Two-view geometry

Course announcements

- Homework assignment 5 is due today.
- Any questions?
- Homework assignment 6 will be posted tonight.
- Start early: Capturing structured light stereo is challenging.

Confessions at Carnegie Mellon
December 22, 2020 • ©
4924. CMU has me depressed most of the time, but then I have days where I scan a frog by waving a stick in front of a lamp, and suddenly it's all worth it.

Overview of today's lecture

- Leftover from cameras.
- Triangulation.
- Epipolar geometry.
- Essential matrix.
- Fundamental matrix.
- 8-point algorithm.

Overview of today's lecture

- Leftover from cameras.
- Triangulation.
- Epipolar geometry.
- Essential matrix.
- Fundamental matrix.
- 8-point algorithm.

Slide credits

Many of these slides were adapted from:

- Kris Kitani (16-385, Spring 2017).
- Srinivasa Narasimhan (16-720, Fall 2017).

Triangulation

Triangulation

Triangulation

Triangulation

Triangulation

Create two points on the ray:

1) find the camera center; and
2) apply the pseudo-inverse of P on x.

Then connect the two points.
This procedure is called backprojection

Triangulation

Triangulation

Triangulation

Triangulation

Given a set of (noisy) matched points

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{\prime}\right\}
$$

and camera matrices
$\mathbf{P}, \mathbf{P}^{\prime}$

Estimate the 3D point X

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$

known
Can we compute \boldsymbol{X} from a single correspondence \boldsymbol{x} ?

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$

This is a similarity relation because it involves homogeneous coordinates

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$
 omorogeneou
 coordinate)

Same ray direction but differs by a scale factor

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

How do we solve for unknowns in a similarity relation?

$\mathbf{x}=\mathbf{P} \boldsymbol{X}$
 (homogeneous

coordinate)
Also, this is a similarity relation because it involves homogeneous coordinates

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$
 (inomogeneous

Same ray direction but differs by a scale factor

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

How do we solve for unknowns in a similarity relation?

Linear algebra reminder: cross product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

Linear algebra reminder: cross product

Cross product

$$
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
$$

Can also be written as a matrix multiplication

$$
\boldsymbol{a} \times \boldsymbol{b}=[\boldsymbol{a}]_{\times} \boldsymbol{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Compare with: dot product

$$
\boldsymbol{c} \cdot \boldsymbol{a}=0 \quad \boldsymbol{c} \cdot \boldsymbol{b}=0
$$

Back to triangulation

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$

Same direction but differs by a scale factor

How can we rewrite this using vector products?

$\mathbf{x}=\alpha \mathbf{P} \boldsymbol{X}$

Same direction but differs by a scale factor

$\mathbf{x} \times \mathbf{P} \boldsymbol{X}=\mathbf{0}$

Cross product of two vectors of same direction is zero
(this equality removes the scale factor)

Do the same after first expanding out the camera matrix and points

$$
\begin{gathered}
{\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\alpha\left[\begin{array}{l}
\boldsymbol{p}_{1}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{\top}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]} \\
{\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \times\left[\begin{array}{c}
\boldsymbol{p}_{1}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{3}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{2}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3}^{\top} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Using the fact that the cross product should be zero

$$
\begin{gathered}
\mathbf{X} \times \mathbf{P} \boldsymbol{X}=\mathbf{0} \\
{\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{\top}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

Using the fact that the cross product should be zero

$$
\begin{gathered}
\mathbf{X} \times \mathbf{P} \boldsymbol{X}=\mathbf{0} \\
{\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top} \boldsymbol{X}-\boldsymbol{p}_{\top}^{\top} \boldsymbol{X} \\
\boldsymbol{p}_{1}^{\top} \boldsymbol{X}-x \boldsymbol{p}_{3} \boldsymbol{X} \\
x \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-y \boldsymbol{p}_{1}^{\top} \boldsymbol{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

Remove third row, and rearrange as system on unknowns

$$
\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top}
\end{array}\right] \boldsymbol{X}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\mathbf{A}_{i} \boldsymbol{X}=\mathbf{0}
$$

Concatenate the 2D points from both images

$\mathbf{A X}=\mathbf{0}$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$
\left[\begin{array}{c}
y \boldsymbol{p}_{3}^{\top}-\boldsymbol{p}_{2}^{\top} \\
\boldsymbol{p}_{1}^{\top}-x \boldsymbol{p}_{3}^{\top} \\
y^{\prime} \boldsymbol{p}_{3}^{\prime \top}-\boldsymbol{p}_{2}^{\prime \top} \\
\boldsymbol{p}_{1}^{\prime \top}-x^{\prime} \boldsymbol{p}_{3}^{\prime \top}
\end{array}\right] \boldsymbol{X}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$\mathbf{A X}=\mathbf{0}$

