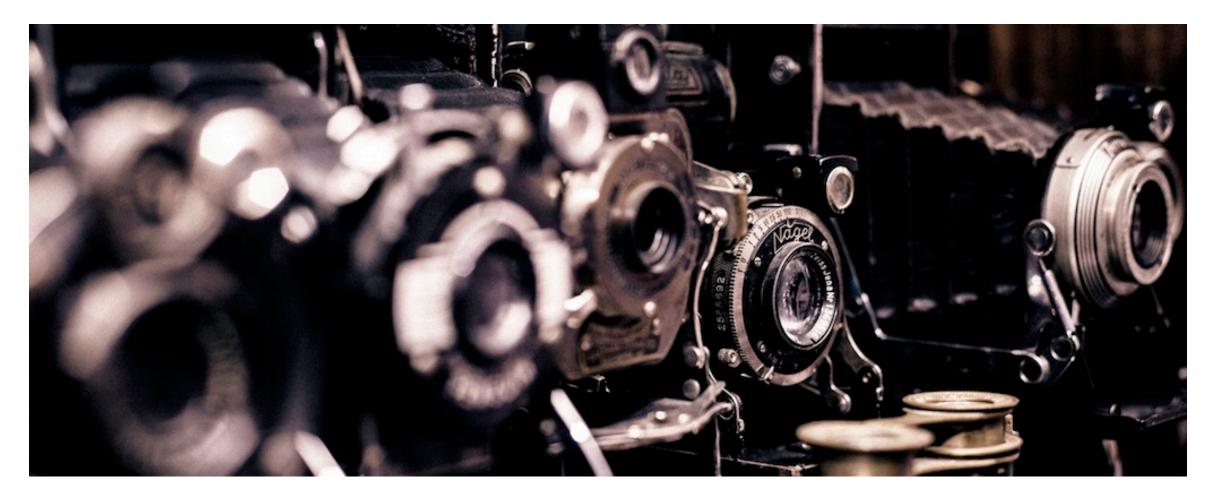
Geometric camera models and calibration



15-463, 15-663, 15-862 Computational Photography Fall 2021, Lecture 16

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 5 is due November 17th.
 Any questions?
- Remember to pick up final project equipment.

Overview of today's lecture

- Pinholes and lenses.
- Pinhole camera.
- Accidental pinholes.
- Camera matrix.
- Perspective.
- Other camera models.
- Pose estimation.

Slide credits

Most of these slides were adapted from:

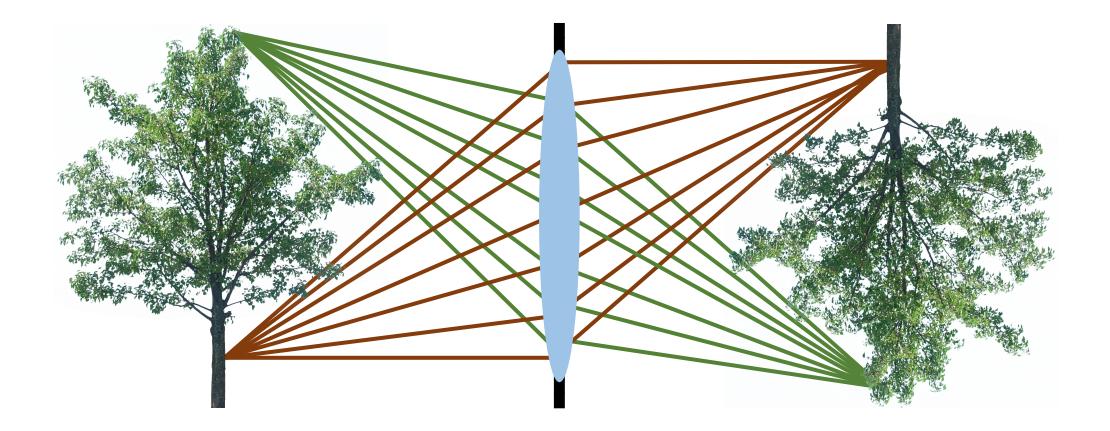
• Kris Kitani (15-463, Fall 2016).

Some slides inspired from:

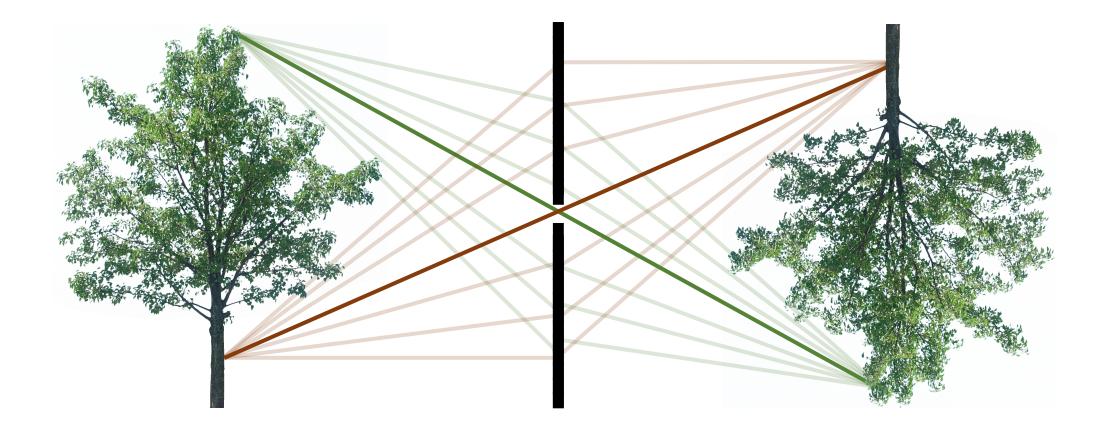
• Fredo Durand (MIT).

Pinhole and lens cameras

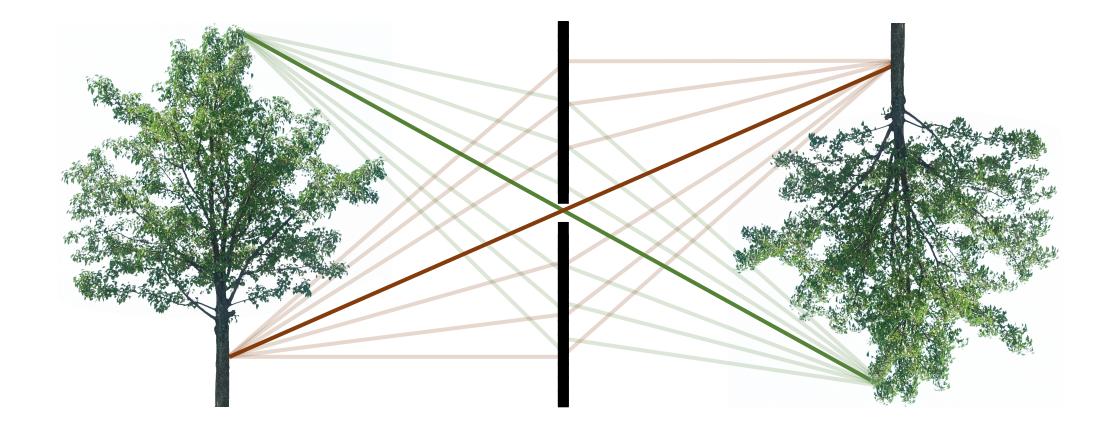
The lens camera



The pinhole camera

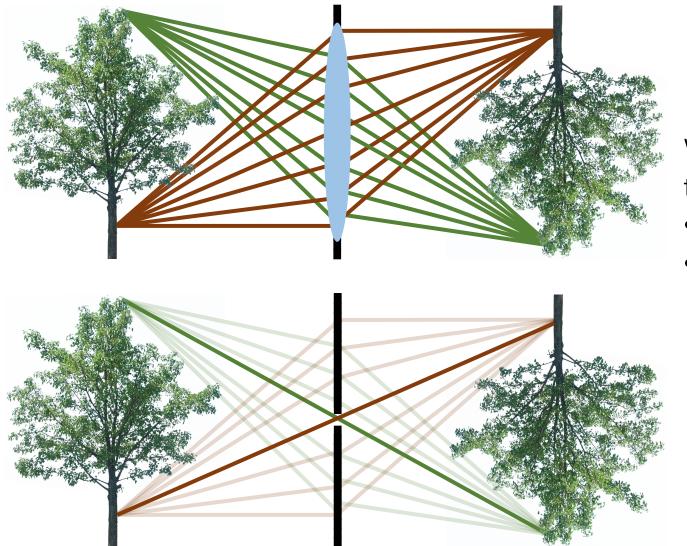


The pinhole camera



Central rays propagate in the same way for both models!

Describing both lens and pinhole cameras

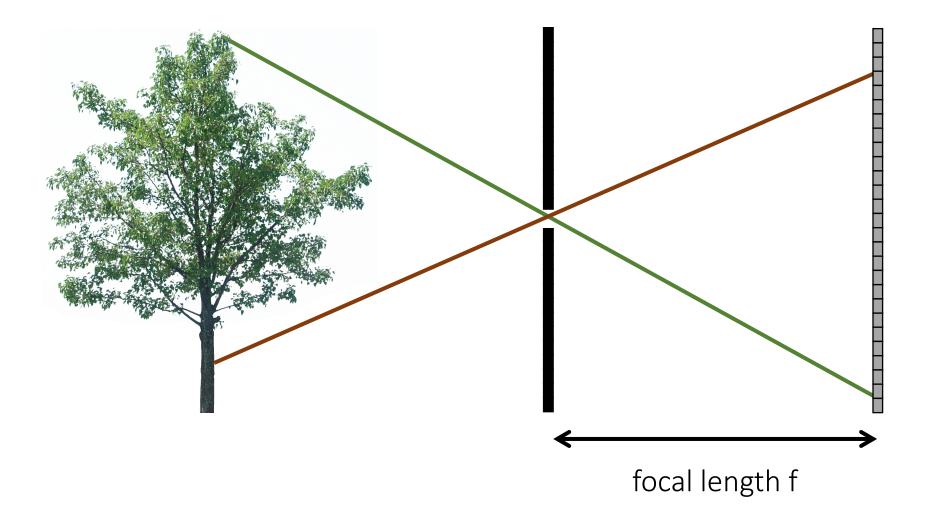


We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.

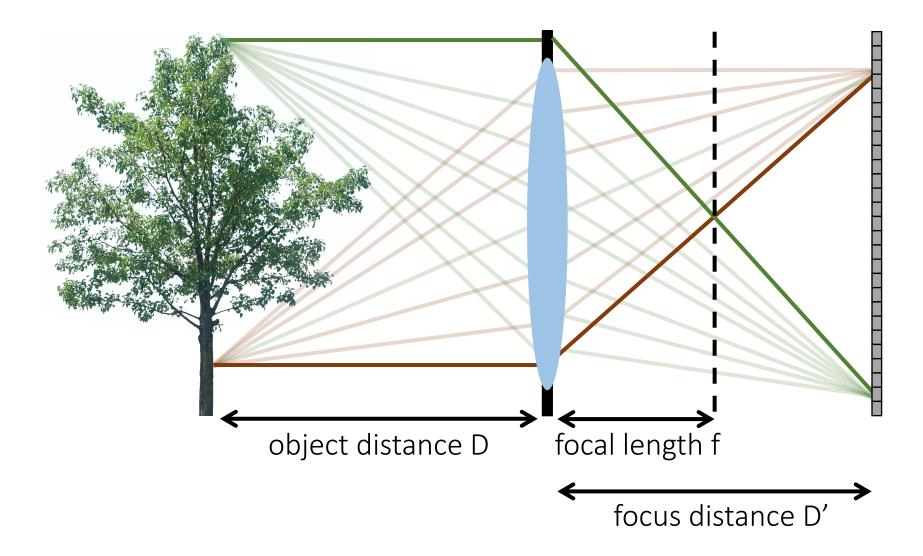
Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

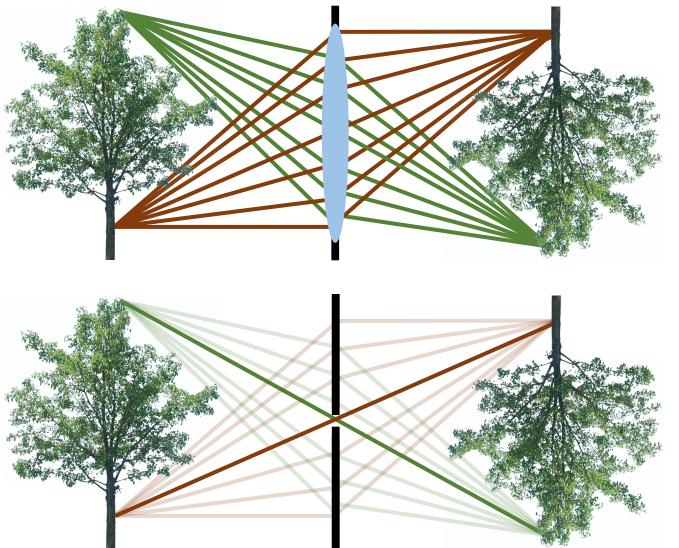


Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect



Describing both lens and pinhole cameras



We can derive properties and descriptions that hold for both camera models if:

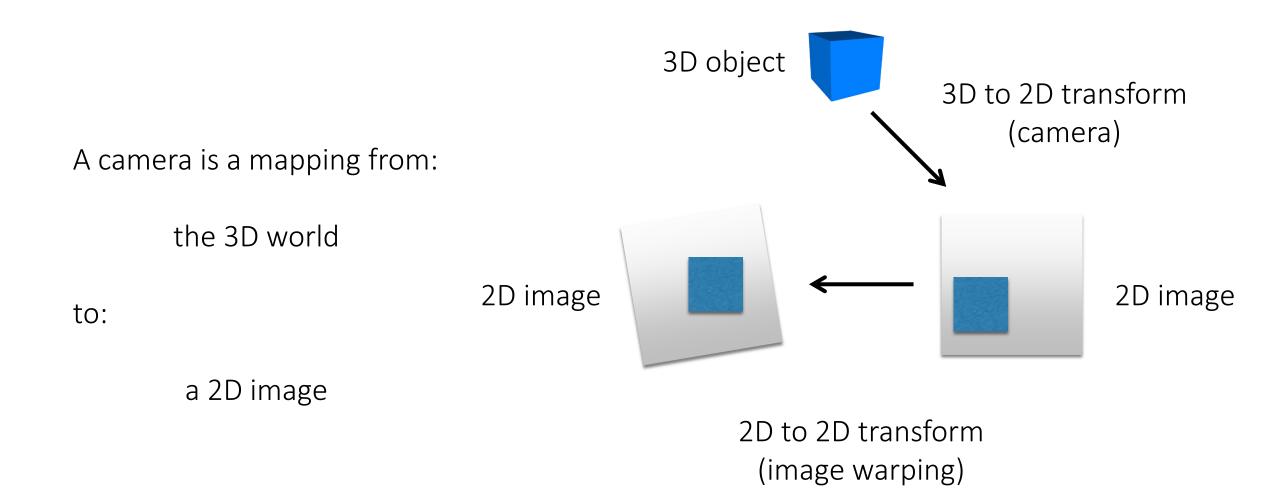
- We use only central rays.
- We assume the lens camera is in focus.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

Remember: *focal length* f refers to different things for lens and pinhole cameras.

 In this lecture, we use it to refer to the aperture-sensor distance, as in the pinhole camera case.

