reflections

Ambient Flash

Flash Gradient Vector

129

Gradient projections
Residual
Gradient
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector

Ambient Flash

130

Flash/no-flash with gradient-domain processing

2D

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient

Vector Projection

Result X

Result Y

Result

2D Integration

131

Gradient-domain rendering

132

133

134

Primal domain Gradient domain

135

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

136

Can I go from one image to the other?
137

Can I go from one image to the other?
differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson solver)

138

Rendering
Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

139

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

140

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why not all?

141

Rendering
Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) in
primal domain, to use as boundary conditions in the Poisson solver.
• In practice, do image-space stratified sampling to select these pixels.

142

Gradient-domain rendering

A lot of papers since SIGGRAPH 2013
(first introduction of gradient-domain
rendering) that are looking to extend
basically all primal-domain rendering
algorithms to the gradient domain.

143

Does it help?
144

Gradient-domain path tracing (2 minutes)

145

Primal-domain path tracing (2 minutes)

146

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

Remember this idea (we’ll come back to it)
147

Gradient cameras

148

One of my favorite papers

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

149

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

What implication would this have on a camera?
150

One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

151

One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

152

Change the sensor
Can you think how?

153

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+
-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

154

← what is this for?

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+
-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?

Why is this better than computing
gradients in post-processing?

What about Poisson noise?

155

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+
-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?
• Spatial resolution is reduced by 2x.
• Photosensitive area is reduced.
Why is this better than computing
gradients in post-processing?
• Additive noise is reduced.
• Acquisition is faster thanks to the firing

mechanism and sparsity of edges.
What about Poisson noise?
• Poisson noise is the same in both cases.

156

Noise considerations
157

+

-

𝐿𝐿2

𝐿𝐿1

(we will
ignore
this)

𝐿𝐿1 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ1 + 𝐷𝐷))
𝐿𝐿2 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ2 + 𝐷𝐷))
𝑛𝑛opamp ∼ Normal 0,𝜎𝜎opamp
𝑛𝑛read ∼ Normal 0,𝜎𝜎read
𝑛𝑛ADC ∼ Normal(0,𝜎𝜎ADC)

𝐼𝐼1 = 𝐿𝐿1 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿1 𝐼𝐼2 = 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿2

𝜎𝜎 𝐼𝐼1 − 𝐼𝐼2 2 = ?

𝜎𝜎 𝐼𝐼 2 = ?

Digital subtraction in
post-processing

Analog subtraction
on sensor

𝐷𝐷 = 𝐿𝐿1 − 𝐿𝐿2 + 𝑛𝑛opamp 𝐼𝐼 = 𝐿𝐿1 − 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛opamp � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC

Noise considerations
158

+

-

𝐿𝐿2

𝐿𝐿1

(we will
ignore
this)

𝐿𝐿1 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ1 + 𝐷𝐷))
𝐿𝐿2 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ2 + 𝐷𝐷))
𝑛𝑛opamp ∼ Normal 0,𝜎𝜎opamp
𝑛𝑛read ∼ Normal 0,𝜎𝜎read
𝑛𝑛ADC ∼ Normal(0,𝜎𝜎ADC)

𝐼𝐼1 = 𝐿𝐿1 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿1 𝐼𝐼2 = 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿2

𝜎𝜎 𝐼𝐼1 − 𝐼𝐼2 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 2 � 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 2 � 𝜎𝜎ADC2

𝜎𝜎 𝐼𝐼 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 𝜎𝜎opamp2 ⋅ 𝑔𝑔2 + 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC2

Digital subtraction in
post-processing

Analog subtraction
on sensor

𝐷𝐷 = 𝐿𝐿1 − 𝐿𝐿2 + 𝑛𝑛opamp 𝐼𝐼 = 𝐿𝐿1 − 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛opamp � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC

which variance is better?

Noise considerations
159

+

-

𝐿𝐿2

𝐿𝐿1

(we will
ignore
this)

𝐿𝐿1 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ1 + 𝐷𝐷))
𝐿𝐿2 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ2 + 𝐷𝐷))
𝑛𝑛opamp ∼ Normal 0,𝜎𝜎opamp
𝑛𝑛read ∼ Normal 0,𝜎𝜎read
𝑛𝑛ADC ∼ Normal(0,𝜎𝜎ADC)

𝐼𝐼1 = 𝐿𝐿1 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿1 𝐼𝐼2 = 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿2

𝜎𝜎 𝐼𝐼1 − 𝐼𝐼2 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 2 � 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 2 � 𝜎𝜎ADC2