How do we solve homogeneous linear system?

$$
S \vee D!
$$

Epipolar geometry

Epipolar geometry

Epipolar geometry

Epipolar geometry

Epipolar geometry

Epipolar geometry

Quiz

Epipolar constraint

Backproject \boldsymbol{x} to a

Another way to construct the epipolar plane, this time given \boldsymbol{x}

Epipolar constraint

The point \mathbf{x} (left image) maps to a \qquad in the right image

The baseline connects the \qquad and \qquad
An epipolar line (left image) maps to a \qquad in the right image

An epipole \mathbf{e} is a projection of the \qquad on the image plane All epipolar lines in an image intersect at the \qquad

Where is the epipole in this image?

Converging cameras

Where is the epipole in this image?
It's not always in the image

Parallel cameras

Where is the epipole?

Parallel cameras

epipole at infinity

The epipolar constraint is an important concept for stereo vision
Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Epipolar constraint

The epipolar constraint is an important concept for stereo vision
Task: Match point in left image to point in right image

Left image
Right image
Want to avoid search over entire image
Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision
Task: Match point in left image to point in right image

Left image
Right image
Want to avoid search over entire image
Epipolar constraint reduces search to a single line
How do you compute the epipolar line?

The essential matrix

Recall:Epipolar constraint

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second view.

Motivation

The Essential Matrix is a 3×3 matrix that encodes epipolar geometry

Given a point in one image, multiplying by the essential matrix will tell us the epipolar line in the second image.

Epipolar Line

$$
a x+b y+c=0 \quad \text { in vector form } \quad l=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

If the point \boldsymbol{X} is on the epipolar line \boldsymbol{l} then

$$
\boldsymbol{x}^{\top} \boldsymbol{l}=?
$$

Epipolar Line

$$
a x+b y+c=0 \quad \text { in vector form } \quad l=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

If the point \boldsymbol{X} is on the epipolar line \boldsymbol{l} then

$$
\boldsymbol{x}^{\top} \boldsymbol{l}=0
$$

So if $\boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0$ and $\boldsymbol{E} \boldsymbol{x}=\boldsymbol{l}^{\prime}$ then $\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=?$

So if $\boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0$ and $\boldsymbol{E} \boldsymbol{x}=\boldsymbol{l}^{\prime}$ then

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3×3 matrices but ...

$$
l^{\prime}=\mathrm{E} \boldsymbol{x}
$$

Essential matrix maps a point to a line

$\boldsymbol{x}^{\prime}=\mathbf{H} \boldsymbol{x}$

Homography maps a point to a point

Where does the essential matrix come from?

Does this look familiar?

Camera-camera transform just like world-camera transform

These three vectors are coplanar

$$
\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x})=\text { ? }
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then
dot product of orthogonal vectors

$$
\boldsymbol{x}_{\boldsymbol{x}}^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0
$$

cross-product: vector orthogonal to plane

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=?
$$

If these three vectors are coplanar $\boldsymbol{x}, \boldsymbol{t}, \boldsymbol{x}^{\prime}$ then

$$
(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0
$$

putting it together

rigid motion
coplanarity

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0
\end{gathered}
$$

putting it together

rigid motion
coplanarity

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0
\end{gathered}
$$

use skew-symmetric matrix to represent cross product

putting it together

rigid motion
coplanarity

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0
\end{gathered}
$$

putting it together

rigid motion
coplanarity

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left({\left.\boldsymbol{\boldsymbol { x } ^ { \prime \top }} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0}_{\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0}\right. \\
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
\end{gathered}
$$

putting it together

rigid motion
coplanarity

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\mathbf{R}(\boldsymbol{x}-\boldsymbol{t}) \quad(\boldsymbol{x}-\boldsymbol{t})^{\top}(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)(\boldsymbol{t} \times \boldsymbol{x})=0 \\
\left(\boldsymbol{x}^{\prime \top} \mathbf{R}\right)\left(\left[\mathbf{t}_{\times}\right] \boldsymbol{x}\right)=0 \\
\boldsymbol{x}^{\prime \top}\left(\mathbf{R}\left[\mathbf{t}_{\times}\right]\right) \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0 \quad \begin{array}{c}
\text { ELsential Matrix } \\
\text { [Longuet-Higgins 1981] }
\end{array}
\end{gathered}
$$

properties of the E matrix

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

(2D points expressed in camera coordinate system)

properties of the E matrix

Longuet-Higgins equation

$$
\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0
$$

Epipolar lines

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\prime \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} & \boldsymbol{l}=\mathbf{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