Camera matrix

The camera as a coordinate transformation



The camera as a coordinate transformation

A camera is a mapping from:

the 3D world

homogeneous coordinates X = PX2D image point camera matrix point

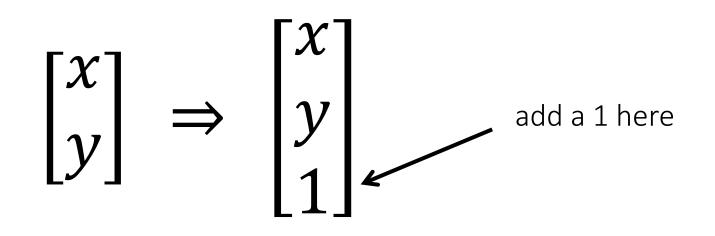
What are the dimensions of each variable?

to:

a 2D image

Reminder: 2D homogeneous coordinates

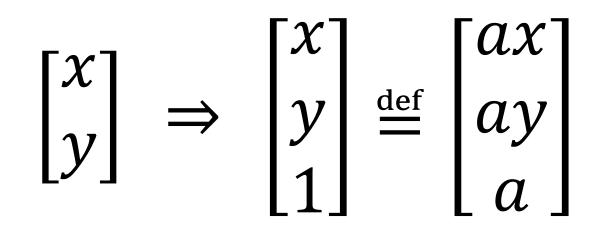
heterogeneous homogeneous coordinates coordinates



• Represent 2D point with a 3D vector

Reminder: 2D homogeneous coordinates

heterogeneous homogeneous coordinates coordinates



- Represent 2D point with a 3D vector
- 3D vectors are only defined up to scale

Reminder: 2D homogeneous coordinates

Conversion:

• heterogeneous \rightarrow homogeneous

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• homogeneous \rightarrow heterogeneous

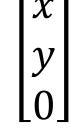
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{bmatrix} x/z \\ y/z \end{bmatrix}$$

Scale invariance:

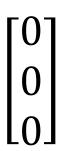
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = a \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Special points:

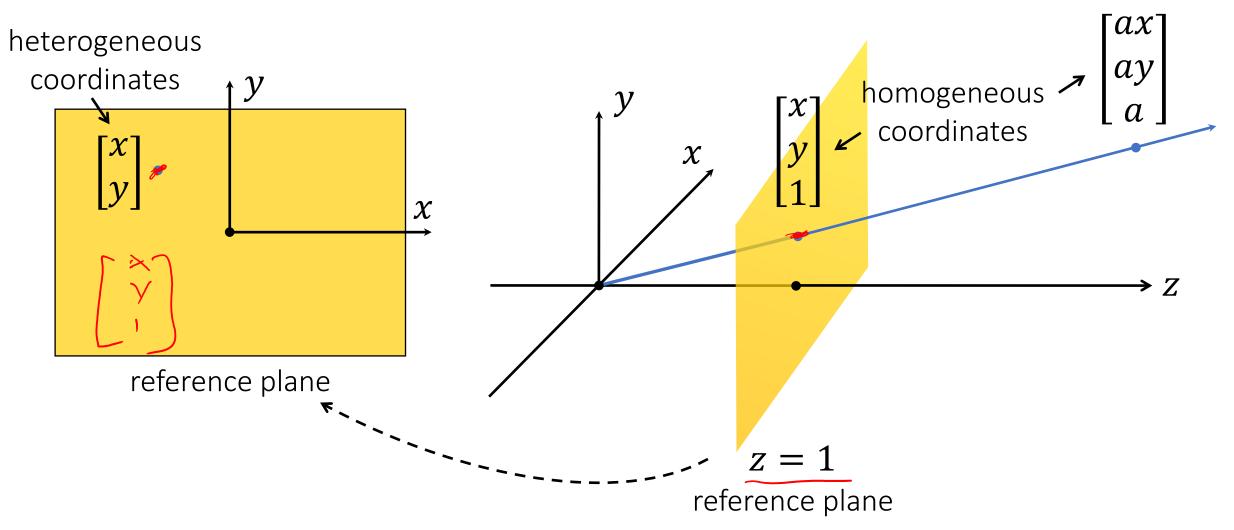
point at infinity



• undefined



Reminder: 2D projective geometry



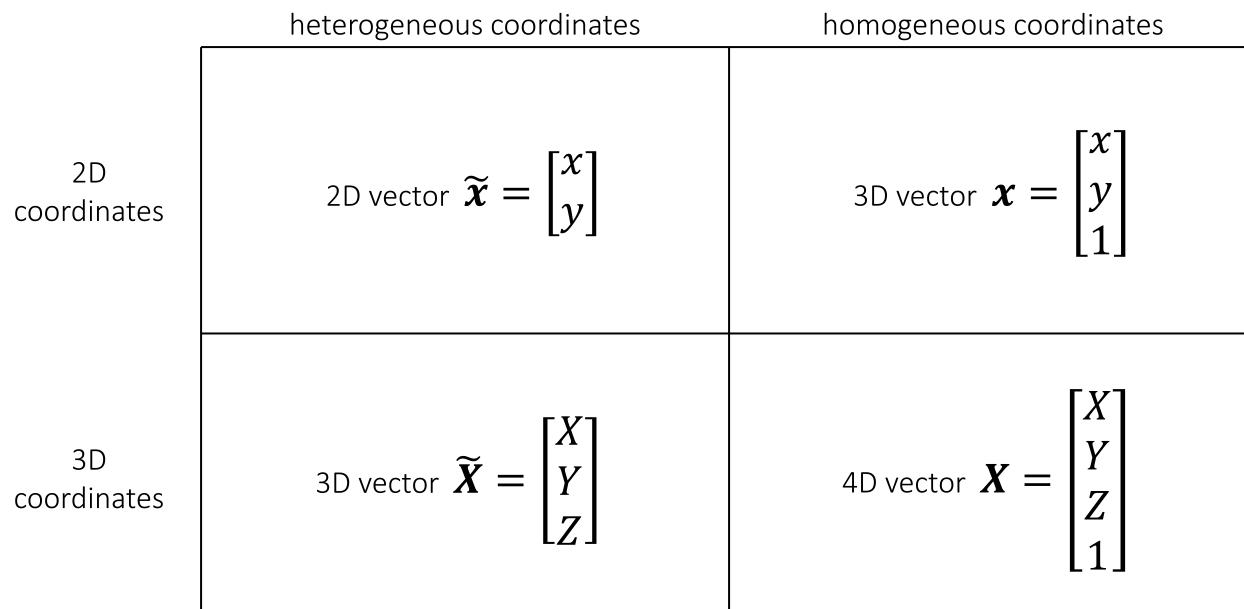
Through the scale invariance property, homogeneous coordinates map all points on a line passing through the origin to the point where this line intersects the reference plane.

Reminder: 3D homogeneous coordinates

heterogeneous homogeneous coordinates coordinates def

- Represent 3D point with a 4D vector
- 4D vectors are only defined up to scale

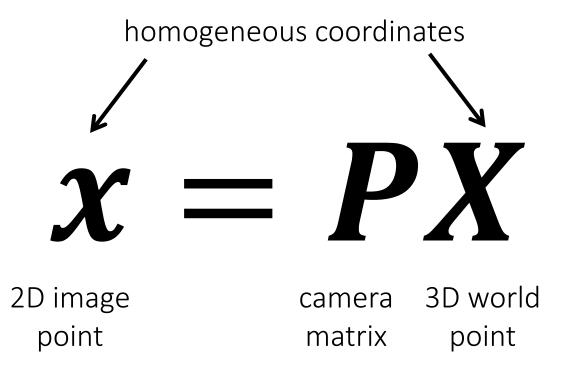
Reminder: notation



The camera as a coordinate transformation

A camera is a mapping from:

the 3D world

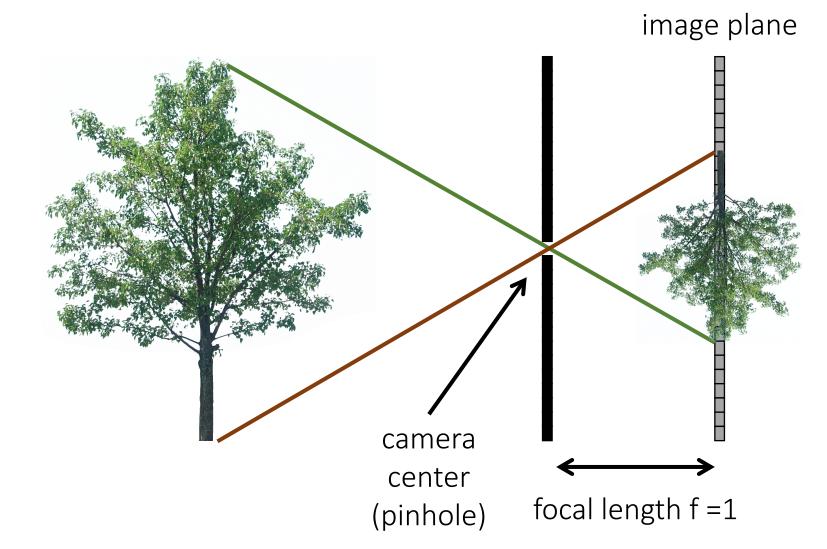


a 2D image

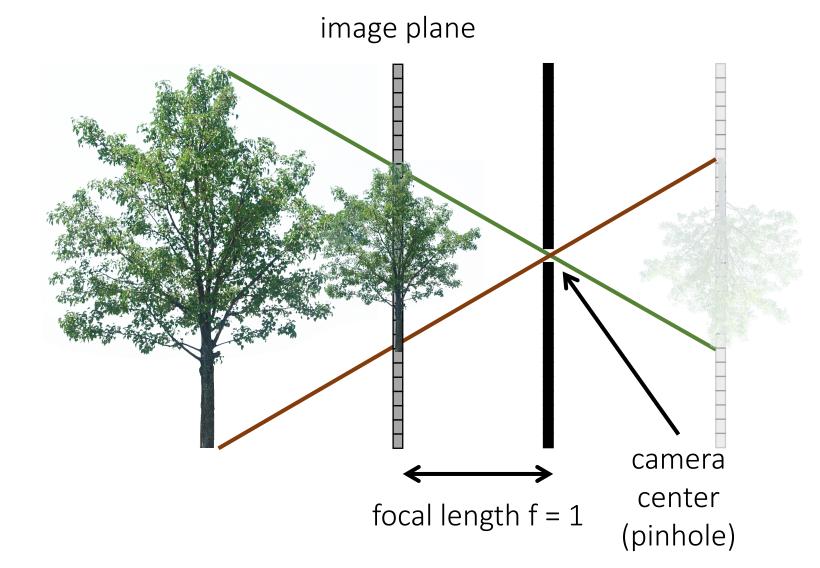
to:

What does this transformation look like?

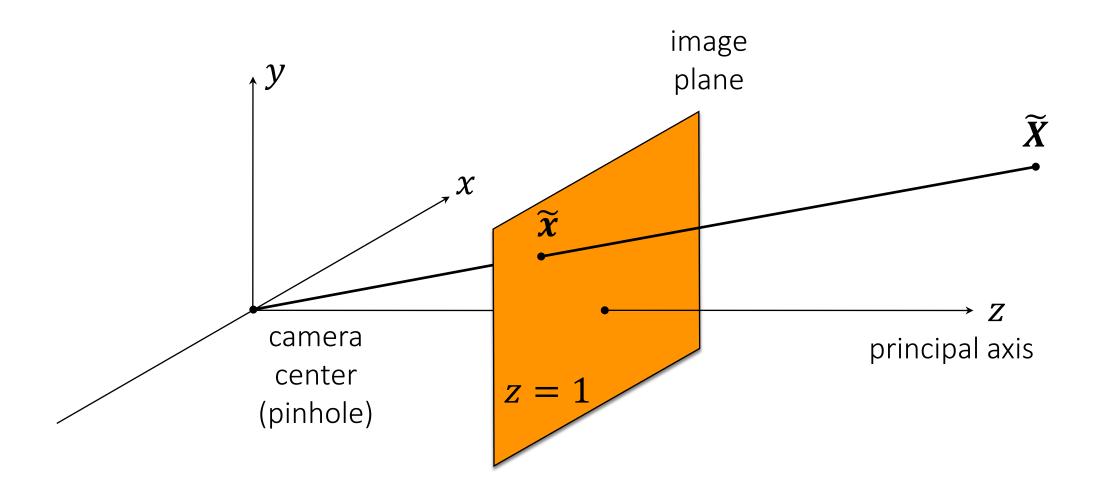
The pinhole camera



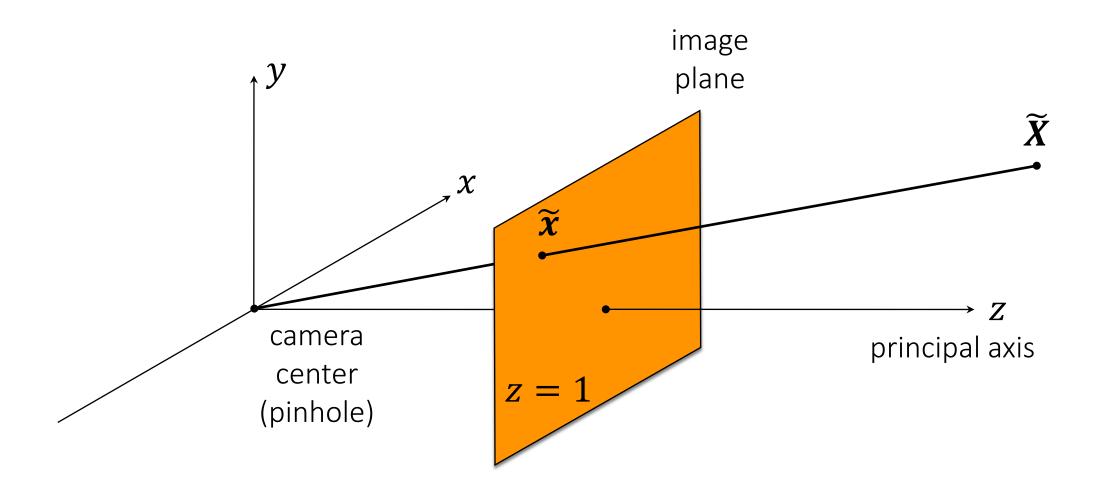
real-world object



real-world object

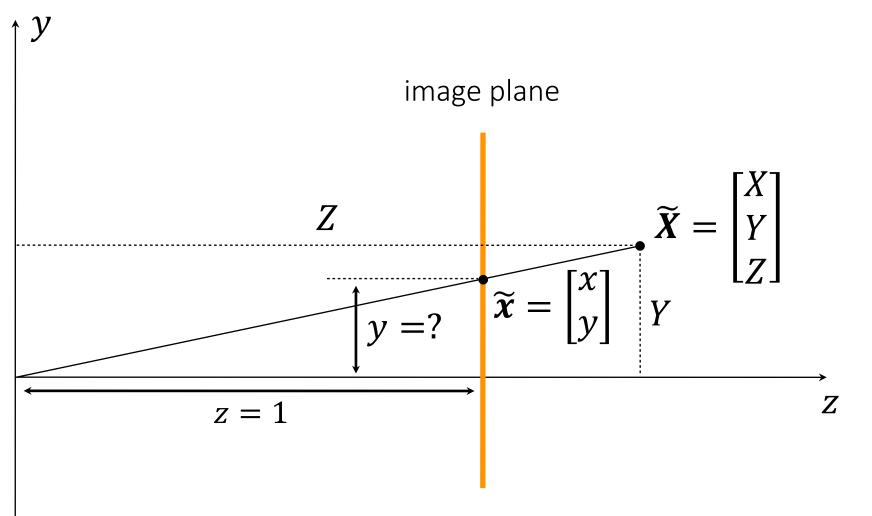


Where did we see a similar picture?



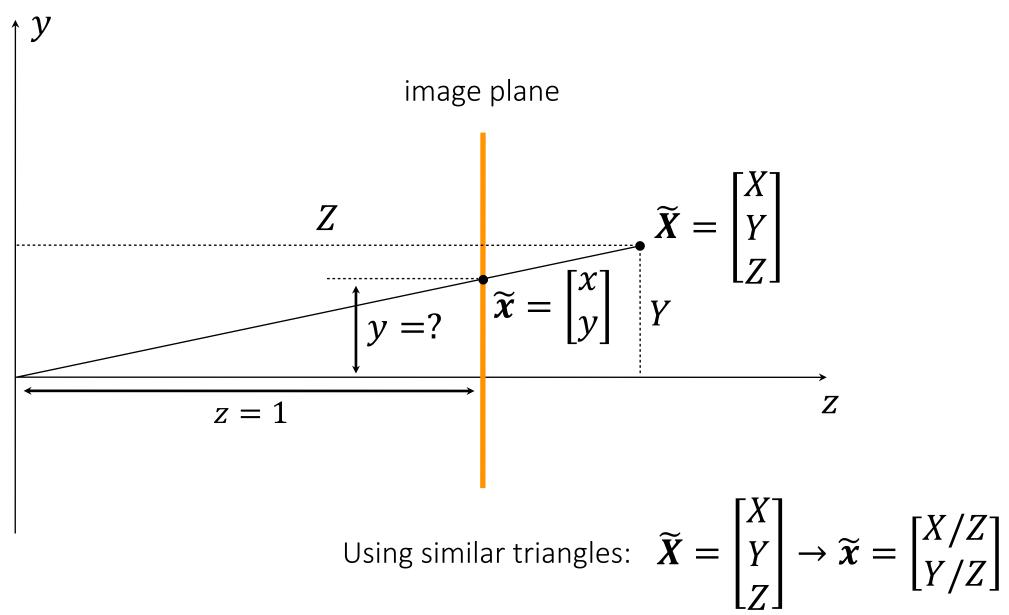
What is the equation for image coordinate \widetilde{x} in terms of \widetilde{X} ?

