
Homework Assignment 6
15-463/663/862, Computational Photography, Fall 2022

Carnegie Mellon University

Due Monday, Dec. 12, at 11:59pm

The purpose of this assignment is to use structured light to reconstruct the 3D shape of an object. Rather
than use a projector, you will rely on shadows to create structured illumination, a technique often known as
“weakly structured light”.

In particular, you will implement the “desktop 3D scanner” of Bouguet and Perona [1]. As Figure 1
shows, this 3D scanner has five primary components: a camera, a point-like light source (e.g., desk lamp,
cell phone flash), a stick, two planar surfaces, and a calibration checkerboard. By waving the stick in front of
the light source, you cast line shadows into the scene. As Bouguet and Perona show, this makes it possible
to recover the depth at each pixel using simple geometric reasoning.

We strongly encourage you to carefully go through Bouguet and Perona [1] before starting the assignment.
However, note that the calibration and reconstruction procedures (Parts 1.2 and 1.3) we use in the assignment
are significantly different from (and simpler than) those in the paper.

Towards the end of this document, you will find a “Deliverables” section describing what you need to
submit. Throughout the writeup, we also mark in red questions you should answer in your submitted report.
Lastly, there is a “Hints and Information” section at the end of this document that is likely to help. We
strongly recommend that you read that section in full before you start to work on the assignment.

1 Implementing structured-light triangulation (100 points)

For the first part of this assignment, you will be using two image sequences contained in the ./data directory
of the assignment ZIP archive. The calib directory contains a calibration sequence includes ten images of a
checkerboard at various poses; you will use this sequence to estimate the intrinsic and extrinsic parameters
of the camera. The frog directory contains a sequence of images of the frog object in Figure 1; you will use
this sequence for 3D reconstruction. For each sequence we have provided both low-resolution (512 × 384)
and high-resolution (1024× 768) versions. You can use the former during development and debugging, and
the latter for your final results. You should convert these color images to grayscale, e.g., using rgb2gray.

Figure 1: 3D photography using planar shadows. From left to right: the capture setup, a single image from
the scanning sequence, and a reconstructed object (rendered as a colored point cloud).

1.1 Video processing (25 points)

Throughout this part, you will use the frog image sequence. We will index the frames in this sequence using
t ∈ 1, . . . , T , where T is the total number of frames. We will often refer to the frame index t as “time”. Your
first task is to estimate two important quantities this sequence: (i) the per-frame shadow edges, which are
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the parameters of the horizontal and vertical shadow lines within the horizontal and vertical planar regions,
respectively, of each frame t; and (ii) the per-pixel shadow times, which are the frames t when a shadow edge
first crosses each pixel. The following sections outline how to perform these tasks. You can consult Section
2.4 in Bouguet and Perona [1] for additional information.

𝜆𝜆ℎ 𝑡𝑡

𝜆𝜆𝑣𝑣 𝑡𝑡

(a) per-frame shadow edge estimation (b) per-pixel shadow time estimation

Figure 2: Estimation of per-frame shadow edges and per-pixel shadow times. (a) For each frame t, we
determine the per-frame shadow edges by fitting lines to the zero-crossing points of the difference image
∆I (x, y, t), along each row in the unobstructed horizontal and vertical planar regions (highlighted in blue
and green, respectively). (b) For each pixel (x, y), we determine the per-pixel shadow times by finding the
zero-crossings of the difference image ∆I (x, y, t) as a function of time t. (The figure shows the per-pixel
shadow times quantized to 32 values, with blue indicating earlier times and red indicating later ones.)

Per-frame shadow edge estimation. As we show in Figure 2(a), for each frame t, you need to estimate
the lines λh (t) and λv (t), running along the right shadow edges on the unobstructed horizontal and vertical
planar regions, respectively. You will later use these lines to recover the position and orientation of each
shadow plane as a function of time.

To describe the procedure for estimating the shadow edges, we begin by defining the maximum and
minimum intensity observed at each pixel (x, y):

Imax (x, y) ≡ max
t
I (x, y, t) , (1)

Imin (x, y) ≡ min
t
I (x, y, t) . (2)

We also define a per-pixel shadow threshold image as:

Ishadow (x, y) ≡ Imax (x, y) + Imin (x, y)

2
. (3)

Lastly, for each time t and pixel (x, y), we define the difference image as:

∆I (x, y, t) ≡ I (x, y, t)− Ishadow (x, y) . (4)

To estimate the per-frame shadow edges, you will work with the portion of the frames where the horizontal
and vertical planar regions are unobstructed by the object you are scanning. Figure 2(a) shows these
unobstructed regions. These unobstructed regions are the same across frames, so you can approximately
estimate their x and y limits once, then use these limits across all frames.

