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Course announcements

• Homework assignment 6 has been posted.
- Due on Sunday, December 5th.
- You can use all your remaining late days.

• Final project presentation logistics posted on Piazza.

• Optional extra lecture on Friday 11:40 am – 1:00 pm, at GHC 4303.
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Final project competition judges
3

Matthew O’Toole Jun-Yan Zhu

• Final project does not need to be fully done by presentation date.
• But judges will only see presentations, not final reports.



Overview of today’s lecture

• Direct and global illumination.

• Direct-global separation using high-frequency illumination.

• Back to structured light.
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Slide credits

These slides were directly adapted from:

• Shree Nayar (Columbia).
• Matthew O’Toole (CMU).
• Supreeth Achar (Google, formerly CMU).
• Mohit Gupta (Wisconsin).
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Direct and global illumination
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Easy to separate in a renderer
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Direct-global separation using high-
frequency illumination
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High Frequency Illumination Pattern
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High Frequency Illumination Pattern
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Important insight:

• Global illumination is approximately invariant to high-frequency lighting.

• You can think of global illumination effects as a low-pass filter.
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High Frequency Illumination Pattern

surface

camera

source

],[],[],[ icLicLicL gd +=+ α - ],[],[ icLicL g= )1( α−

i

What does approximate invariance mean in this case?
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Other Global Effects:  Subsurface Scattering
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Other Global Effects:  Volumetric Scattering
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Scene

Direct Global
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V-Grooves:  Diffuse Interreflections

Direct Global

concave convex

Psychophysics:
Gilchrist 79, Bloj et al. 04
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Real World Examples:

Can You Guess the Images?
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Eggs:  Diffuse Interreflections

Direct Global
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Wooden Blocks:  Specular Interreflections

Direct Global
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Photometric Stereo using Direct Images
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Global

24



Variants of Separation Method

• Shadow of Line Occluder

• Shadow of Mesh Occluders

• Coded Structured Light

• Shifted Sinusoids
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Stick

Building Corner

Shadow

minLLg =

direct global

,minmax LLLd −=

3D  from Shadows:
Bouguet and Perona 99
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Direct Global

Building Corner
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Shower Curtain: Diffuser
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minLLg =

direct global

,minmax LLLd −= β β
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Direct Global

Shower Curtain: Diffuser
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Kitchen Sink:  Volumetric Scattering

Direct Global

Volumetric Scattering:
Chandrasekar 50,  Ishimaru 78 
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Peppers:  Subsurface Scattering

Direct Global
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Real or Fake ?
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Tea Rose Leaf

Direct Global

Leaf Anatomy: Purves et al. 03
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Translucent Rubber Balls

Direct Global
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Hand

Direct Global

Skin: Hanrahan and Krueger 93,
Uchida 96, Haro 01, Jensen et al. 01,
Igarashi et al. 05, Weyrich et al. 05

35



Hands
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Face

Direct Global

Sum
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Blonde Hair

Direct Global

Hair Scattering: Stamm et al. 77,
Bustard and Smith 91, Lu et al. 00
Marschner et al. 03
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Pebbles:  3D Texture

Direct Global
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Pink Carnation

GlobalDirect

Spectral Bleeding: Funt et al. 91
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Mirror Ball:  Failure Case

Direct Global
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Application to structured light
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Why is global illumination a problem?
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Bowl on a Marble Slab
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Captured images under conventional Gray 
codes

Pattern 1 Pattern 10 Pattern 7 Pattern 4 

Lowest Frequency 
Illumination

Highest Frequency 
Illumination



Issues due to global illumination effects

Strong Inter-reflections

Low-frequency pattern

Blurring due to 
Sub-surface Scattering

High-frequency pattern
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3D Visualizations: State of the Art

Conventional Gray 
(11 images)

Modulated Phase-Shifting
(162 images)

Errors due to 
interreflections

Errors due to 
sub-surface scattering 

47



V-Groove Scene
Inter-reflections
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Conventional Gray codes

Low frequency pattern

Captured Image

Inverse Pattern

Captured Image

Pattern 
Edge I = 0.16 I = 0.25 
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Binarization error

Incorrect Binarization

One (illuminated) Zero (not-illuminated)

Errors due to inter-
reflections

Ground-truth Binarization
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Low-frequency patterns

Captured Image Captured Image

Pattern 
Edge I = 0.16 I = 0.25 

I = Direct +   α . Global I = (1 – α) .  Global 

α ∼= 0,  Direct < Global =>    Ι < Ι
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High-frequency patterns

Pattern

Captured Image

Inverse Pattern

Captured Image

I = 0.25 I = 0.16 

I = Direct + 0.5 Global I = 0.5 Global > 
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Binary DecodingCaptured Image