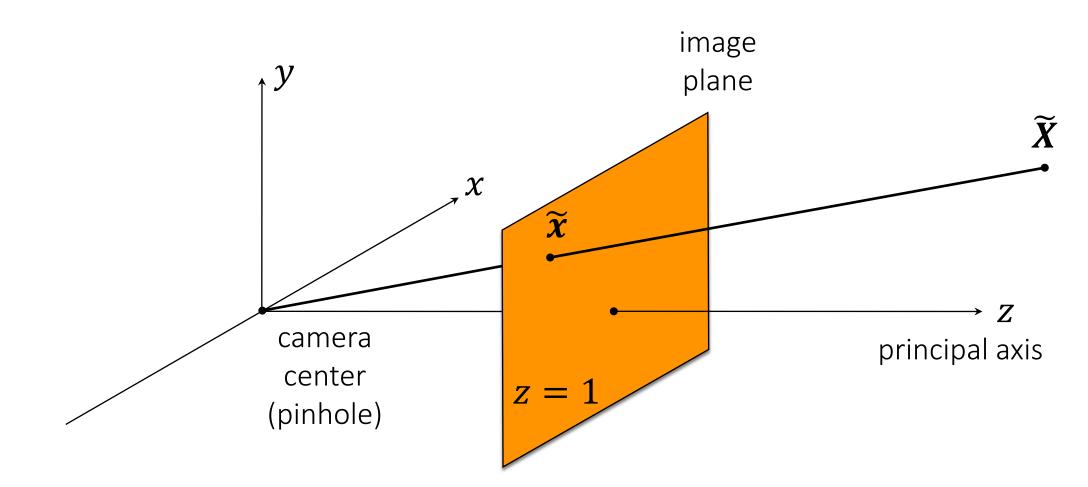
The 2D view of the (rearranged) pinhole camera



What is the equation for image coordinate \widetilde{x} in terms of \widetilde{X} ?

The 2D view of the (rearranged) pinhole camera





What is the camera matrix **P** for a pinhole camera?

x = PX

Camera projection relationship expressed:

• in *heterogeneous coordinates*

$$\widetilde{\boldsymbol{X}} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix} \to \widetilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{X}/\boldsymbol{Z} \\ \boldsymbol{Y}/\boldsymbol{Z} \end{bmatrix}$$

• in homogeneous coordinates

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ \boldsymbol{1} \end{bmatrix} \to \boldsymbol{x} = ?$$

Camera projection relationship expressed:

• in *heterogeneous coordinates*

$$\widetilde{\boldsymbol{X}} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix} \to \widetilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{X}/\boldsymbol{Z} \\ \boldsymbol{Y}/\boldsymbol{Z} \end{bmatrix}$$

 $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ \boldsymbol{1} \end{bmatrix} \to \boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix}$

General camera model in *homogeneous coordinates*:

x = PX

What does the pinhole camera projection look like?

Camera projection relationship expressed:

• in *heterogeneous coordinates*

$$\widetilde{\boldsymbol{X}} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix} \to \widetilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{X}/\boldsymbol{Z} \\ \boldsymbol{Y}/\boldsymbol{Z} \end{bmatrix}$$

 $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ \boldsymbol{1} \end{bmatrix} \to \boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix}$

General camera model in *homogeneous coordinates*:

x = PX

What does the pinhole camera projection look like?

The perspective
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Camera projection relationship expressed:

• in *heterogeneous coordinates*

$$\widetilde{\boldsymbol{X}} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix} \to \widetilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{X}/\boldsymbol{Z} \\ \boldsymbol{Y}/\boldsymbol{Z} \end{bmatrix}$$

 $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ \boldsymbol{1} \end{bmatrix} \to \boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix}$

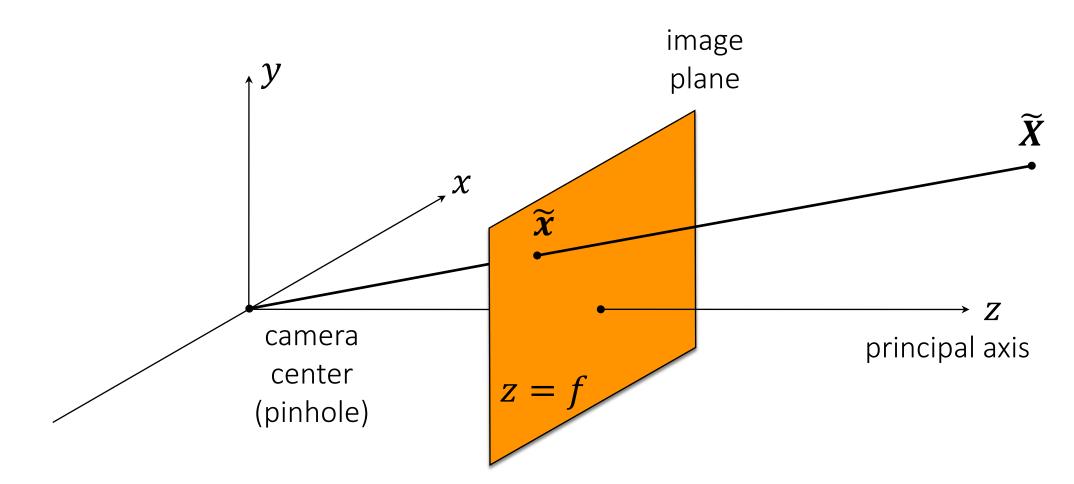
General camera model in *homogeneous coordinates*:

x = PX

What does the pinhole camera projection look like?

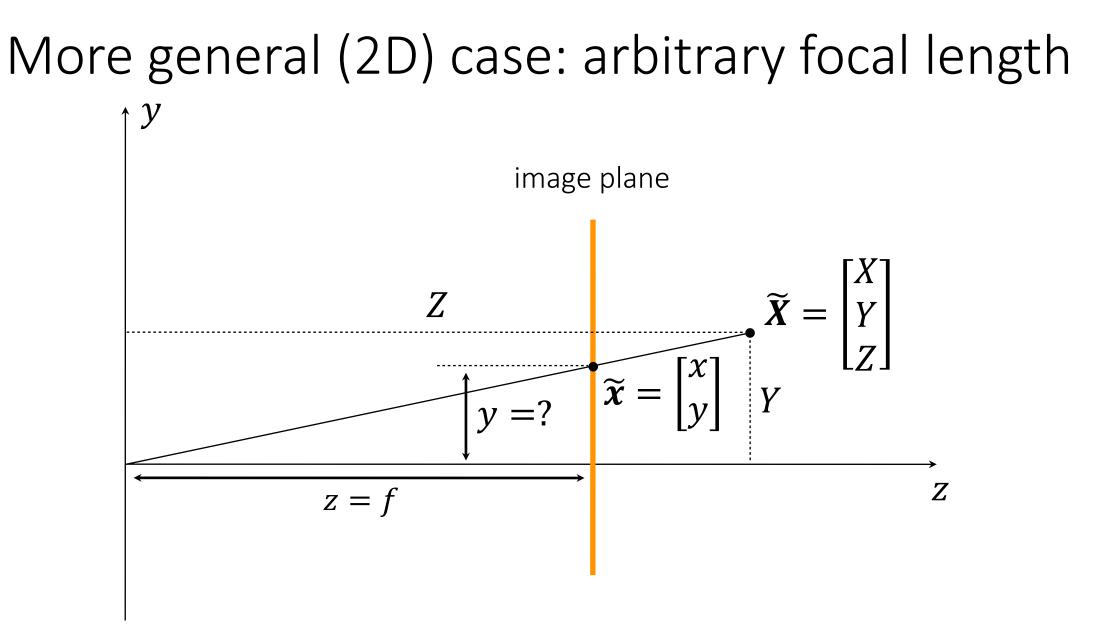
The perspective projection matrix
$$\boldsymbol{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \end{bmatrix}$$
 alternative way to write the same thing

More general case: arbitrary focal length

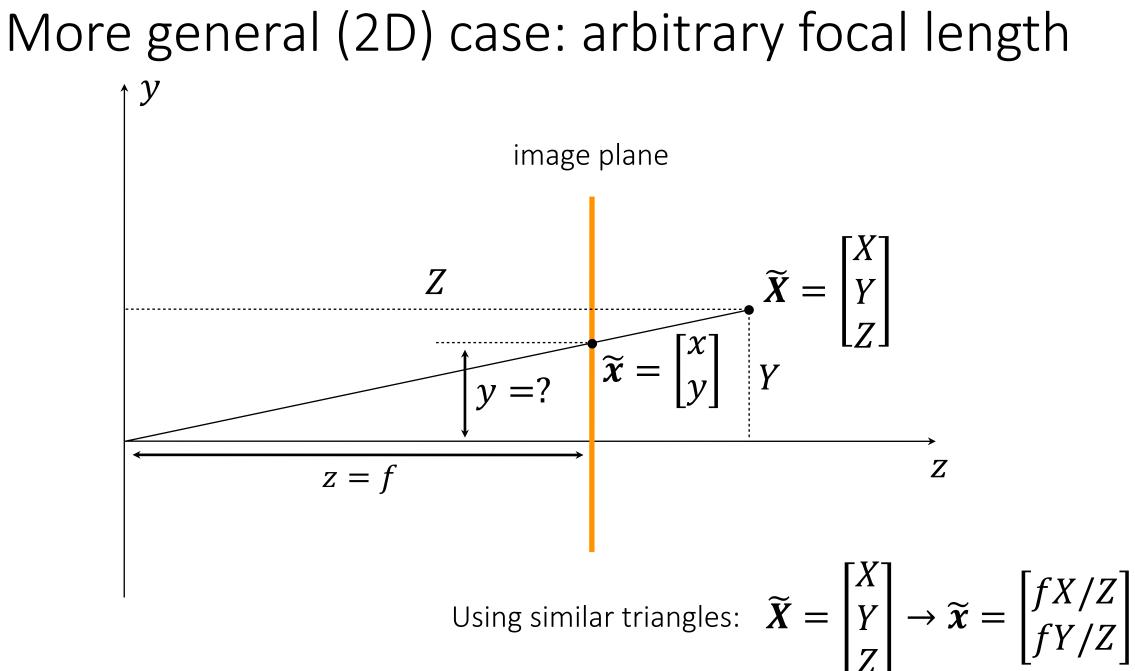


What is the camera matrix **P** for a pinhole camera?

x = PX



What is the equation for image coordinate \widetilde{x} in terms of \widetilde{X} ?



The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

• in *heterogeneous coordinates*

$$\widetilde{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \to \widetilde{x} = \begin{bmatrix} fX/Z \\ fY/Z \end{bmatrix}$$

• in homogeneous coordinates

 $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ \boldsymbol{1} \end{bmatrix} \to \boldsymbol{X} = \begin{bmatrix} \boldsymbol{f} \boldsymbol{X} \\ \boldsymbol{f} \boldsymbol{Y} \\ \boldsymbol{f} \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix}$

General camera model in *homogeneous coordinates*:

x = PX

What does the pinhole camera projection look like?

The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

• in *heterogeneous coordinates*

$$\widetilde{\boldsymbol{X}} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix} \to \widetilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{f} \boldsymbol{X} / \boldsymbol{Z} \\ \boldsymbol{f} \boldsymbol{Y} / \boldsymbol{Z} \end{bmatrix}$$

• in homogeneous coordinates

 $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ \boldsymbol{1} \end{bmatrix} \to \boldsymbol{X} = \begin{bmatrix} \boldsymbol{f} \boldsymbol{X} \\ \boldsymbol{f} \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix}$

General camera model in *homogeneous coordinates*:

x = PX

What does the pinhole camera projection look like?

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

The pinhole camera matrix for arbitrary focal length

Camera projection relationship expressed:

• in *heterogeneous coordinates*

$$\widetilde{\boldsymbol{X}} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix} \to \widetilde{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{f} \boldsymbol{X} / \boldsymbol{Z} \\ \boldsymbol{f} \boldsymbol{Y} / \boldsymbol{Z} \end{bmatrix}$$

• in homogeneous coordinates

 $\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ \boldsymbol{1} \end{bmatrix} \to \boldsymbol{X} = \begin{bmatrix} \boldsymbol{f} \boldsymbol{X} \\ \boldsymbol{f} \boldsymbol{Y} \\ \boldsymbol{Z} \end{bmatrix}$

General camera model in *homogeneous coordinates*:

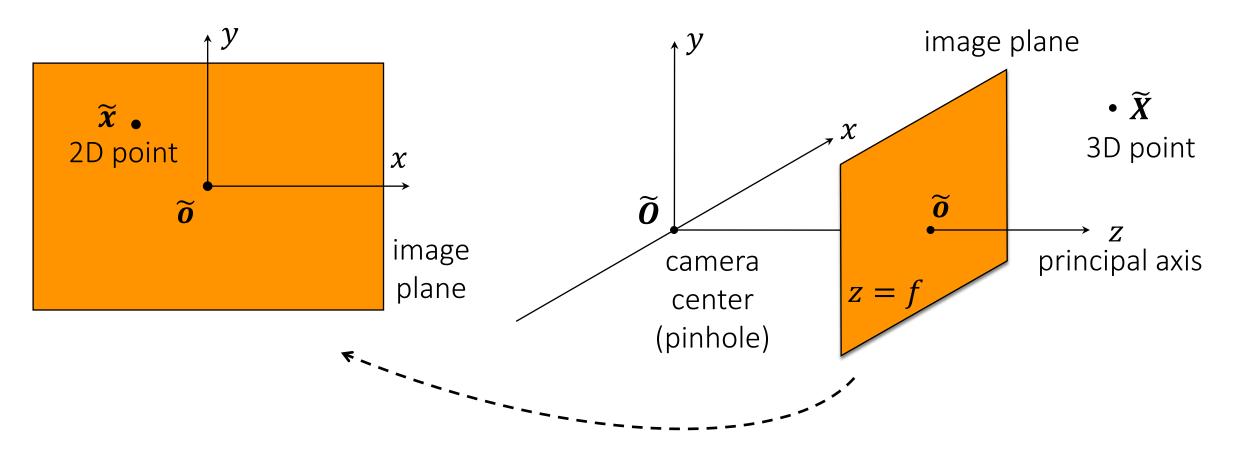
x = PX

What does the pinhole camera projection look like?

Equivalently we can write:
$$\boldsymbol{P} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

0 combination of perspective
 0 projection and a 2D scaling
 0 transformation

Generalizations: coordinate systems

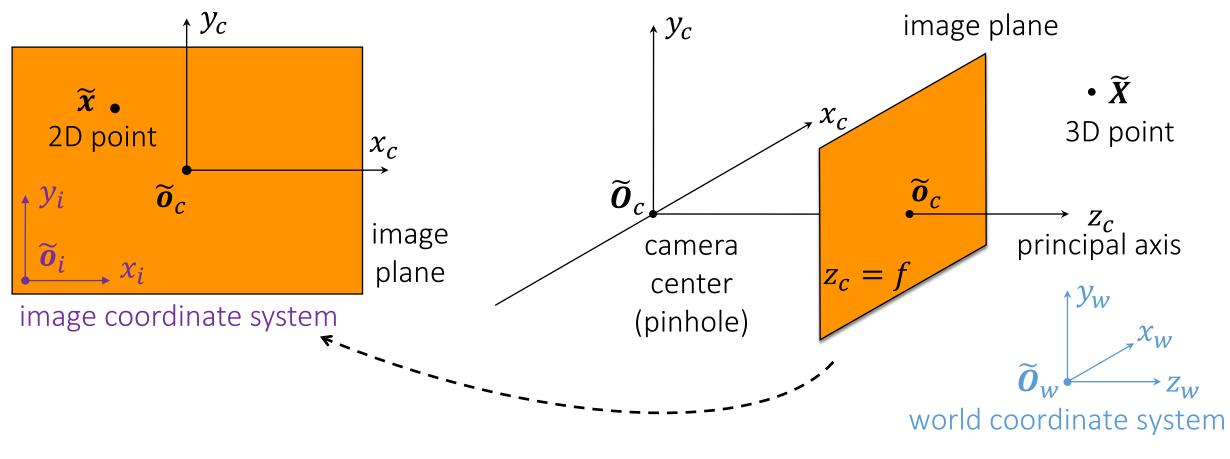


2D camera coordinate system 3D cam

3D camera coordinate system

• A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).

Generalizations: coordinate systems



2D camera coordinate system

3D camera coordinate system

- A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
- These coordinate systems may be different from the coordinate systems of our application.

Generalization: image coordinate system

In particular, the camera origin and image origin may be different.

• Can you think of a case when this happens?