For each frame t, you can estimate its horizontal shadow edge λh (t) as follows: For every row y in the
unobstructed horizontal planar region, find the column x where the difference image ∆I (x, y, t) changes

2



sign from negative to positive. This will give you a list of zero-crossing locations {(xn, yn)}Nn=1, where N
is the number of rows in the unobstructed horizontal planar region. Lastly, estimate the shadow edge by
fitting a line to these zero-crossing locations. For this, represent the horizontal shadow edge as a vector,
λh (t) ≡ (ah (t) , bh (t) , ch (t)), corresponding to the line ah (t)x + bh (t) y + c = 0. Compute this vector by
solving the homogeneous linear system:

x1 y1 1
x2 y2 1
...

...
...

xN yN 1


ah (t)
bh (t)
ch (t)

 =


0
0
...
0

 . (5)

You can estimate the vertical shadow edge λv (t) ≡ (av (t) , bv (t) , cv (t)) for frame t by repeating the exact
same procedure for the unobstructed vertical planar region.

Repeat the above procedure for all frames t ∈ 1, . . . , T , and store the horizontal and vertical shadow
edges you estimate. Figure 2(a) shows the desired output of this step for one of the frames, overlaying the
estimated shadow edges on the original frame.

Per-pixel shadow time estimation. To perform 3D reconstruction as in Section 1.3, you need to also
estimate the per-pixel shadow times. For each pixel (x, y), you can estimate its shadow time tshadow (x, y)
by finding the zero-crossing of the difference image ∆I (x, y, t) as a function of time t. Figure 2(b) shows the
desired output of this step, after quantizing the shadow crossing times to 32 values.

In your submission, show a few examples of per-frame shadow edge estimates and per-pixel shadow time
estimates, similar to those in Figure 2.

1.2 Intrinsic and extrinsic calibration (50 points)

You will need the intrinsic and extrinsic parameters of the camera and scene, to map 2D image locations into
3D points. The ./src directory of the assignment ZIP archive includes a modified version of the OpenCV
camera calibration implementation. This implementation uses several images of a checkerboard captured
at various poses to estimate the intrinsic and extrinsic parameters of the camera. The file cp hw6.py has
most relevant functions, and the file calibrationDemo.py has a demo of the process on the low-resolution
calibration image sequence calib-lr.

Intrinsic calibration. The function computeIntrinsic() takes in a stack of at least ten images of a
calibration checkerboard at various poses, and the dimensions of the checkerboard. It then extracts and
visualizes corners for each checkerboard image. Note that the function only detects the inner corners of the
checkerboard, so the provided checkerboard dimensions should not be the number of squares but the number
of inner corners (6× 8 for the example calibration sequence). If the detected corners and the checkerboard
do not align well, you will need to adjust the size of the search window used to refine the detected corner
locations.

In your submission, include an .npz file with the resulting intrinsic calibration parameters.

Calibration of ground planes. From the previous step, you have an estimate of the camera intrinsic
parameters, which you can use to convert image pixels into 3D rays in the camera 3D coordinate system. You
will also need to know how to convert coordinates of 3D points and directions between three 3D coordinate
systems: the camera coordinate system, a coordinate system at the horizontal plane, and a coordinate system
at the vertical plane. Figure 3 visualizes the three 3D coordinate systems.

To estimate the parameters needed to perform these conversions, you will run computeExtrinsic()

twice, once for each ground plane. The file calibrationDemo.py shows an example of this.
In each run, the demo allows you to select four corners on the calibration markers attached to the scene

plane. Always start by selecting the corner at the bottom-left of the plane, and proceed in a counter-clockwise
order. For your reference, the corners define a 558.8 mm × 303.2125 mm rectangle. Note that you need to
select the corner at the center of each calibration marker, as Figure 4 shows.

Once run, the demo will provide you with a rotation matrix R and a translation matrix T . You can use
these to convert 3D points from the camera 3D coordinate system to the plane 3D coordinate system as

Pplane = R> (Pcamera − T ) , (6)
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Figure 3: The three world coordinate frames we are concerned with.