𝜎𝜎 𝐼𝐼 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 𝜎𝜎opamp2 ⋅ 𝑔𝑔2 + 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC2

Digital subtraction in
post-processing

Analog subtraction
on sensor

𝐷𝐷 = 𝐿𝐿1 − 𝐿𝐿2 + 𝑛𝑛opamp 𝐼𝐼 = 𝐿𝐿1 − 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛opamp � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC

terms related to Poisson
noise are the same

additive noise is reduced
if opamp is well-designed

Noise considerations
160

+

-

𝐿𝐿2

𝐿𝐿1

(we will
ignore
this)

𝐿𝐿1 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ1 + 𝐷𝐷))
𝐿𝐿2 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ2 + 𝐷𝐷))
𝑛𝑛opamp ∼ Normal 0,𝜎𝜎opamp
𝑛𝑛read ∼ Normal 0,𝜎𝜎read
𝑛𝑛ADC ∼ Normal(0,𝜎𝜎ADC)

𝐼𝐼1 = 𝐿𝐿1 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿1 𝐼𝐼2 = 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿2

𝜎𝜎 𝐼𝐼1 − 𝐼𝐼2 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 2 � 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 2 � 𝜎𝜎ADC2

𝜎𝜎 𝐼𝐼 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 𝜎𝜎opamp2 ⋅ 𝑔𝑔2 + 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC2

Digital subtraction in
post-processing

Analog subtraction
on sensor

𝐷𝐷 = 𝐿𝐿1 − 𝐿𝐿2 + 𝑛𝑛opamp 𝐼𝐼 = 𝐿𝐿1 − 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛opamp � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC

what is the distribution of
the difference 𝐿𝐿1 − 𝐿𝐿2?

Noise considerations
161

+

-

𝐿𝐿2

𝐿𝐿1

(we will
ignore
this)

𝐿𝐿1 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ1 + 𝐷𝐷))
𝐿𝐿2 ∼ Poisson(𝑡𝑡 ⋅ (𝑎𝑎 ⋅ Φ2 + 𝐷𝐷))
𝑛𝑛opamp ∼ Normal 0,𝜎𝜎opamp
𝑛𝑛read ∼ Normal 0,𝜎𝜎read
𝑛𝑛ADC ∼ Normal(0,𝜎𝜎ADC)

𝐼𝐼1 = 𝐿𝐿1 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿1 𝐼𝐼2 = 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC𝐿𝐿2

𝜎𝜎 𝐼𝐼1 − 𝐼𝐼2 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 2 � 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 2 � 𝜎𝜎ADC2

𝜎𝜎 𝐼𝐼 2 = 𝜎𝜎 𝐿𝐿1 − 𝐿𝐿2 2 + 𝜎𝜎opamp2 ⋅ 𝑔𝑔2 + 𝜎𝜎read2 ⋅ 𝑔𝑔2 + 𝜎𝜎ADC2

Digital subtraction in
post-processing

Analog subtraction
on sensor

𝐷𝐷 = 𝐿𝐿1 − 𝐿𝐿2 + 𝑛𝑛opamp 𝐼𝐼 = 𝐿𝐿1 − 𝐿𝐿2 � 𝑔𝑔 + 𝑛𝑛opamp � 𝑔𝑔 + 𝑛𝑛read � 𝑔𝑔 + 𝑛𝑛ADC

𝐿𝐿1 − 𝐿𝐿2 ∼ Skellam 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ1 − Φ2 , 𝑡𝑡 ⋅ 𝑎𝑎 ⋅ Φ1 + Φ2 + 2 ⋅ 𝐷𝐷

Change the optics
Can you think how?

162

Change the optics

photodetectors

lenslet
refractive

slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

163

Change the optics

photodetectors

lenslet
refractive

slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

Any disadvantages?

164

Change the optics

photodetectors

lenslet
refractive

slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

165

Any disadvantages?
• Reduced light efficiency (we block light).
• We can’t do subtraction very easily in optics.

One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
• Change the sensor.
• Change the optics.

166

We can also compute temporal gradients

event-based cameras (a.k.a.
dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim

167

https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim

Slowly becoming popular in robotics and vision
168

Basic reading:
• Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.
• Pérez et al., “Poisson Image Editing,” SIGGRAPH 2003.

The original Poisson image editing paper.
• Agrawal and Raskar, “Gradient Domain Manipulation Techniques in Vision and Graphics,” ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/

A great resource (entire course!) for gradient-domain image processing.
• Agrawal et al., “Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling,” SIGGRAPH 2005.

A paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:
• Georgiev, “Covariant Derivatives and Vision,” ECCV 2006.