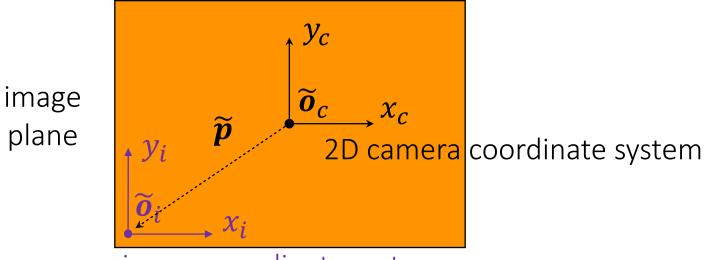


image coordinate system

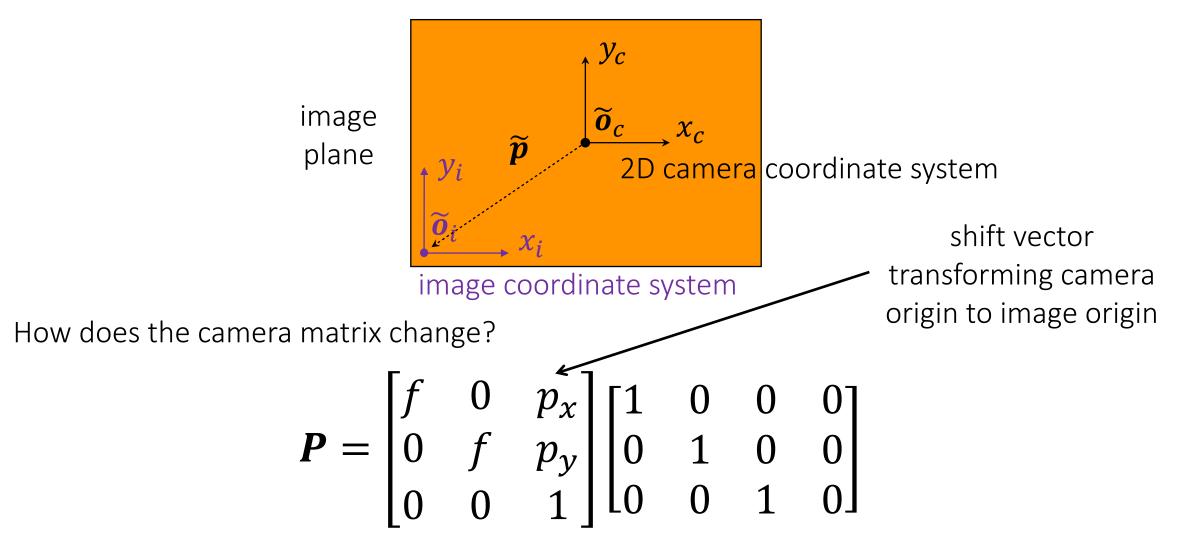
How does the camera matrix change?

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Generalization: image coordinate system

In particular, the camera origin and image origin may be different.

• Can you think of a case when this happens?



Camera matrix decomposition

We can decompose the camera matrix like this:

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

What does each part of the matrix represent?

Camera matrix decomposition

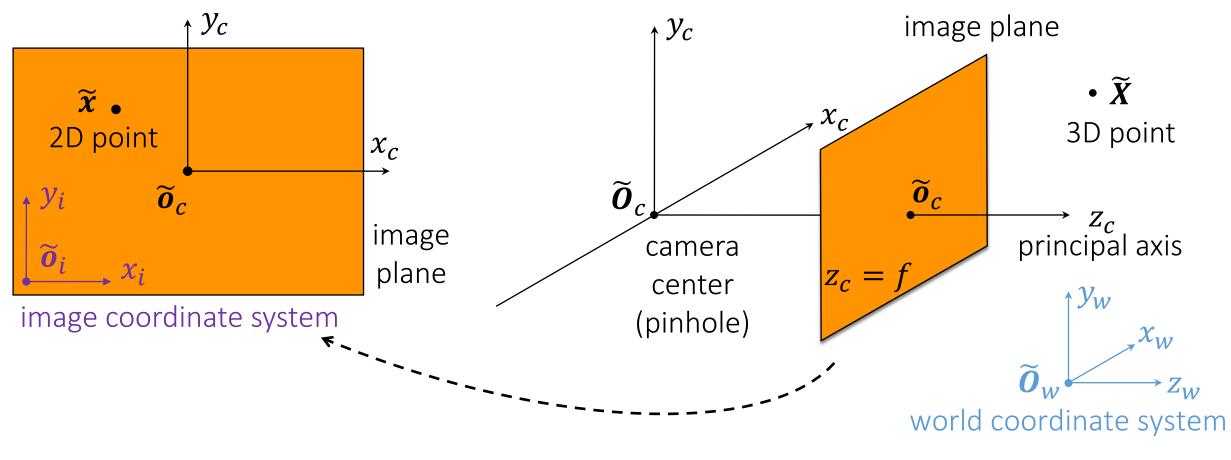
We can decompose the camera matrix like this:

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

(homogeneous) transformation from 2D to 2D, accounting for nonunit focal length and origin shift (homogeneous) perspective projection from 3D to 2D, assuming image plane at z = 1 and shared camera/image origin

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{I} & | & \boldsymbol{0} \end{bmatrix}$$

Generalizations: coordinate systems

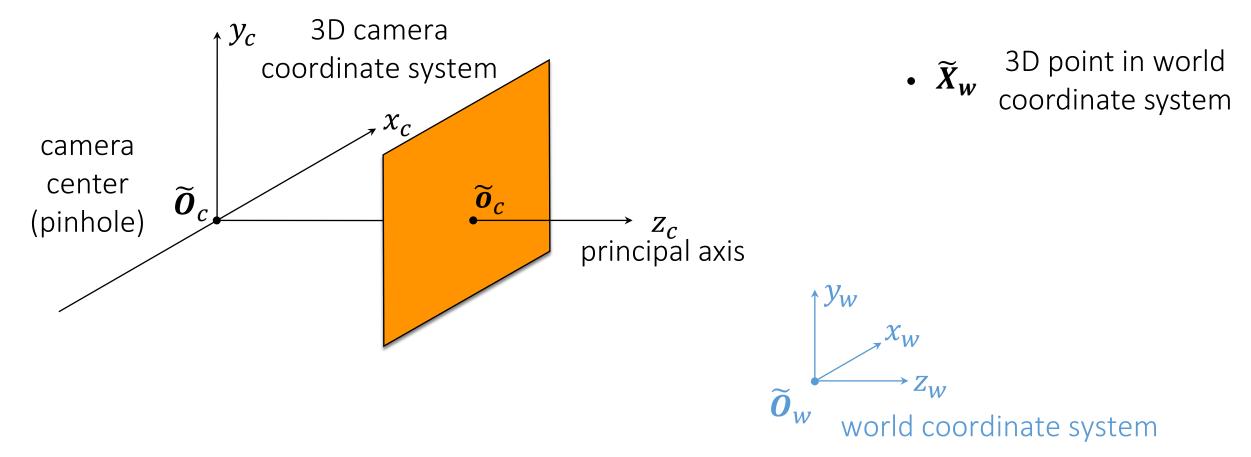


2D camera coordinate system

3D camera coordinate system

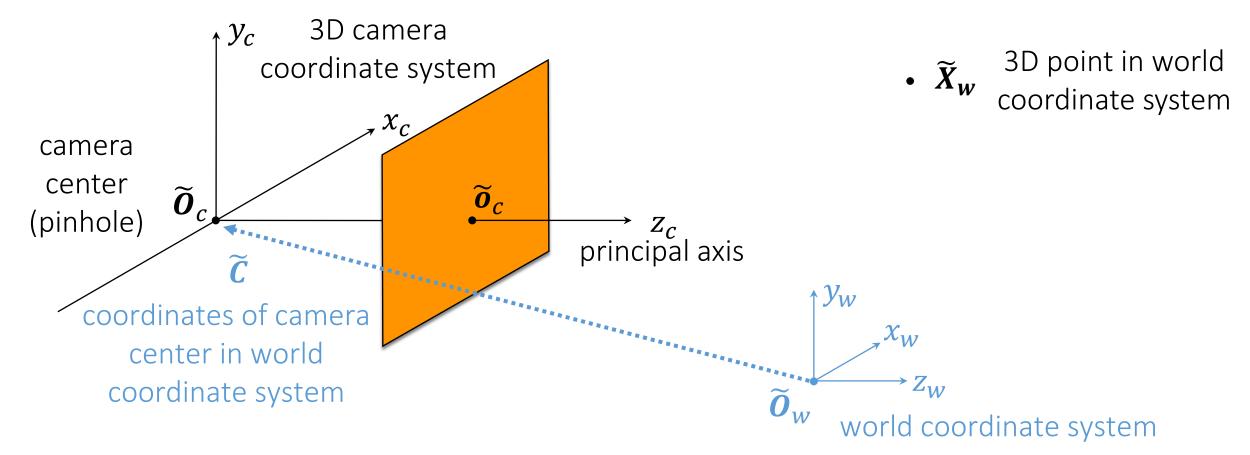
- A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
- These coordinate systems may be different from the coordinate systems of our application.

World-to-camera coordinate system transformation



How do we express \widetilde{X} in the 3D camera coordinate system?

World-to-camera coordinate system transformation

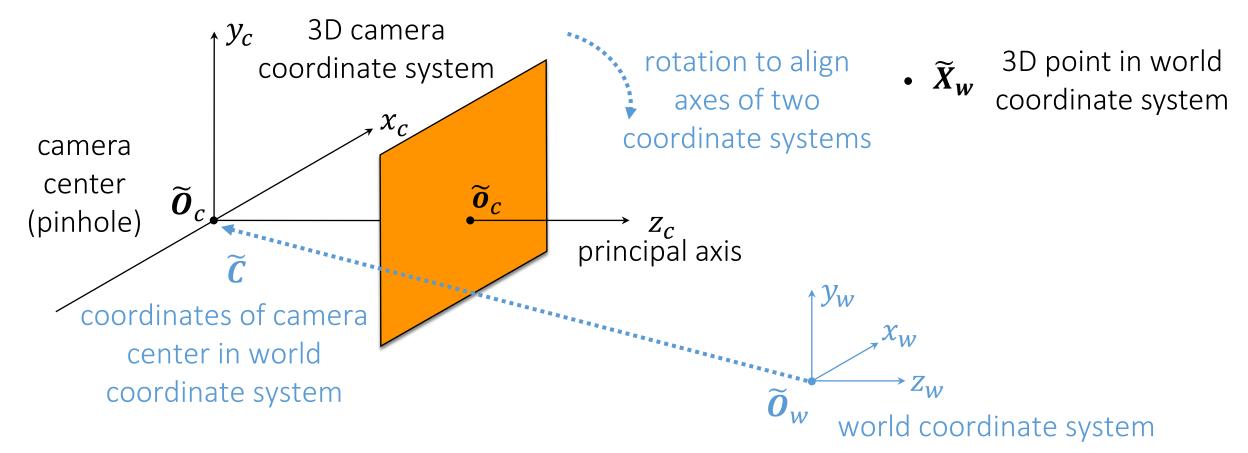


How do we express \widetilde{X} in the 3D camera coordinate system?

$$\widetilde{X}_w - \widetilde{C}$$

translate

World-to-camera coordinate system transformation



How do we express \widetilde{X} in the 3D camera coordinate system?

$$\boldsymbol{R}\cdot\left(\widetilde{\boldsymbol{X}}_{\boldsymbol{W}}-\widetilde{\boldsymbol{C}}\right)$$

rotate translate

Modeling the 3D coordinate system transformation

In heterogeneous coordinates, we have:

$$\widetilde{X}_c = R \cdot \left(\widetilde{X}_w - \widetilde{C} \right)$$

How do we write this transformation in homogeneous coordinates?

Modeling the 3D coordinate system transformation

In heterogeneous coordinates, we have:

$$\widetilde{X}_c = R \cdot \left(\widetilde{X}_w - \widetilde{C} \right)$$

In homogeneous coordinates, we have:

$$X_c = \begin{bmatrix} R & -R\widetilde{C} \\ \mathbf{0} & 1 \end{bmatrix} X_w$$

Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

$$\boldsymbol{x} = \boldsymbol{P} \boldsymbol{X}_{\boldsymbol{c}} = \begin{bmatrix} f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1 \end{bmatrix} [\boldsymbol{I} \mid \boldsymbol{0}] \boldsymbol{X}_{\boldsymbol{c}}$$

We also just derived:

$$X_c = \begin{bmatrix} R & -R\widetilde{C} \\ 0 & 1 \end{bmatrix} X_w$$

Putting it all together

We can write everything into a single projection:

$$x = PX_w$$

The camera matrix now looks like:

intrinsic parameters (3

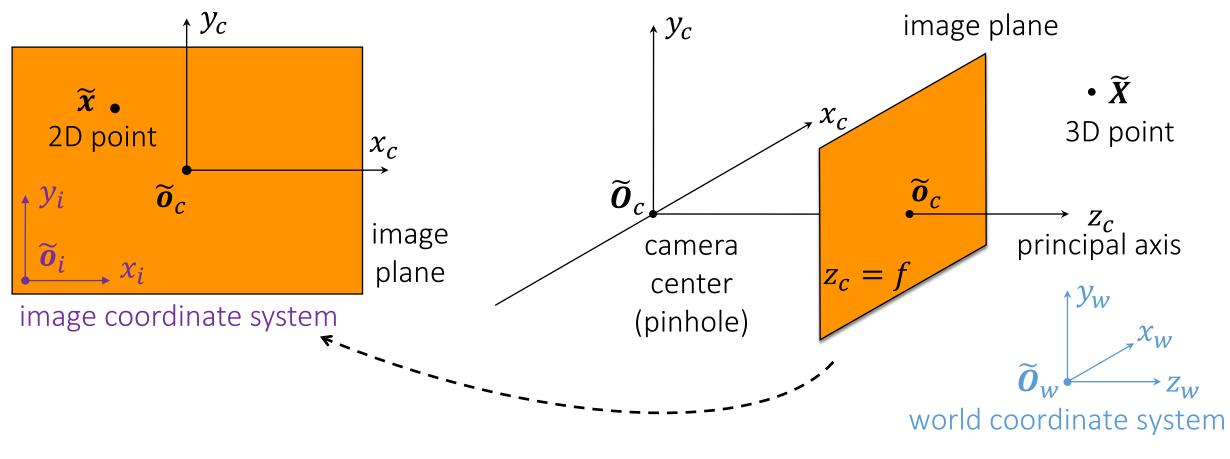
transformation)

$$P = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} R & -R\widetilde{C} \\ 0 & 1 \end{bmatrix}$$

intrinsic parameters (3 x 3):
correspond to camera
internals (2D image-to-image
transformation) transformation) = transformation = transformati

53

Generalizations: coordinate systems



2D camera coordinate system

3D camera coordinate system

- A camera introduces two related coordinate systems, in 3D (world), and in 2D (image plane).
- These coordinate systems may be different from the coordinate systems of our application.

Putting it all together

We can write everything into a single projection:

$$x = PX_w$$

The camera matrix now looks like:

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & | & -\boldsymbol{R}\widetilde{\boldsymbol{C}} \end{bmatrix}$$

Solution

Soluti

It is common to combine the perspective projection and extrinsics in one matrix.

extrinsic parameters (3 x 4): correspond to camera externals (3D world-to-camera transformation) *and* perspective projection

intrinsic parameters (3 x 3): correspond to camera internals (2D image-to-image transformation)

The pinhole camera matrix

More compactly, we can write the pinhole camera matrix as:

$P = K[R \mid t]$

where

$$\boldsymbol{K} = \begin{bmatrix} f & 0 & p_{X} \\ 0 & f & p_{Y} \\ 0 & 0 & 1 \end{bmatrix} \qquad \boldsymbol{R} = \begin{bmatrix} r_{1} & r_{2} & r_{3} \\ r_{4} & r_{5} & r_{6} \\ r_{7} & r_{8} & r_{9} \end{bmatrix} \qquad \boldsymbol{t} = -\boldsymbol{R}\widetilde{\boldsymbol{C}} = \begin{bmatrix} t_{1} \\ t_{2} \\ t_{3} \end{bmatrix}$$
2D Euclidean transform
3D translation

intrinsic parameters

extrinsic parameters

The following is the standard pinhole camera matrix we saw.

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

The following is the standard pinhole camera matrix we saw.

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

• 9 degrees of freedom (3 for intrinsics, 3 for rotation, 3 for translation).

The following is the standard pinhole camera matrix we saw.

$$\boldsymbol{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

• 9 degrees of freedom (3 for intrinsics, 3 for rotation, 3 for translation).

We can get more general pinhole cameras with more degrees of freedom by generalizing the intrinsics matrix, while leaving everything else the same..

CCD camera: pixels may not be square.

$$\boldsymbol{P} = \begin{bmatrix} a_x & 0 & p_x \\ 0 & a_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

CCD camera: pixels may not be square.

$$\boldsymbol{P} = \begin{bmatrix} a_x & 0 & p_x \\ 0 & a_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

• 10 degrees of freedom (4 for intrinsics, 3 for rotation, 3 for translation).

Finite projective camera: sensor may be skewed.

$$\boldsymbol{P} = \begin{bmatrix} a_x & s & p_x \\ 0 & a_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

Finite projective camera: sensor may be skewed.

$$\boldsymbol{P} = \begin{bmatrix} a_x & s & p_x \\ 0 & a_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

• 11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a *perspective projection* camera with more degrees of freedom?