High-frequency Patterns are Decoded Correctly

53



54

Logical Coding and Decoding



Logical Coding and Decoding

XOR=

Correct BinarizationIncorrect 
Binarization

Binarization

Binarization Binarization
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Depth Map Comparison

Our XOR-04 Codes (11 images)Conventional Gray Codes (11 images)
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XOR of Second-last Pattern with Patterns 1-8   XOR-04 Codes 
(10 patterns)

Making the Logical XOR Codes

Conventional Gray Codes (10 patterns)

XOR of Last Pattern with Patterns 1-9   XOR-02 Codes (10 patterns)

Base PlaneBase Plane
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Ensemble of Codes for General Scenes

Conventional Gray (10 images) Max min-SW Gray (10 images)

XOR-04 (10 images) XOR-02 (10 images)
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Reconstructing General Scenes

59



Ensemble of Codes for General Scenes

Conventional Gray (10 images) Max min-SW Gray (10 images)

XOR-04 (10 images) XOR-02 (10 images)

Return the 
consistent value

Ensemble of Codes (41 images)
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Conventional Gray 
(11 images)

Our Technique
(41 images)

Modulated Phase-Shifting
(162 images)

Shape Comparison
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Translucent Wax Candle

Modulated Phase-
Shifting (162 images)

Our Ensemble Codes 
(41 images)

Scene

Errors due to strong 
sub-surface scattering
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Modulated Phase-
Shifting (162 images)

Our Ensemble Codes 
(41 images)

Scene

Translucent Wax Object

Errors due to strong 
sub-surface scattering
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Ikea Lamp

Diffusion + 
Inter-reflections
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Depth-Map Comparison

Regular Gray Codes (11 images) Our Ensemble Codes (41 images)
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3D Visualization using our ensemble codes
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Shower Curtain

Diffusion + 
Inter-reflections

Goal is to reconstruct the shape of the shower-curtain. Shape of the curtain is planar 
because it was taped to the rod to avoid movement while capture. 
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Shape Comparisons

Phase-Shifting (18 images)Regular Gray Codes  (11 images)

Our XOR Codes (11 images)
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Fruit Basket: Multiple Effects

Sub-surface Scattering Inter-reflections
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Regular Gray (11 images) Phase-Shifting (18 images)

Depth-maps with previous state of the art
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Regular Gray (11 images) Modulated Phase-Shifting (162 images)

Depth-maps with previous state of the art
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Depth-maps with our Ensemble Codes

Our Ensemble Codes (41 images)
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3D Visualizations with our ensemble codes
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3D Visualization with our ensemble codes
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Bowls and Milk: Multiple Effects

Interreflections

Subsurface Scattering
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Phase-Shifting (18 images) Modulated Phase-Shifting (162 images)

Our XOR Codes (11 images)Regular Gray Codes (11 images)
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3D Visualizations with our ensemble codes
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Flower-Vase

Diffusion

Sub-surface Scattering
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Comparison

Phase-Shifting (18 images) Regular Gray Code (11 images)

Modulated Phase-Shifting (162 images) Our Ensemble Codes (41 images)
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Comparison

Phase-Shifting (18 images) Regular Gray Code (11 images)

Modulated Phase-Shifting (162 images) Our Ensemble Codes (41 images)
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Shape Using Ensemble Codes Wax Bowl

Multiple Global Illumination Effects
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Shape Using Ensemble Codes Deep Wax Container

Multiple Global Illumination Effects
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Lamp made of shiny brushed metal
Strong and high-frequency inter-reflections
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Regular Gray  (11 images) Our Ensemble Codes  (41 images)

Depth Map Comparison
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Application to time-of-flight imaging
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Interreflections and ToF Imaging
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Interreflections and ToF Imaging

phase error
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Errors in Shape Recovery
computed shape
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Multipath Interference: Existing Work
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How To Separate Different Components?

total radiance
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Interreflections vs. Modulation Frequency
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For High Temporal Frequency         
Interreflection Component  is Constant

For High Temporal Frequency         
Interreflections Do Not Affect Phase
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Phase Ambiguity
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Disambiguating Phase

A

sensor

source

B

high frequency 1

same phase
𝜑𝜑1(𝐴𝐴) 𝜑𝜑1(𝐵𝐵)

A

sensor

source

B

high frequency 2

different phases
𝜑𝜑2(𝐴𝐴) 𝜑𝜑2(𝐵𝐵)

Compute Phases at Two High Frequencies
[Jongenelen et al. 2010, 2011]
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Micro Time-of-Flight Imaging

Modulation Signals With Micro (Small) Periods

sensor

sourcehigh frequency 1

sensor

sourcehigh frequency 2

period 1 period 2

93



Micro ToF Shifting: Two High Frequencies 
Four Measurements

Conventional ToF Shifting: One Low Frequency 
Three Measurements

Conventional vs. Micro ToF Imaging
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Simulations: Cornell Box

3.
0 

m

3.0 m

sensorsource

direct 
radiance

interreflections
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Cornell Box: Input Images

957 MHz. 930 MHz.
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Cornell Box: Phase Maps

ambiguities

0 2π

957 MHz. 930 MHz.

ambiguities
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Cornell Box: Shape Comparison

conventional ToF imaging (10 MHz.)