Figure 4: For each calibration marker on the planes, select the marked corner at its center.

where Pcamera and Pplane are heterogeneous 3D coordinate vectors. You can also apply the inverse transform
to convert 3D points from the plane 3D coordinate system to the camera coordinate system.

In your submission, include an .npz file with the rotation and translation matrices you obtain for each
of the two ground planes.

Calibration of shadow lines. Now that you have calibrated the two ground planes, you need to, for each
frame, estimate the 3D shadow lines cast on these planes by the moving stick. Figure 5 visualizes the steps
for this part.

For each frame t, it is sufficient to find two 3D points on each of the two 3D shadow lines, for a total of
four 3D points per frame (points P1, P2, P3, P4 in Figure 5). We describe how to find the points P1 and P2 on
the shadow line of the horizontal plane, and the procedure for points P3 and P4 follows exactly analogously.
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Figure 5: Calibration of shadow lines.
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First, compute two 2D image points p1 and p2 that lie on the horizontal shadow edge λh (t) you estimated
in Part 1.1. Use the provided function pixel2ray to backproject these 2D points into 3D rays, r1 and r2,
expressed in the camera 3D coordinate system. Then, convert these rays into the 3D coordinate system of
the horizontal plane.

You can now determine the 3D point P1 by performing an intersection, between ray r1 and the horizontal
plane. You should make sure that you use consistent coordinate systems for the intersection (i.e., both the
ray and plane are in the coordinate system of the horizontal plane). Once you have P1, convert it to the
camera coordinate system as described earlier. Repeat the same procedure for P2.

You can follow the exactly analogous procedure for extracting points P3 and P4, and converting them
to the camera coordinate system. You will need to perform this procedure for each frame t in your image
sequence.

In your submission, include an .npz file with the reconstructed 3D points for all frames.

Calibration of shadow planes. Finally, you will need to use the four 3D points you computed per frame,
to calibrate the corresponding 3D shadow plane. Figure 6 visualizes the steps for this part.

horizonal plane

vertical plane

camera
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𝑃3

𝑃4𝑝1

𝑝2
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𝑝4

shadow

plane

𝑂𝑐

Figure 6: Calibration of shadow planes.

A frame’s four points P1, P2, P3, P4 all lie on that frame’s shadow plane. You can use them to express
the shadow plane as:

S : (P − P1) · n̂ = 0, where n̂ = normalize[(P2 − P1)× (P4 − P3)], (7)

where P is any 3D point on the shadow plane. Make sure that the shadow plane is in the camera coordinate
system, by first converting all points P1, . . . , P4 to the camera coordinate system.

In your submission, include an .npz file with the estimated shadow plane parameters (points P1 and
normals n̂) for all frames. Once you have computed the shadow plane for each frame, you have completed
the extrinsic calibration.

1.3 Reconstruction (25 points)

At this point, you have estimated all the parameters you need to recover the depth of each pixel in the image
(or at least those pixels where the stick shadow can be observed). Figure 7 visualizes what you need to do
in this section.

First, crop the part of the image you want to reconstruct (e.g., a rectangle that encloses the entire object).
Then, for each pixel p = (x, y) in this rectangle, fetch its shadow time tshadow (x, y)—you computed these
frames in Part 1.1. Next, fetch the shadow plane S (tshadow (x, y)) for that frame—you computed these planes
in Part 1.2.

Backproject the pixel p into a 3D ray r. Finally, intersect this ray with the shadow plane S (tshadow (x, y)).
The resulting intersection point P is the reconstructed 3D point corresponding to pixel p.

Repeat this process for all pixels in your cropped image, to recover a 3D point cloud. Then, use
matplotlib’s scatter function to visualize the point cloud in 3D. You should “color” each point in your
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Figure 7: Reconstruction of 3D points.

point cloud, by assigning to it its intensity value in a frame where the corresponding pixel is not shadowed.
Figure 8 shows the results we obtained with our reference implementation. Note that your reconstruction may
differ significantly from the one in the figure, depending on various choices you make in your implementation.
In your submission, make sure to document any such choices you made to improve your reconstruction.

Figure 8: Reconstruction results for the frog sequence.

2 Building your own 3D scanner (100 points)

You will now build your own version of the weakly-structured light 3D scanner. You can replicate the setup
of Figure 1, using a desk lamp or cell phone flash as the light source, and the class camera and tripod.