Finite projective camera: sensor may be skewed.

The finite projective camera is the most general camera implementing perspective projection.

$$\boldsymbol{P} = \begin{bmatrix} a_x & s & p_x \\ 0 & a_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

• 11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a *perspective projection* camera with more degrees of freedom?

• No, as the entire camera matrix P has 12 elements (3x4) and is defined up to scale.

Finite projective camera: sensor may be skewed.

The finite projective camera is the most general camera implementing perspective projection.

$$\boldsymbol{P} = \begin{bmatrix} a_x & s & p_x \\ 0 & a_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

How many degrees of freedom does this matrix have?

• 11 degrees of freedom (5 for intrinsics, 3 for rotation, 3 for translation).

Can we get a *perspective projection* camera with more degrees of freedom?

• No, as the entire camera matrix P has 12 elements (3x4) and is defined up to scale.

Perspective distortion

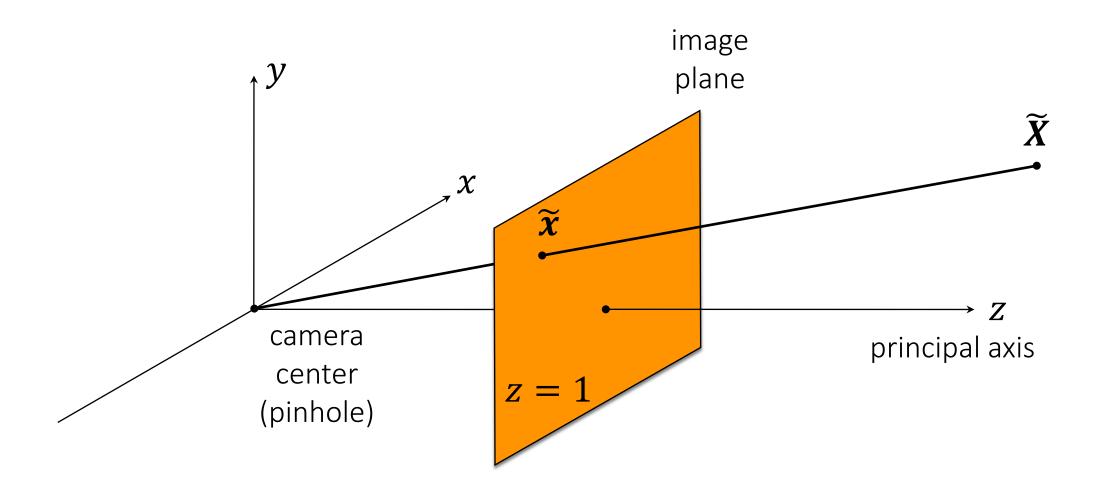
Finite projective camera

Let's ignore intrinsics and extrinsics for now.

$$\boldsymbol{P} = \begin{bmatrix} a_x & s & p_x \\ 0 & a_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

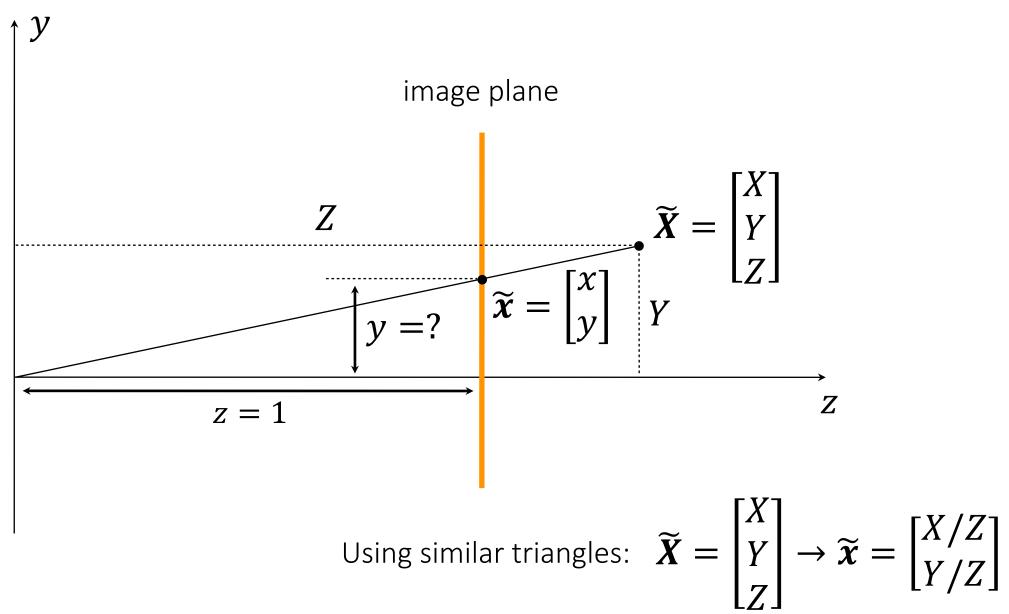
What is the effect of the perspective projection matrix?

The (rearranged) pinhole camera

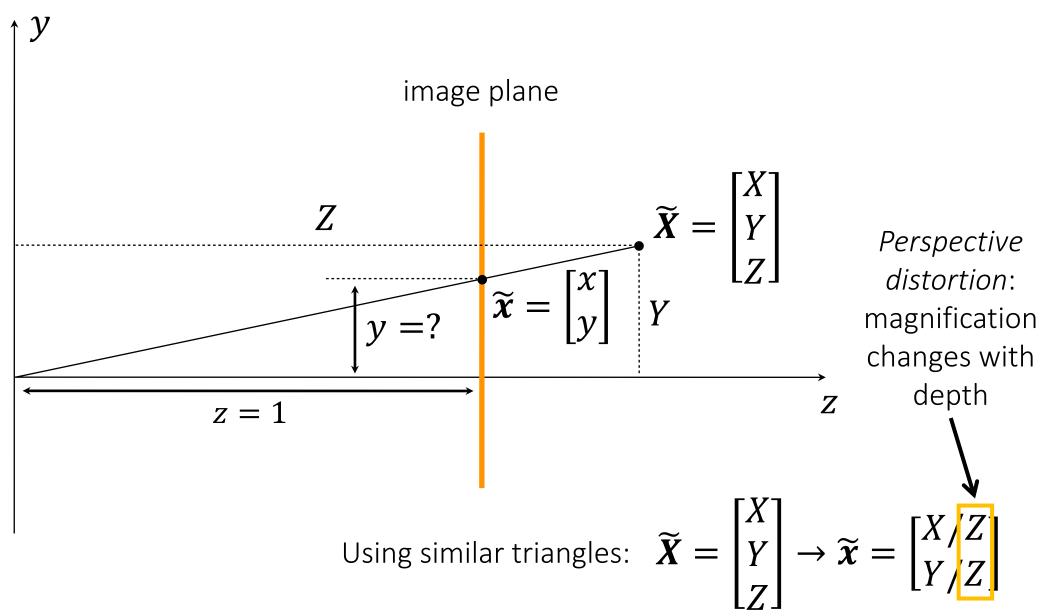


What is the equation for image coordinate \widetilde{x} in terms of \widetilde{X} ?

The 2D view of the (rearranged) pinhole camera



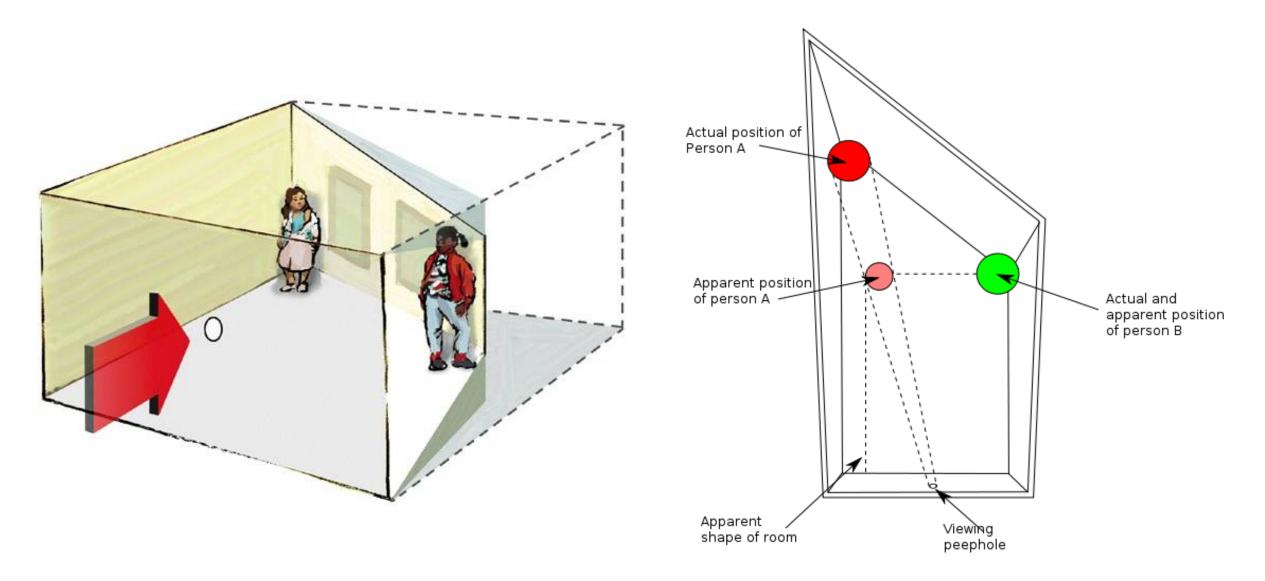
The 2D view of the (rearranged) pinhole camera



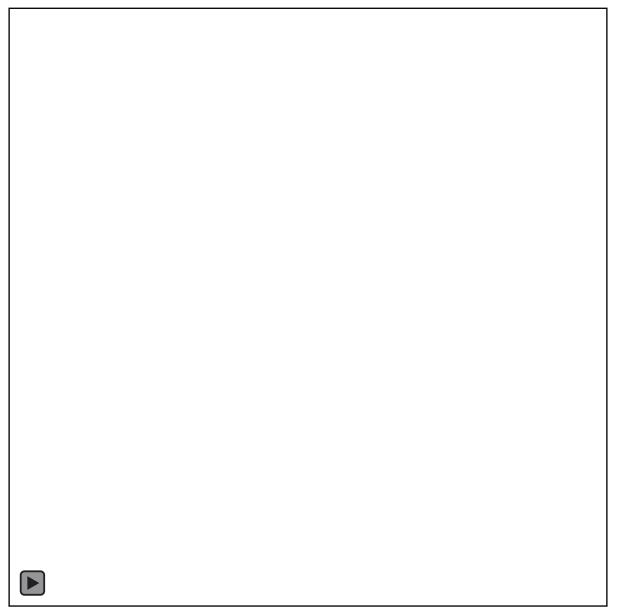
Forced perspective

The Ames room illusion

The Ames room illusion



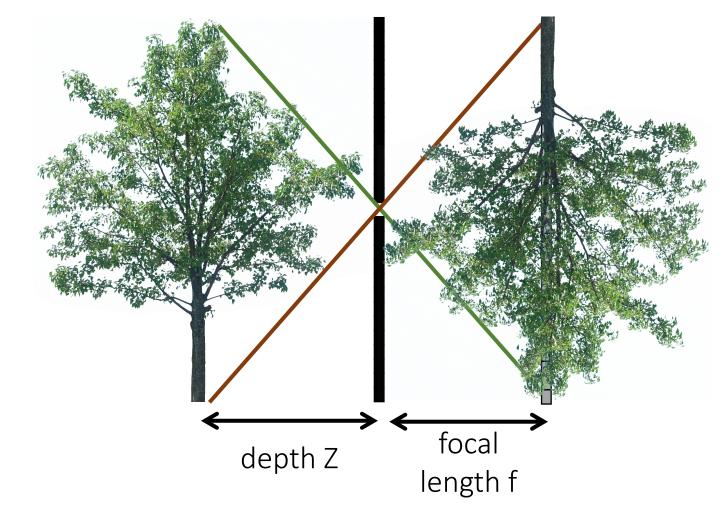
The arrow illusion



Is there a camera without perspective distortion?

Other camera models

What if...

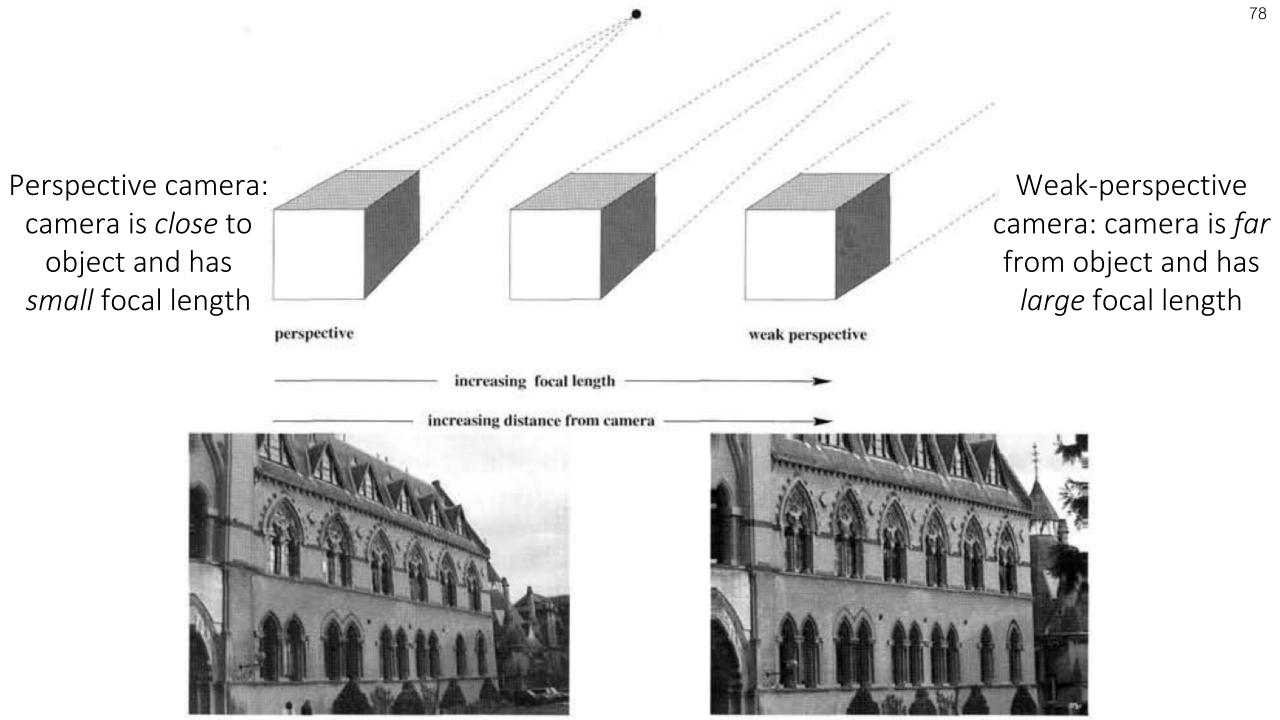


real-world

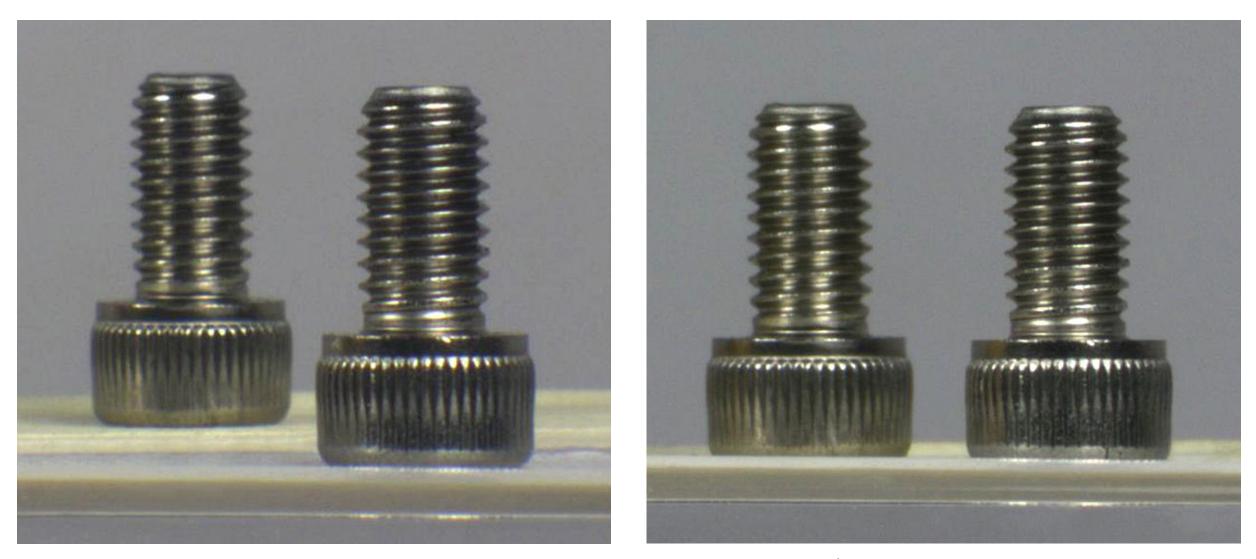
object

... we continue increasing Z and f while maintaining same magnification?