(2D points expressed in camera coordinate system)

properties of the E matrix

Longuet-Higgins equation
$\boldsymbol{x}^{\prime \boldsymbol{\top}} \mathbf{E} \boldsymbol{x}=0$

Epipolar lines

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\top \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\mathbf{E} \boldsymbol{x} & \boldsymbol{l}=\mathbf{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

Epipoles
$e^{\prime \top} \mathbf{E}=\mathbf{0}$
$\mathbf{E} e=0$
(2D points expressed in camera coordinate system)

Given a point in one image,
multiplying by the essential matrix will tell us
the epipolar line in the second view.

2D points expressed in camera coordinate system (i.e., intrinsic matrices are identities)

How do you generalize to non-identity intrinsic matrices?

The fundamental matrix

The
fundamental matrix
is a
generalization
of the
essential matrix,
where the assumption of
Identity matrices
is removed

$\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}}=0$

The essential matrix operates on image points expressed in 2D coordinates expressed in the camera coordinate system

$$
\hat{\boldsymbol{x}}^{\prime}=\mathbf{K}^{\prime-1} \boldsymbol{x}^{\prime} \quad \underset{\substack{\text { acmean } \\ \text { poont }}}{\hat{\boldsymbol{x}}}=\mathbf{K}^{-1} \boldsymbol{x} \boldsymbol{x} \text { mese } \text { ponit }
$$

$\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}}=0$

The essential matrix operates on image points expressed in 2D coordinates expressed in the camera coordinate system

$$
\hat{\boldsymbol{x}}^{\prime}=\mathbf{K}^{\prime-1} \boldsymbol{x}^{\prime} \quad \underset{\substack{\text { acanaen } \\ \text { poant }}}{\hat{\boldsymbol{x}}}=\mathbf{K}^{-1} \boldsymbol{x} \boldsymbol{x} \text { mage }
$$

Writing out the epipolar constraint in terms of image coordinates

$$
\begin{aligned}
& \mathbf{K}^{\prime-\top} \mathbf{E K}^{-1} \boldsymbol{x}=0 \\
& \boldsymbol{x}^{\prime \top}\left(\mathbf{K}^{\prime-\top} \mathbf{E K}^{-1}\right) \boldsymbol{x}=0 \\
& \boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
\end{aligned}
$$

Same equation works in image coordinates!

$$
\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x}=0
$$

it maps pixels to epipolar lines

properties of the $/ E$ matrix

Longuet-Higgins equation

$$
\left.\boldsymbol{x}^{\prime \top}\right] \boldsymbol{x}=0
$$

Epipolar lines

$$
\begin{array}{ll}
\boldsymbol{x}^{\top} \boldsymbol{l}=0 & \boldsymbol{x}^{\top \top} \boldsymbol{l}^{\prime}=0 \\
\boldsymbol{l}^{\prime}=\boldsymbol{E} \boldsymbol{x} & \boldsymbol{l}=\mathrm{E}^{T} \boldsymbol{x}^{\prime}
\end{array}
$$

Epipoles
$e^{\prime \top} \mathbb{E}=0$
We $=0$
(points in image coordinates)

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{\prime-\top}\left[\mathbf{t}_{\times}\right] \mathbf{R K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

$$
\begin{aligned}
\mathbf{F} & =\mathbf{K}^{\prime-\top} \mathbf{E} \mathbf{K}^{-1} \\
\mathbf{F} & =\mathbf{K}^{\prime-\top}\left[\mathbf{t}_{\times}\right] \mathbf{R} \mathbf{K}^{-1}
\end{aligned}
$$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

The 8-point algorithm

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?

$$
S \vee D
$$

Assume you have M matched image points

$$
\left\{\boldsymbol{x}_{m}, \boldsymbol{x}_{m}^{\prime}\right\} \quad m=1, \ldots, M
$$

Each correspondence should satisfy

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

How would you solve for the 3×3 F matrix?
Set up a homogeneous linear system with 9 unknowns

$$
\begin{gathered}
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0 \\
{\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0}
\end{gathered}
$$

How many equation do you get from one correspondence?

$$
\left[\begin{array}{lll}
x_{m}^{\prime} & y_{m}^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right]\left[\begin{array}{c}
x_{m} \\
y_{m} \\
1
\end{array}\right]=0
$$