You will additionally need to print a checkerboard to perform camera calibration on your own. We
recommend using the same checkerboard configuration (in terms of number of boxes and their dimensions)
as in the calibration sequence we provided.

Finally, you will need to create the two plane configuration. You should use appropriate holders (e.g.,
thick books) to ensure that the vertical plane is as close to orthogonal to the horizontal plane (which lies on
the floor) as possible. You should also mark the corners of a rectangle of known dimensions on each plane,
to simplify calibration.

Use your 3D scanning setup to scan at least two objects, and include images of the scanned objects and
the final reconstruction. Additionally, include a photograph of the setup you built.
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3 Bonus: Implement the dual-space geometry procedure (50 points)

The algorithms described in Bouguet and Perona [1] for the calibration and reconstruction parts of the 3D
scanning procedure are significantly different from those you implemented in Parts 1.2 and 1.3. In particular,
Bouguet and Perona use a dual-space geometry formulation, which provides increased robustness to small
calibration errors. For example, when calibrating shadow lines and planes, you used only two points per
line and four points per plane, even though you had two entire lines available; the consequence of this is
discounted information and decreased robustness. Dual-space geometry is an elegant formulation for making
full use of all the information available to you for 3D reconstruction.

Read through Bouguet and Perona [1], and implement the algorithm they propose for calibration and
reconstruction. In your write-up, provide a short explanation of how the algorithm works, and show the
reconstructions you obtain by applying it on the dataset we provide in the assignment ZIP archive, and the
two datasets you capture with your own 3D scanner. Compare with the 3D reconstructions you obtained
earlier, and discuss your observations.

4 Bonus: Implement direct-global separation (100 points)

As we discussed in glass, Nayar et al. [2] show how to use the stick-shadow procedure to produce pairs of
direct-only and global-only images for a scene. Read through this paper, and implement the procedure of
Section 4.2 to produce direct-only and global-only images for two scenes. (You do not need to implement
the photometric stereo part that section discusses.)

Note that applying the technique of this paper requires having access to radiometrically linear images.
Unfortunately, the class camera does not allow you to capture RAW video. Therefore, to apply the equations
from the paper, you will need to perform radiometric calibration and convert the non-linear frames you extract
from the video sequences into linear ones. In Homework Assignment 2, you implemented radiometric calibra-
tion on your own, but here, you can use OpenCV’s implementation (see function createCalibrateDebevec).
This function requires as input a non-linear exposure stack, which you can capture with your camera. Make
sure that you capture the exposure stack under the exact same exposure settings as the ones you will use for
your videos. Show the camera response functions you captured, and a collage of your exposure stack before
and after linearization.

Apply the linearization and direct-global separation procedures on two scenes, and show for each scene
four images: A regular image of the scene captured with your camera and without any shadows; an image
showing the stick shadow; and the pair of direct-only and global-only images. The total number of points
you will get for this part will depend on how visually compelling the direct-global separation results are.

Deliverables

When submitting your solution, make sure to follow the homework submission guidelines available on the
course website (http://graphics.cs.cmu.edu/courses/15-463/assignments/submission_guidelines.
pdf). Your submitted solution should include the following:

• A PDF report explaining what you did for each problem, including the various visualizations of shadow
planes and point clouds requested throughout Parts 1 and 2, as well as answers to all questions asked
throughout both parts. The report should include any figures and intermediate results that you think
may help. Make sure to include explanations of any issues that you may have run into that prevented
you from fully solving the assignment, as this will help us determine partial credit.

• All of your Python code, as well as a README file explaining how to use the code.

• All .npz files requested through Parts 1 and 2.

• If you do Bonus Part 3: all your Python code, as well as the discussion and figures requested in that
part.

• If you do Bonus Part 4: all your Python code, as well as the discussion and figures requested in that
part.
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• For the photography competition: Submit an image of one of the reconstructed objects you scanned
for Problem 2, named as competition entry.png.

Hints and Information

• We recommend that you use version 4.5.0 or newer of OpenCV.

• The comments of file calibrationDemo.py include specifications for the checkerboard you should use.

• Your reconstruction results may look very off because of very many small bugs. A good way to debug
this assignment is as follows: After each step, make sure to visualize in 3D the reconstructed points,
lines, and planes. For example, after computing the 3D points on the shadow lines, plot them in 3D
and make sure they look reasonable. After computing the 3D shadow lines themselves, plot them in
3D and make sure they look reasonable. After computing the 3D shadow planes, plot them in 3D and
make sure they look reasonable.