$$f \to \infty$$
 and $\frac{f}{Z} = \text{constant}$



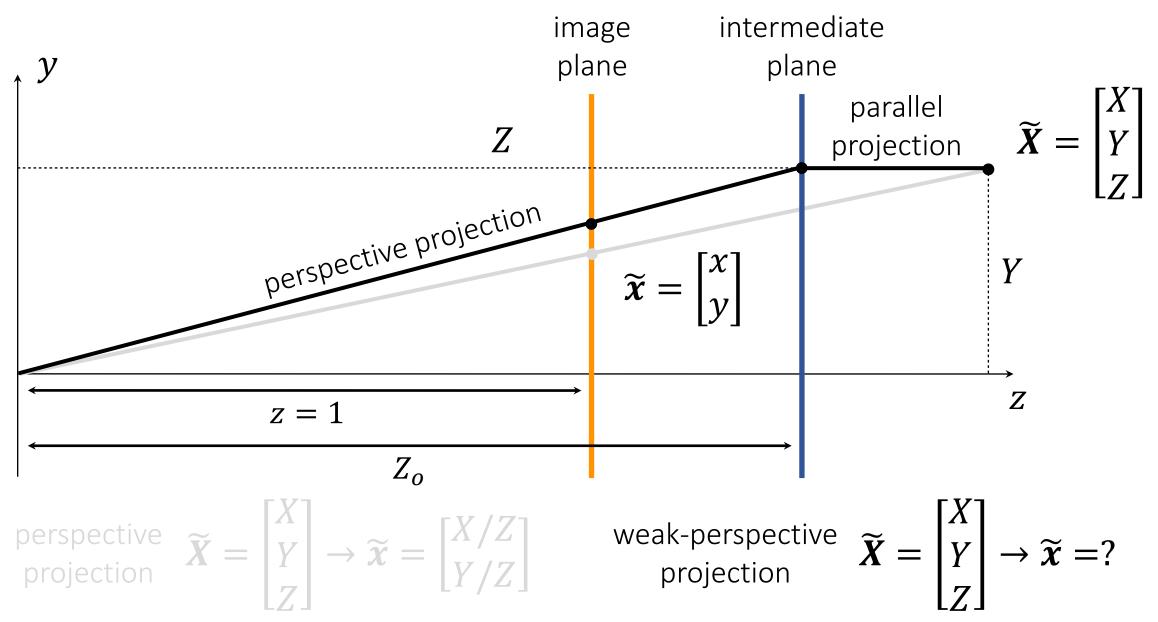
Different cameras

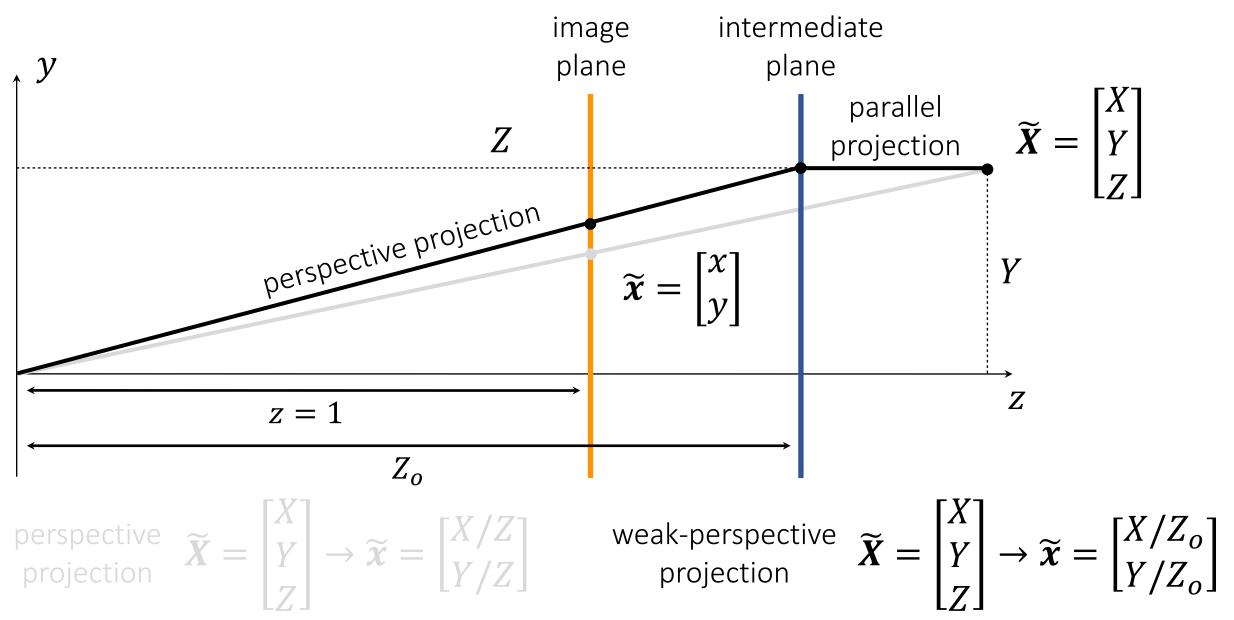


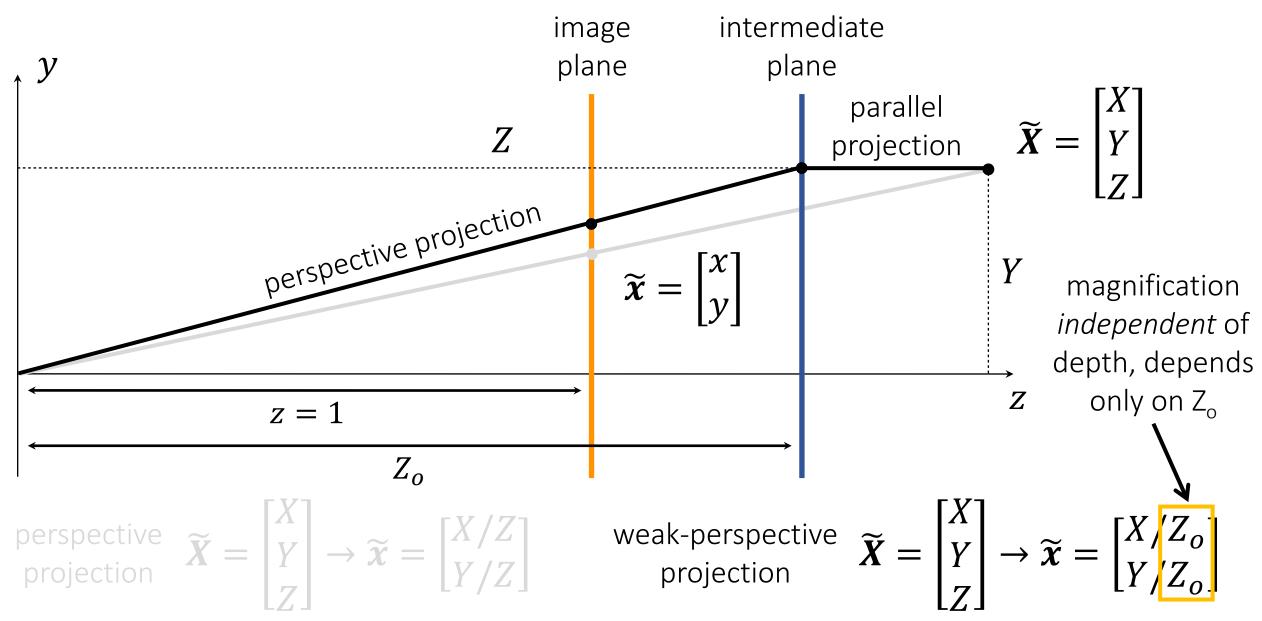
perspective camera

weak perspective camera

Perspective versus weak-perspective camera image plane V Ζ perspective projection Y Zz = 1 Z_o perspective $\widetilde{X} = \begin{bmatrix} X \\ Y \\ \zeta \end{bmatrix} \rightarrow \widetilde{x} = \begin{bmatrix} X/Z \\ Y/Z \end{bmatrix}$







Comparing camera projection matrices

Let's ignore intrinsics and extrinscis for now.

• The *perspective projection matrix* can be written as:

$$\boldsymbol{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• What would the *weak-perspective projection matrix* look like?

Comparing camera projection matrices

Let's ignore intrinsics and extrinscis for now.

• The *perspective projection matrix* can be written as:

$$\boldsymbol{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• The *weak-perspective projection matrix* can be written as:

$$\boldsymbol{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z_o \end{bmatrix}$$

Comparing camera matrices

Let's now incorporate intrinsics and extrinsics.

• The *finite projective camera matrix* can be written as:

$$\boldsymbol{P} = \boldsymbol{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

• What would the matrix of the so-called *affine camera* look like?

Comparing camera matrices

Let's now incorporate intrinsics and extrinsics.

• The *finite projective camera matrix* can be written as:

$$\boldsymbol{P} = \boldsymbol{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

• The *affine camera matrix* can be written as:

$$\boldsymbol{P} = \boldsymbol{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z_o \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

Change only the projection matrix, and use the exact same matrices for intrinsics and extrinsics.

Special case: orthographic projection

Let's now incorporate intrinsics and extrinsics.

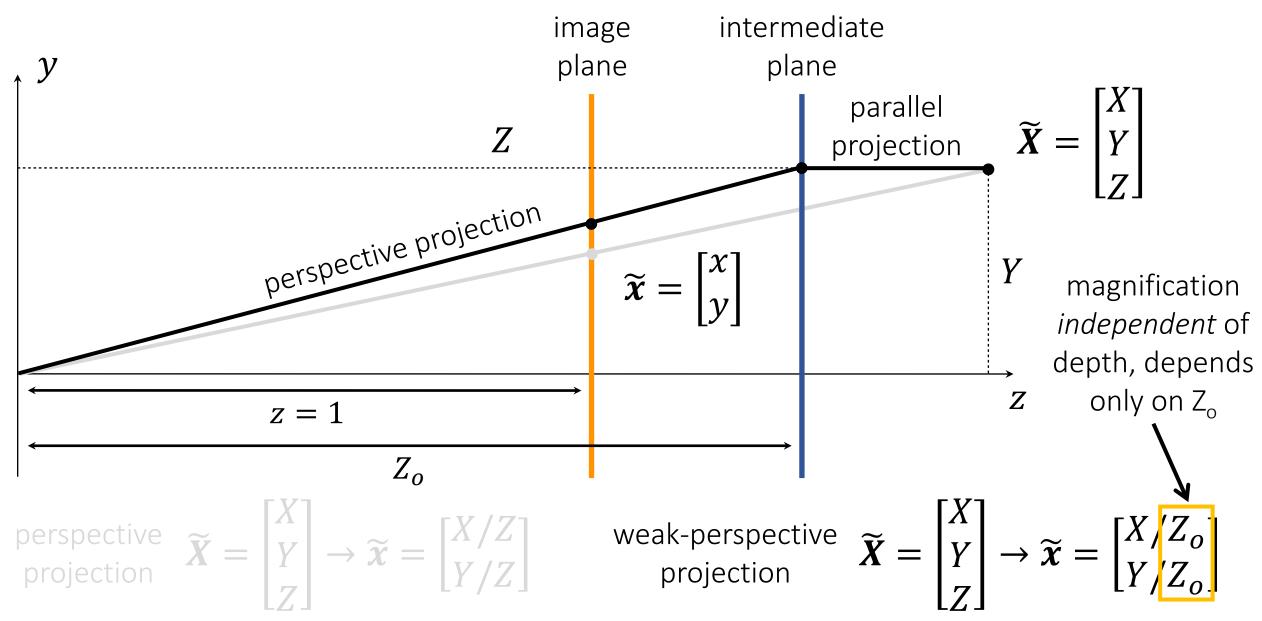
• The *finite projective camera matrix* can be written as:

$$\boldsymbol{P} = \boldsymbol{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0} & 1 \end{bmatrix}$$

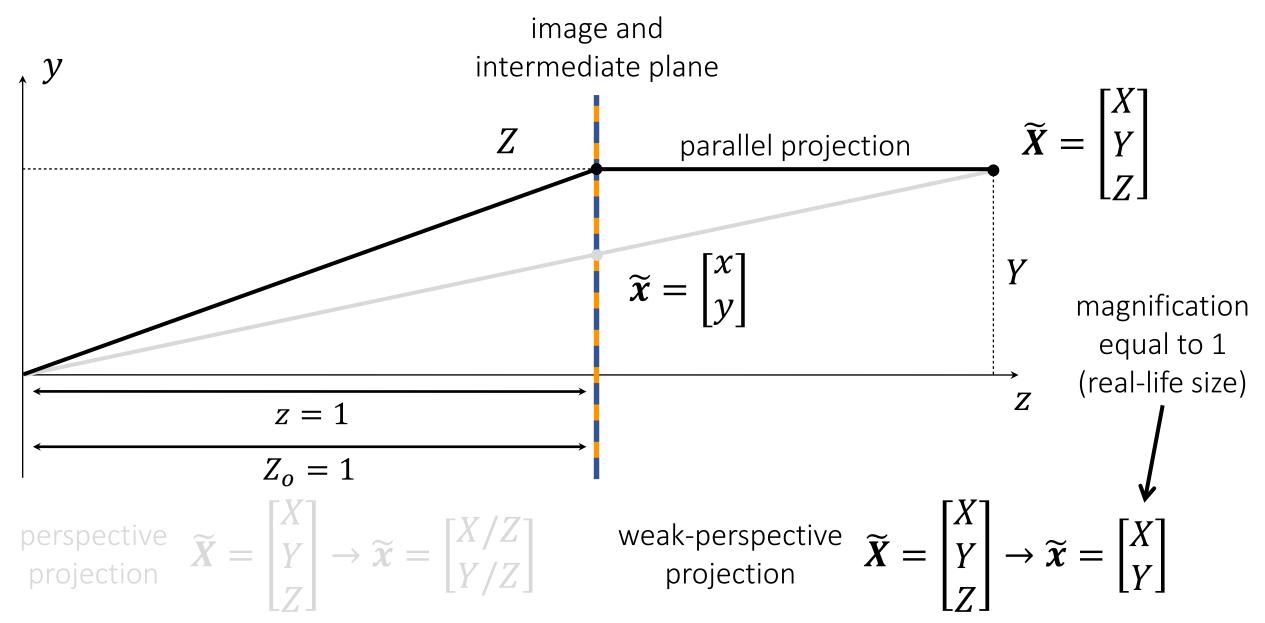
• The *affine camera matrix* can be written as:

Change only the projection matrix, and use the exact same matrices for intrinsics and extrinsics.

What's the effect of setting
$$Z_o = 1$$
? $P = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$



Perspective versus orthographic camera

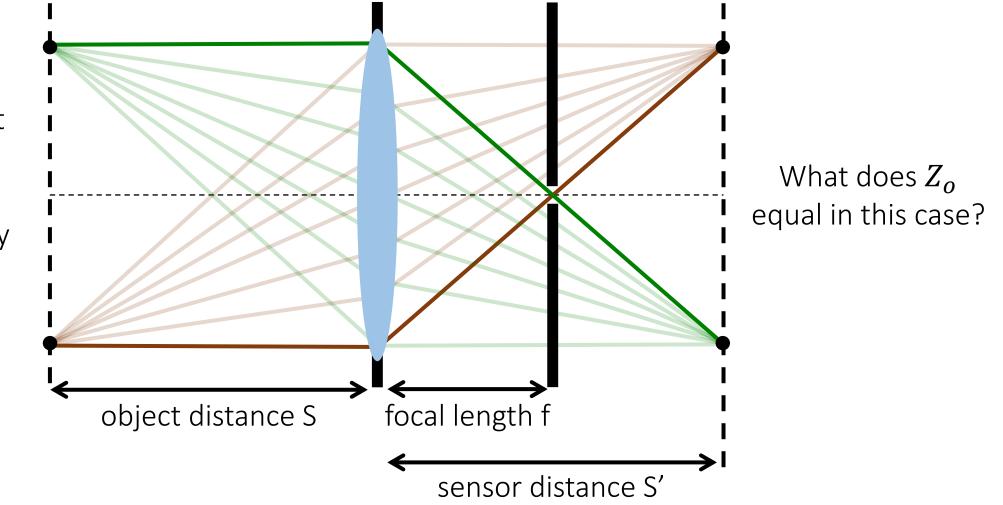


1. When the scene (or parts of it) is very far away.

Weak-perspective projection applies to the mountains.