An paper from Adobe on the version of Poisson blending implemented in Photoshop’s “healing brush”.
• Elder and Goldberg, “Image editing in the contour domain”, PAMI 2001.

One of the very first papers discussing gradient-domain image processing.
• Frankot and Chellappa, “A method for enforcing integrability in shape from shading algorithms,” PAMI 1988.
• Bhat et al., “Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems,” ECCV 2008.

A couple of papers discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
• Agrawal et al., “What Is the Range of Surface Reconstructions from a Gradient Field?,” ECCV 2006.
• Quéau et al., “Normal Integration: A Survey,” JMIV 2017.

Two papers reviewing various gradient (and surface normal) integration techniques, including Poisson solvers.
• Szeliski, “Locally adapted hierarchical basis preconditioning,” SIGGRAPH 2006.
• Krishnan and Szeliski, “Multigrid and multilevel preconditioners for computational photography,” SIGGRAPH 2011.
• Krishnan et al., “Efficient Preconditioning of Laplacian Matrices for Computer Graphics,” SIGGRAPH 2013.

A few well-known references on multi-grid and preconditioning techniques for accelerating the Poisson solver, with a specific focus on computational photography applications..
• Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,” CMU TR 1994, http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

A great reference on (preconditioned) conjugate gradient solvers for large linear systems.
• Briggs et al., “A multigrid tutorial,” SIAM 2000.

A great reference book on multi-grid approaches.
• Bhat et al., “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” TOG 2010.

A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond blending.
• Krishnan and Fergus, “Dark Flash Photography,” SIGGRAPH 2009.

A paper proposing doing flash/no-flash photography using infrared flash lights.
• Kazhdan et al., “Poisson surface reconstruction,” SGP 2006.
• Kazhdan and Hoppe, “Screened Poisson surface reconstruction,” TOG 2013.

Two papers discussing Poisson problems for reconstructing meshes from point clouds and normals. This is arguably the most commonly used surface reconstruction algorithm.
• Lehtinen et al., “Gradient-domain metropolis light transport,” SIGGRAPH 2013.
• Kettunen et al., “Gradient-domain path tracing,” SIGGRAPH 2015.
• Hua et al., “Light transport simulation in the gradient domain,” SIGGRAPH Asia 2018 course, http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018_GradientCourse/

In addition to editing images in the gradient-domain, we can render them directly in the gradient-domain.
• Tumblin et al., “Why I want a gradient camera?” CVPR 2005.

We can even directly measure images in the gradient domain, using so-called gradient cameras.
• Callenberg et al., “Snapshot difference imaging using correlation time-of-flight sensors,” SIGGRAPH Asia 2017.

A form of camera with differential pixels.
• Koppal et al., “Toward wide-angle microvision sensors”, PAMI 2013.

Gradient cameras using optical filtering.
• Chen et al., “ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels,” CVPR 2016.

Gradient cameras using angle-sensitive pixels.
• Kim et al., “Real-time 3D reconstruction and 6-DoF tracking with an event camera,” ECCV 2016.

A paper on using evet-based cameras for computer vision applications in very fast frame rates (best paper award at ECCV 2016!).
• Gallego et al., “Event-based Vision: A Survey,” PAMI 2020.

A survey paper on event cameras.

References 169

http://www.cs.cmu.edu/%7Equake-papers/painless-conjugate-gradient.pdf
http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018_GradientCourse/

	Gradient-domain image processing
	Course announcements
	Overview of today’s lecture
	Slide credits
	Gradient-domain image processing
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Basics of gradients and fields
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Finite differences
	Finite differences
	Finite differences
	Finite differences
	Discrete Laplacian
	Discrete Laplacian
	Discrete Laplacian
	Discrete Laplacian
	Warning!
	Slide Number 35
	Slide Number 36
	Integrable vector fields
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	A prototypical integration problem: Poisson blending
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Least-squares integration and the Poisson problem
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	A more efficient Poisson solver
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Poisson image editing examples
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Flash/no-flash photography
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Can we do similar flash/no-flash fusion tasks with gradient-domain processing?
	Removing self-reflections and hot-spots
	Removing self-reflections and hot-spots
	Removing self-reflections and hot-spots
	Idea: look at how gradients are affected
	Idea: look at how gradients are affected
	Gradient projections
	Flash/no-flash with gradient-domain processing
	Gradient-domain rendering
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Gradient cameras
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Change the sensor
	Change the sensor
	Change the sensor
	Noise considerations
	Noise considerations
	Noise considerations
	Noise considerations
	Noise considerations
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	References