• The 3D visualization of your reconstructed point cloud can be strongly affected by outliers. For
example, if there is one outlier that ends up having a very large depth, it may cause everything else in
your 3D visualization to appear to be on a single plane. This is because the outlier forces matplotlib
to use a very large depth range for the z axis, and thus compress the depth of correctly reconstructed
points.

These outliers are primarily due to points that are never shadowed by the stick (e.g., pixels under the
shadow of the scanned object). You can remove these outliers by eliminating 3D points for any pixels
(x, y) with contrast Imax (x, y)−Imin (x, y) below some threshold. You should make sure to experiment
with different contrast thresholds, and thus different amounts of outlier pruning, while evaluating your
reconstruction results.

• Figure 3 shows what plane each coordinate system corresponds to. The origins and axes shown in the
figure are not necessarily representative of where they will be in your results. You should use whatever
origins and axes match the result of the calibration.

• If you use matplotlib to visualize the per-pixel shadow times, you may see some unexpected values
at the junction between valid and outlier pixels (e.g., some green between dark blue and red values in
the jet colormap). By default, matplotlib will use interpolation to smooth out the image for display,
thus producing spurious values that are not actually in your result. You can disable this by setting
interpolation=None.

• You do not need to process frames where the stick shadow does not intersect with the 3D object.

• When you extract per-frame shadow edges, it helps to crop two parts of the frame sequence, for
the vertical and horizontal plane, where there are no occlusions or shadowing by the 3D object, or
texture by the calibration markers. Then, for each frame, you can estimate shadow edges by detecting
zero-crossings only in this cropped part.

• When you visualize your point cloud, you should set the axes to have the same aspect ratio. Otherwise,
it will be difficult to see whether your results are truly reasonable. To do this in matplotlib, you must
use the function set box aspect to match the aspect ratio of the displayed 3D grid. We provide the
function set aspect equal, which will attempt to find reasonable axis limits for the plotted data that
will match a (1, 1, 1) box aspect ratio. You may want to expand upon this function.

• Below are a few tips that can help you build your own version of the 3D scanner.

First, it is important that every pixel be shadowed at some frame in the video sequence you capture.
Achieving this will require that you move the stick at a slow enough pace.

Second, you should reduce any ambient illumination (i.e., light that is not coming from the light source
you use in your setup). Otherwise, this can reduce the accuracy of the shadow planes you estimate. If
the stick casts multiple shadow lines, or the contrast of the shadow lines is very low, then this is likely
a problem with ambient illumination.
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Third, The light source you use must be sufficiently bright to allow the camera to operate with rea-
sonable exposures and small ISO. Otherwise, sensor noise will corrupt the final reconstruction. Addi-
tionally, you light source should be sufficiently point-like, to produce sharp stick shadows. Otherwise,
your estimated shadow planes will not be accurate. A good source to use is a small desk lamp, or the
flash of your cell phone (if it is bright enough).

Fourth, when calibrating your own camera, the checkerboard pattern you use must be sufficiently
planar. We recommend that you stick the printed checkerboard pattern on a flat surface (e.g., a
wooden panel). Additionally, you should make sure to capture a sufficient number of images, spanning
a large variety of checkerboard poses everywhere in the field of view of your camera. The calibration
sequence we provide in the assignment ZIP archive should give you a sense of what sort of images you
need.

Fifth, in a departure from previous homework assignments, here it is not necessary to use RAW images.
The class camera allows you to capture non-RAW video, from which you can extract frames using either
Python, or a utility such as ffmpeg. (If you do Bonus Part 4, see the discussion there about radiometric
calibration.)

Finally, you should set the focal length, focus, and aperture settings of your lens appropriately, so
that all the scanning setup is within your field of view and sharply in focus. Blurry regions will result
in poor shadow plane estimation, and therefore inaccurate reconstruction. Additionally, all lens and
camera parameters should remain constant throughout capture, so make sure to disable autofocus,
disable auto white balancing, and set the exposure mode to manual.

Credits

This assignment is directly adapted from the 3D photography class offered by Gabriel Taubin at Brown, and
modified for Python using the OpenCV camera calibration tutorial. This includes the write-up, figures, and
data.
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