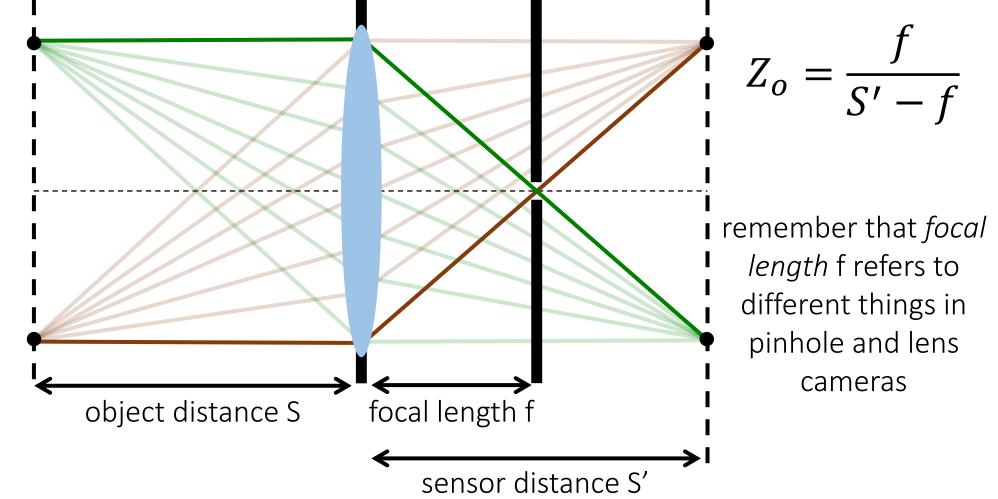
2. When we use a telecentric lens.

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.



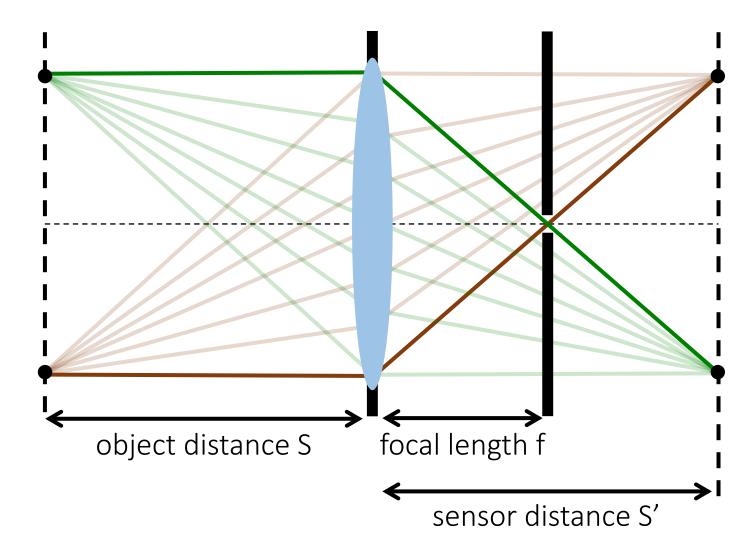
2. When we use a telecentric lens.

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.



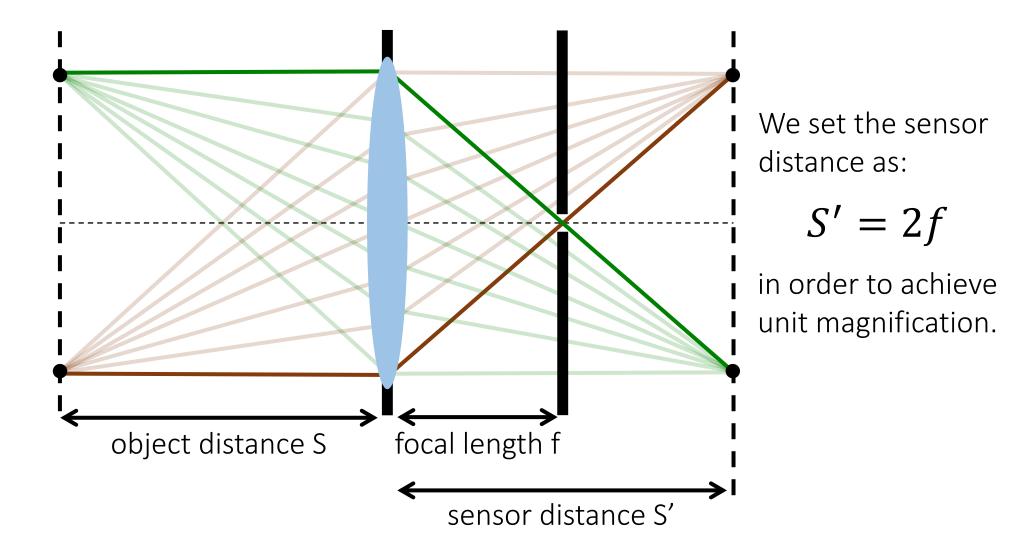
Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

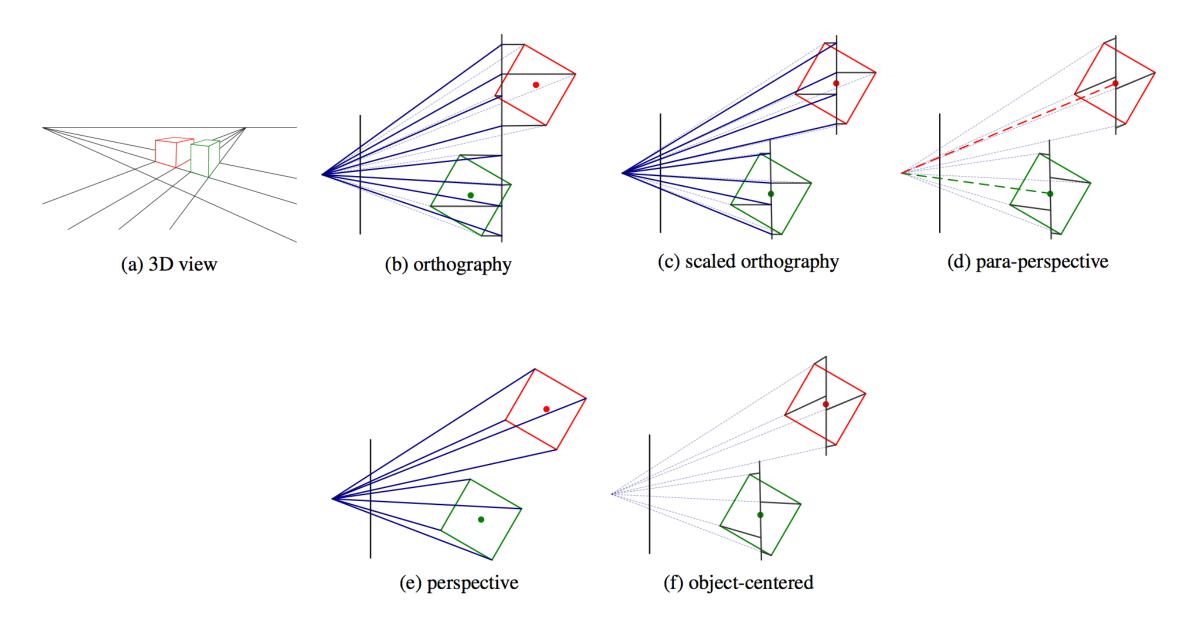


Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?



Many other types of cameras



Geometric camera calibration

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, \boldsymbol{x}_i\}$

point in 3D point in the space image

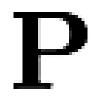
and camera model

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$

parameters

projection model Camera matrix

Find the (pose) estimate of



We'll use a **perspective** camera model for pose estimation

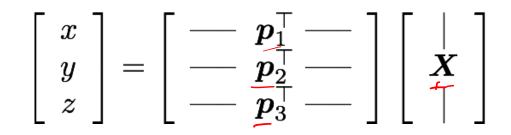
Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What are the unknowns?

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$



Heterogeneous coordinates

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

(non-linear relation between coordinates) *How can we make these relations linear?* How can we make these relations linear?

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

Make them linear with algebraic manipulation...

$$egin{aligned} oldsymbol{p}_2^ op oldsymbol{X} &- oldsymbol{p}_3^ op oldsymbol{X} y' = 0 \ oldsymbol{p}_1^ op oldsymbol{X} &- oldsymbol{p}_3^ op oldsymbol{X} x' = 0 \end{aligned}$$

Now we can setup a system of linear equations with multiple point correspondences

$$oldsymbol{p}_2^ op oldsymbol{X} - oldsymbol{p}_3^ op oldsymbol{X} y' = 0$$

 $oldsymbol{p}_1^ op oldsymbol{X} - oldsymbol{p}_3^ op oldsymbol{X} x' = 0$

How do we proceed?

$$p_{2}^{\top} X - p_{3}^{\top} X y' = 0$$

$$p_{1}^{\top} X - p_{3}^{\top} X x' = 0$$
In matrix form ...
$$\begin{bmatrix} X^{\top} & \mathbf{0} & -x' X^{\top} \\ \mathbf{0} & X^{\top} & -y' X^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$

How do we proceed?

$$p_{2}^{\top} X - p_{3}^{\top} X y' = 0$$

$$p_{1}^{\top} X - p_{3}^{\top} X x' = 0$$
In matrix form ...
$$\begin{bmatrix} X^{\top} & \mathbf{0} & -x' X^{\top} \\ \mathbf{0} & X^{\top} & -y' X^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
For N points ...
$$\begin{bmatrix} X_{1}^{\top} & \mathbf{0} & -x' X_{1}^{\top} \\ \mathbf{0} & X_{1}^{\top} & -y' X_{1}^{\top} \\ \vdots & \vdots & \vdots \\ X_{N}^{\top} & \mathbf{0} & -x' X_{N}^{\top} \\ \mathbf{0} & X_{N}^{\top} & -y' X_{N}^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
How do we solve this system?

Solve for camera matrix by

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} \|\mathbf{A}x\|^2$$
 subject to $\|x\|^2 = 1$

$$\mathbf{A} = egin{bmatrix} oldsymbol{X}_1^{ op} & oldsymbol{0} & -x'oldsymbol{X}_1^{ op} \ oldsymbol{0} & oldsymbol{X}_1^{ op} & -y'oldsymbol{X}_1^{ op} \ dots & dots & dots & dots \ oldsymbol{p}_2 \ oldsymbol{X}_N^{ op} & oldsymbol{0} & -x'oldsymbol{X}_N^{ op} \ oldsymbol{0} & oldsymbol{X}_N^{ op} & -y'oldsymbol{X}_N^{ op} \end{bmatrix} \qquad oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix}$$

SVD!

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \| \mathbf{A} \boldsymbol{x} \|^2$$
 subject to $\| \boldsymbol{x} \|^2 = 1$

$$\mathbf{A} = egin{bmatrix} oldsymbol{X}_1^{ op} & oldsymbol{0} & oldsymbol{X}_1^{ op} & -x'oldsymbol{X}_1^{ op} \ oldsymbol{0} & oldsymbol{X}_1^{ op} & -y'oldsymbol{X}_1^{ op} \ dots & dots &$$

Solution **x** is the column of **V** corresponding to smallest singular value of

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \| \mathbf{A} \boldsymbol{x} \|^2$$
 subject to $\| \boldsymbol{x} \|^2 = 1$

$$\mathbf{A} = \begin{bmatrix} \boldsymbol{X}_1^\top & \boldsymbol{0} & -x' \boldsymbol{X}_1^\top \\ \boldsymbol{0} & \boldsymbol{X}_1^\top & -y' \boldsymbol{X}_1^\top \\ \vdots & \vdots & \ddots \\ \boldsymbol{X}_N^\top & \boldsymbol{0} & -x' \boldsymbol{X}_N^\top \\ \boldsymbol{0} & \boldsymbol{X}_N^\top & -y' \boldsymbol{X}_N^\top \end{bmatrix} \qquad \boldsymbol{x} = \begin{bmatrix} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \\ \boldsymbol{p}_3 \end{bmatrix}$$

Equivalently, solution **x** is the Eigenvector corresponding to smallest Eigenvalue of

$$\mathbf{A}^{\top}\mathbf{A}$$

Now we have:
$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

Are we done?

Almost there ...
$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

How do you get the intrinsic and extrinsic parameters from the projection matrix?

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}]$$

$$f{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ f{P} = f{K}[f{R}|f{t}] \ = f{K}[f{R}|-f{Rc}] \ = [f{M}|-f{Mc}] \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} p_{1} & p_{2} & p_{3} \\ p_{5} & p_{6} & p_{7} \\ p_{9} & p_{10} & p_{11} \end{bmatrix} \begin{bmatrix} p_{4} \\ p_{8} \\ p_{12} \end{bmatrix}$$
$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$
$$= \mathbf{K}[\mathbf{R}|-\mathbf{Rc}]$$
$$= [\mathbf{M}|-\mathbf{Mc}]$$

Find the camera center C

What is the projection of the camera center?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

How do we compute the camera center from this?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
 $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$
 $= \mathbf{K}[\mathbf{R}|-\mathbf{Rc}]$
 $= [\mathbf{M}|-\mathbf{Mc}]$

Find the camera center C

$\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
 $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$
 $= \mathbf{K}[\mathbf{R}|-\mathbf{Rc}]$
 $= [\mathbf{M}|-\mathbf{Mc}]$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

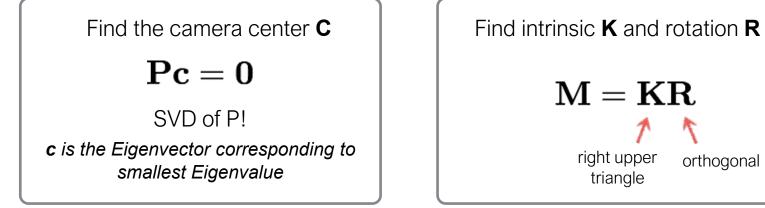
c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic **K** and rotation **R**

 $\mathbf{M}=\mathbf{K}\mathbf{R}$

Any useful properties of K and R we can use?

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$



How do we find K and R?

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center \boldsymbol{C}

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue Find intrinsic **K** and rotation **R**

$$\mathbf{M} = \mathbf{K}\mathbf{R}$$

QR decomposition

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, oldsymbol{x}_i\}$

point in the

Where do we get these matched points from?

space image

point in 3D

and camera model

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$ Camera

parameters

projection model Camera matrix

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

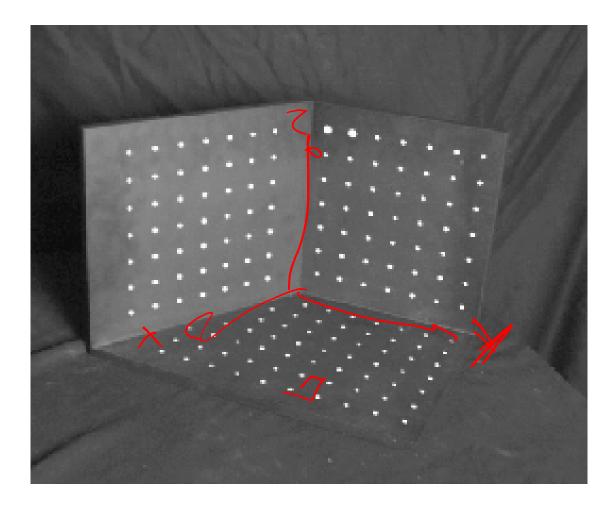
Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence



Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

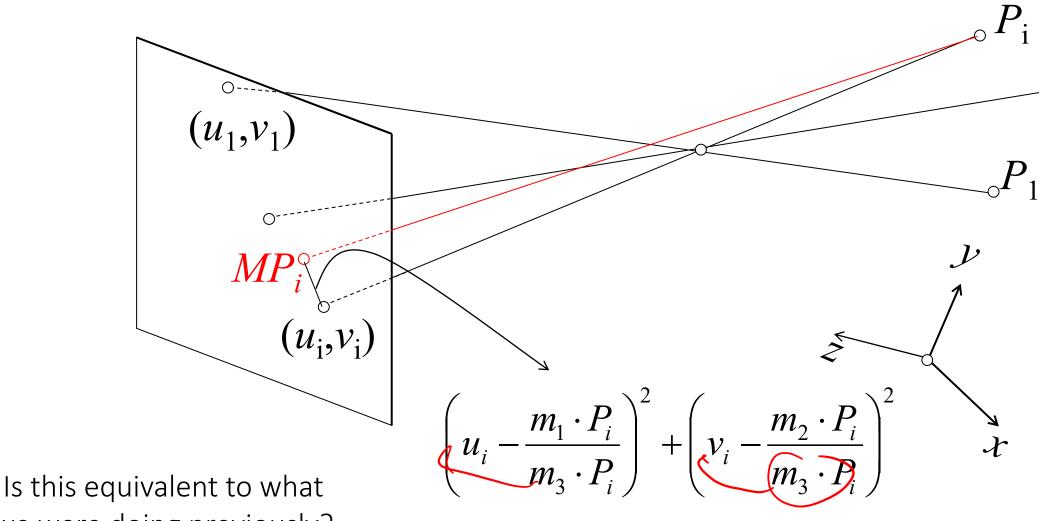
Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

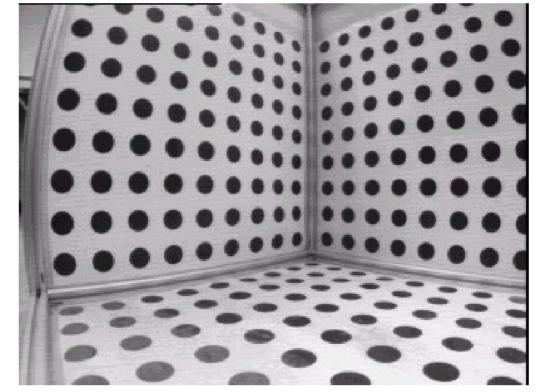
- Define error function E between projected 3D points and image positions
 - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Minimizing reprojection error

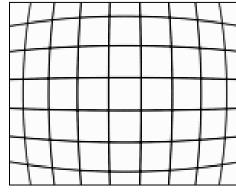


we were doing previously?