Micro ToF imaging

ground truth

error = 1.0 meters

error = 0.6 meters

3 meters
3 

m
et

er
s
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Scattering in Real World

Driving through a dust stormDriving through fog/mist

Images from: drivinglessonsedinburgh.blogspot.com, ngm.nationalgeographic.com
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Scattering and ToF Imaging
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scene

scattering 
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Scattering Produces Incorrect Phase



Sphere: Shape Comparison

conventional ToF

ground 
truth

2 meters

error = 0.4 meters

error = 1.2 meters

Micro ToF

Depths UnderestimatedMicro ToF Achieves High Accuracy Shape
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𝐺𝐺 (global)

Direct-Indirect Separation

indirect (global)
(Interreflection)

direct 
radiance

total 
radiance

radiance

time

𝐷𝐷 (direct)
𝑂𝑂 (offset)

𝐴𝐴 (amplitude)

𝐷𝐷 = 2𝐴𝐴 𝐺𝐺 = 𝑂𝑂 − 𝐴𝐴

Direct-Global Separation Using Three Measurements

𝜑𝜑 (phase)
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Direct-Global Separation

Color Bleeding due to 
Interreflections 

Direct Component Global Component (x2)
Direct Component Global Component (x2)

103



light source 
(bank of laser diodes)

sensor
(PMD CamBoard Nano)

Experimental Setup

Maximum System Modulation Frequency = 125 MHz.
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Experiments: V-Groove

2.
0 

m
et

er
s

fix
ed

 w
al

l

sensor

interreflections

𝜃𝜃

105



Scene Images Captured By PMD Sensor

apex angle = 45o apex angle = 60o apex angle = 90o

image resolution = 120 x 165
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Reconstructed Shape using Micro ToF

concave 
edge
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Shape Comparisons

ground truth

Micro ToF [proposed] 
mean error = 2.8 mm

conventional ToF
mean error = 86.6 mm

45o
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Reconstructed Shapes: Different Angles

𝜃𝜃 = 60°

concave 
edge

𝜃𝜃 = 90°

concave 
edge
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Shape Comparisons

conventional ToF
mean error = 69.8 mm

ground truth

Micro ToF
mean error = 6.7 mm

60o 90o

ground truth

Micro ToF
mean error = 6.2 mm

conventional ToF
mean error = 56.9 mm
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Recovered Shape vs. Frequency

45o
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Direct-Global Separation Vs. Apex Angle
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decreasing global component
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How High Should The Frequency Be?
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Technology (Devices) Required
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Technology (Devices) Required
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Technology (Devices) Required

103 m 101 m 10-1 m 10-3 m

M
at

er
ia

l P
ro

pe
rt

y 
(In

cr
ea

sin
g 

Sm
oo

th
ne

ss
)

Geometric Scale (Decreasing Scene Size)

Available 
Off-the-Shelf

Sensors/Sources 
in Research Labs

Future
Sensors/Sources?

116



References
Basic reading:
• Nayar et al., “Fast separation of direct and global components of a scene using high frequency 

illumination,” SIGGRAPH 2004.
The paper on separation of direct and global illumination using high-frequency 
illumination.

• Gupta et al., “A Practical Approach to 3D Scanning in the Presence of Interreflections, Subsurface 
Scattering and Defocus,” IJCV 2013. 

The paper on using XOR codes to deal with global illumination in structured light 3D.
• Gupta et al., “Phasor imaging: A generalization of correlation-based time-of-flight imaging,” TOG 

2015. 
The paper on using high-frequency modulation to deal with interreflections and MPI in 
CW-ToF imaging.

Additional reading:
• Seitz et al., “A theory of inverse light transport,” ICCV 2005.

This early paper shows a way to exactly decompose light transport by number of 
bounces, under certain assumptions for the imaged scene.

• Chandraker et al., “On the duality of forward and inverse light transport,” PAMI 2011.
• Reddy et al., “Frequency-space decomposition and acquisition of light transport under spatially 

varying illumination,” ECCV 2012.
These two papers have additional analysis about the relationship between direct and 
global illumination and illumination frequency.

• Durand et al., “A frequency analysis of light transport,” SIGGRAPH 2005.
This paper more formally discusses the notion of light transport frequency, and the 
frequency characteristics of different light transport effects (specular versus diffuse 
reflections, hard versus smooth shadows).
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