ONE correspondence gives you ONE equation

$$
\begin{array}{r}
x_{m} x_{m}^{\prime} f_{1}+x_{m} y_{m}^{\prime} f_{2}+x_{m} f_{3}+ \\
y_{m} x_{m}^{\prime} f_{4}+y_{m} y_{m}^{\prime} f_{5}+y_{m} f_{6}+ \\
x_{m}^{\prime} f_{7}+y_{m}^{\prime} f_{8}+f_{9}=0
\end{array}
$$

$\left[\begin{array}{lll}x_{m}^{\prime} & y_{m}^{\prime} & 1\end{array}\right]\left[\begin{array}{lll}f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9}\end{array}\right]\left[\begin{array}{c}x_{m} \\ y_{m} \\ 1\end{array}\right]=0$

Set up a homogeneous linear system with 9 unknowns

$$
\left[\begin{array}{ccccccccc}
x_{1} x_{1}^{\prime} & x_{1} y_{1}^{\prime} & x_{1} & y_{1} x_{1}^{\prime} & y_{1} y_{1}^{\prime} & y_{1} & x_{1}^{\prime} & y_{1}^{\prime} & 1 \\
\vdots & \vdots \\
x_{M} x_{M}^{\prime} & x_{M} y_{M}^{\prime} & x_{M} & y_{M} x_{M}^{\prime} & y_{M} y_{M}^{\prime} & y_{M} & x_{M}^{\prime} & y_{M}^{\prime} & 1
\end{array}\right]\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7} \\
f_{8} \\
f_{9}
\end{array}\right]=\mathbf{0}
$$

How many equations do you need?

Each point pair (according to epipolar constraint) contributes only one scalar equation

$$
\boldsymbol{x}_{m}^{\prime \top} \mathbf{F} \boldsymbol{x}_{m}=0
$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

How do you solve a homogeneous linear system?

$$
\mathbf{A} \boldsymbol{X}=\mathbf{0}
$$

How do you solve a homogeneous linear system?

$\mathbf{A X}=\mathbf{0}$

Total Least Squares

minimize $\|\mathbf{A x}\|^{2}$
subject to $\|\boldsymbol{x}\|^{2}=1$

How do you solve a homogeneous linear system?

$$
\mathbf{A} \boldsymbol{X}=\mathbf{0}
$$

Total Least Squares

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathbf{A} \boldsymbol{x}\|^{2} \\
\text { subject to } & \|\boldsymbol{x}\|^{2}=1
\end{array}
$$

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V}
corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V}
corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)
§ See Hartley-Zisserman for why we do this

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V}
corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

How do we do this?

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V}
corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

How do we do this?
S V D!

Enforcing rank constraints

Problem: Given a matrix F, find the matrix F^{\prime} of rank k that is closest to F ,

$$
\min _{F^{\prime}}^{\operatorname{rank}\left(F^{\prime}\right)=k} \mid\left\|F-F^{\prime}\right\|^{2}
$$

Solution: Compute the singular value decomposition of F ,

$$
F=U \Sigma V^{T}
$$

Form a matrix Σ^{\prime} by replacing all but the k largest singular values in Σ with 0 .
Then the problem solution is the matrix F^{\prime} formed as,

$$
F^{\prime}=U \Sigma^{\prime} V^{T}
$$

Eight-Point Algorithm

0. (Normalize points)
1. Construct the $\mathrm{M} \times 9$ matrix \mathbf{A}
2. Find the SVD of \mathbf{A}
3. Entries of \mathbf{F} are the elements of column of \mathbf{V}
corresponding to the least singular value
4. (Enforce rank 2 constraint on F)
5. (Un-normalize F)

Example

epipolar lines

$$
\mathbf{F}=\left[\begin{array}{ccc}
-0.00310695 & -0.0025646 & 2.96584 \\
-0.028094 & -0.00771621 & 56.3813 \\
13.1905 & -29.2007 & -9999.79
\end{array}\right]
$$

$$
\begin{aligned}
\boldsymbol{l}^{\prime} & =\mathbf{F} \boldsymbol{x} \\
& =\left[\begin{array}{c}
0.0295 \\
0.9996 \\
-265.1531
\end{array}\right]
\end{aligned}
$$

Where is the epipole?

How would you compute it?

$\mathbf{F e}=\mathbf{0}$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

$\mathbf{F e}=\mathbf{0}$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

S V D!

References

Basic reading:

- Szeliski textbook, Section 8.1 (not 8.1.1-8.1.3), Chapter 11, Section 12.2.
- Hartley and Zisserman, Section 11.12.