Radial distortion



What causes this distortion?

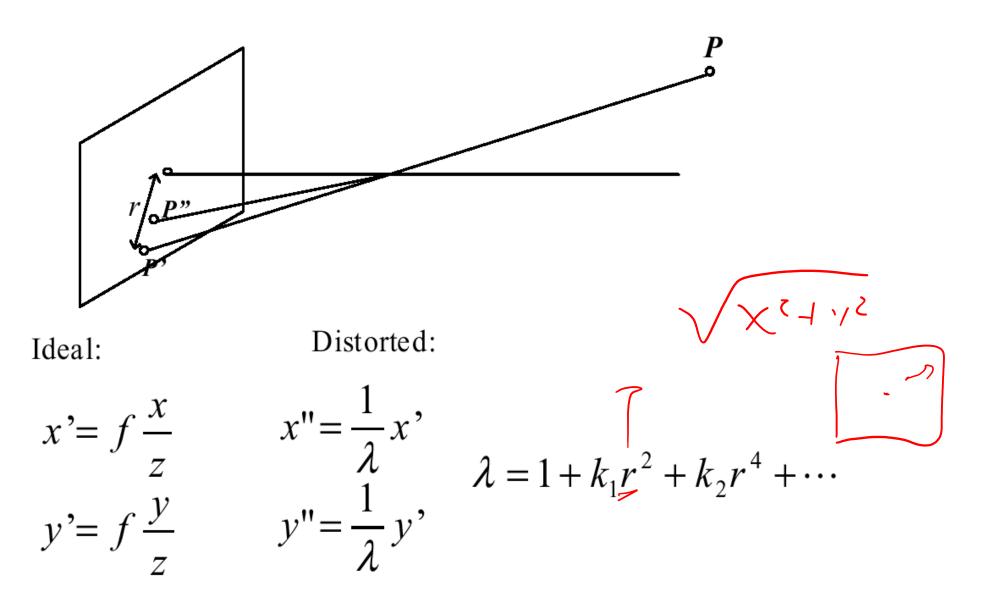


no distortion

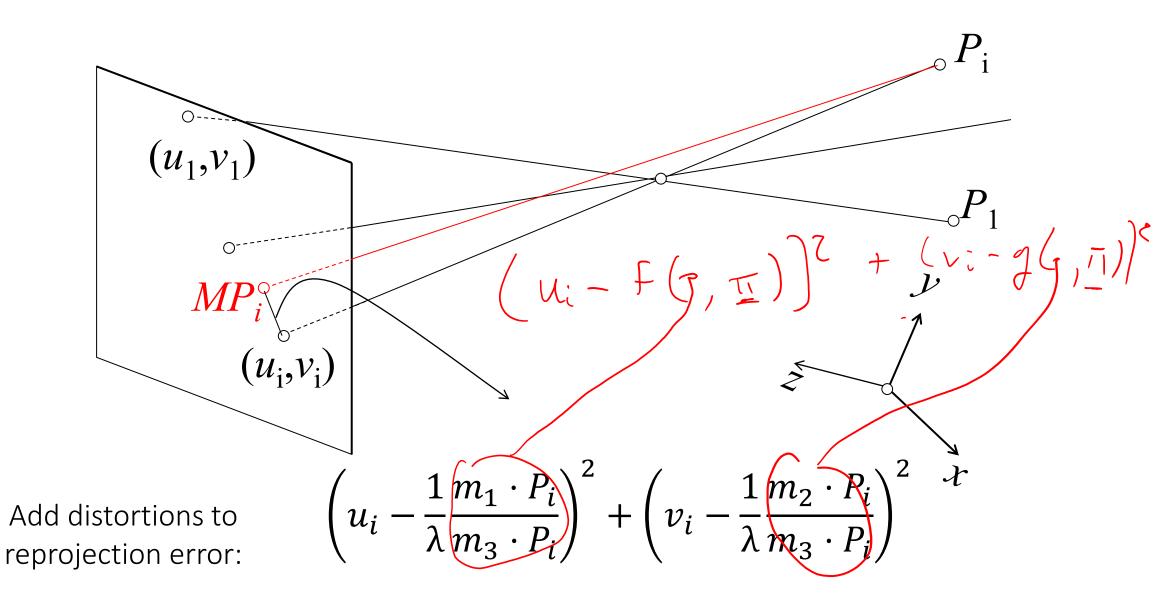
barrel distortion p

pincushion distortion

Radial distortion model

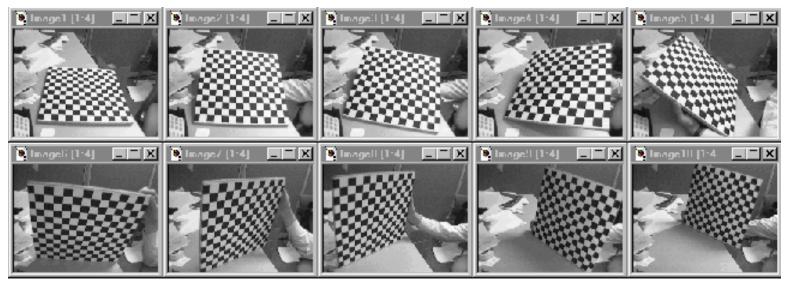


Minimizing reprojection error with radial distortion



Correcting radial distortion

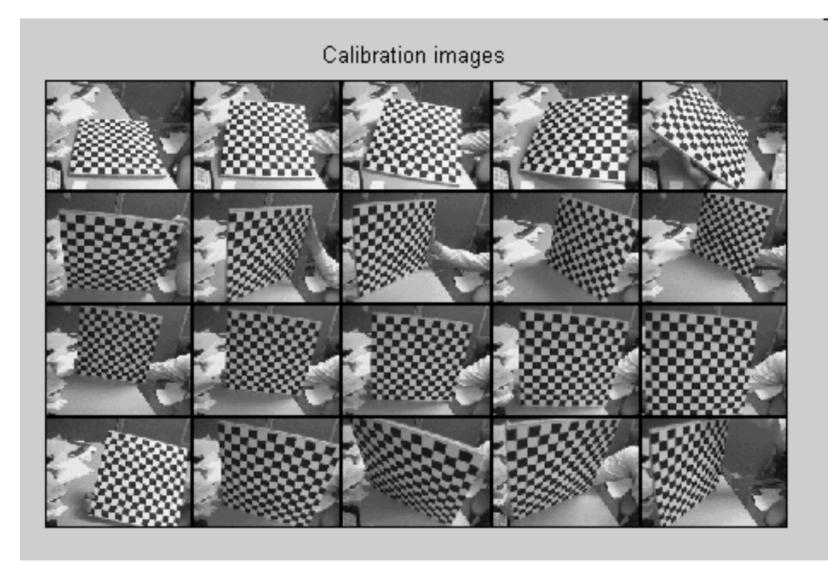
Alternative: Multi-plane calibration

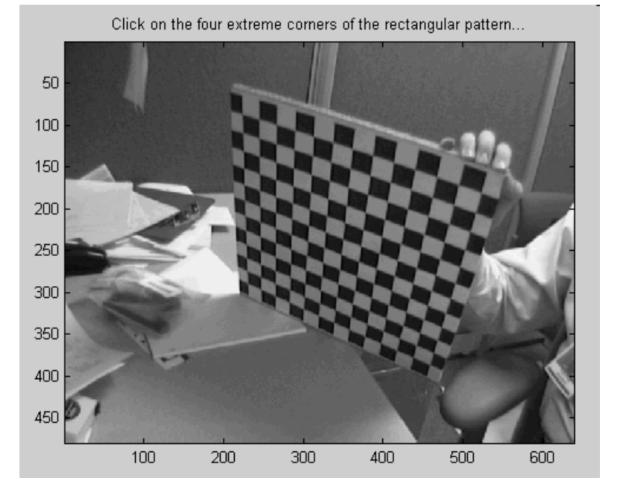


Advantages:

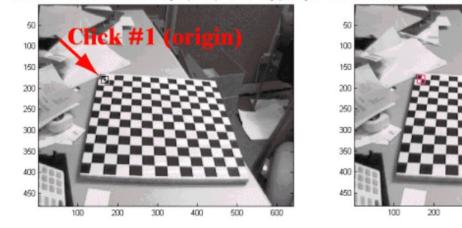
- Only requires a plane
- Don't have to know positions/orientations
- Great code available online!
 - Matlab version: <u>http://www.vision.caltech.edu/bouguetj/calib_doc/index.html</u>
 - Also available on OpenCV.

Disadvantage: Need to solve non-linear optimization problem.

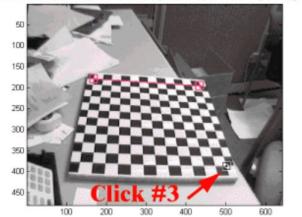


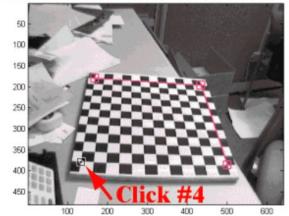


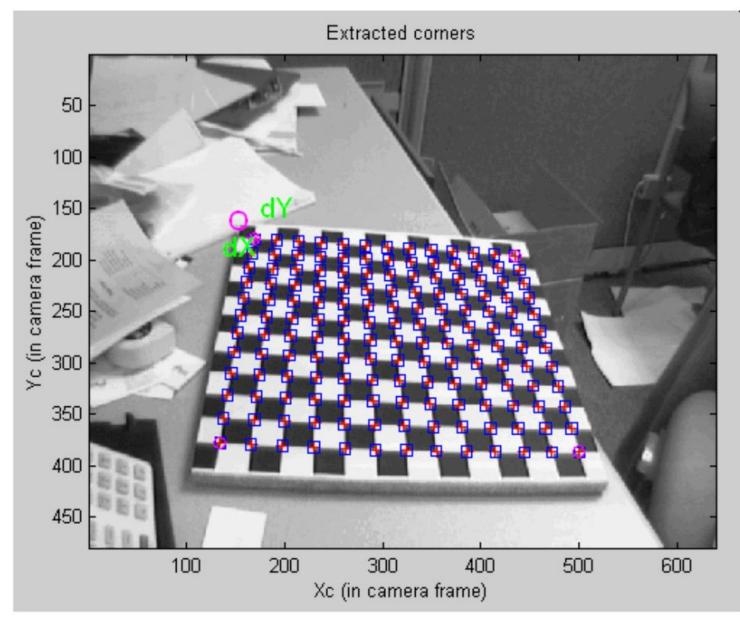
Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

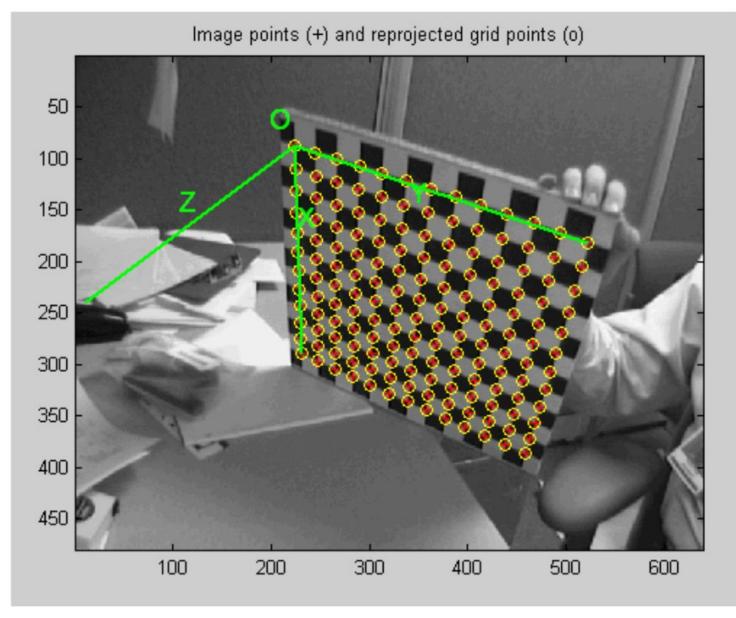


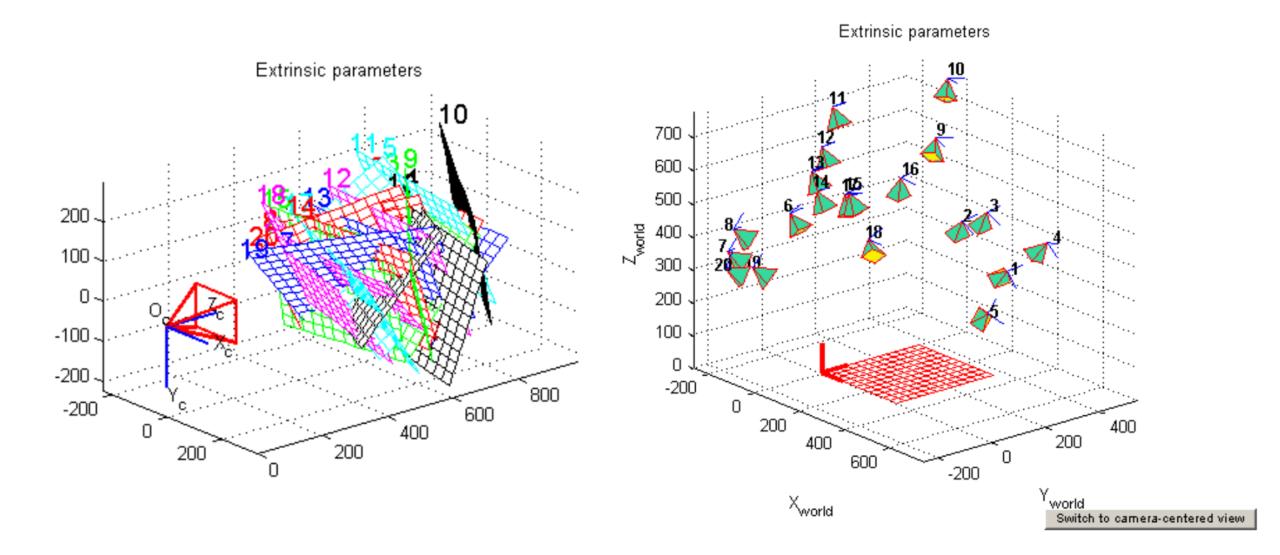
Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1











What does it mean to "calibrate a camera"?

What does it mean to "calibrate a camera"?

Many different ways to calibrate a camera:

lecture 5-ish Radiometric calibration. ۲ lecture 7-ish Color calibration. \bullet lecture 19 (this lecture) Geometric calibration. • lecture 6-ish Noise calibration. ۲ lecture 12-ish, (maybe) later lecture Lens (or aberration) calibration. ٠

References

Basic reading:

- Szeliski textbook, Section 2.1.5, 6.2.
- Bouguet, "Camera calibration toolbox for Matlab," available at

http://www.vision.caltech.edu/bouguetj/calib_doc/

The main resource for camera calibration in Matlab, where the screenshots in this lecture were taken from. It also has a detailed of the camera calibration algorithm and an extensive reference section.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004. Chapter 6 of this book has a very thorough treatment of camera models.
- Gortler, "Foundations of 3D Computer Graphics," MIT Press 2012.
 - Chapter 10 of this book has a nice discussion of pinhole cameras from a graphics point of view.
- Zhang, "A flexible new technique for camera calibration," PAMI 2000.

The paper that introduced camera calibration from multiple views of a planar target.