
Homework Assignment 1
15-463/663/862, Computational Photography, Fall 2021

Carnegie Mellon University

Due Friday, Sep. 17, at 11:59pm ET

This assignment has two parts. The purpose of the first part is to introduce you to Python as a tool for
manipulating images. For this, you will build your own version of a very basic image processing pipeline
(without denoising). You will use this to turn the RAW image into an image that can be displayed on a
computer monitor or printed on paper. The Python packages required for this assignment are numpy, scipy,
skimage, and matplotlib. The purpose of the second part is to introduce you to very basic principles of
image formation and exposure control. For this, you will build your own simple camera obscura, which is
basically a fancy term for a pinhole camera.

There is a “Hints and Information” section at the end of this document that is likely to help. We strongly
recommend that you read that section in full before starting to work on the assignment.

1 Developing RAW images

For this problem, you will use the file campus.NEF included in the ./data directory of the assignment ZIP
archive. This is a RAW image that was captured with one of the course DSLR cameras (Nikon D3400). As
we discussed in class, RAW images do not look like standard images before first undergoing a “development”
process1. The developed image should look something like the image in Figure 1. The final result can vary
greatly, depending on the choices you make in your implementation of the image processing pipeline.

Figure 1: One possible developed version of the RAW image provided with the assignment.

1The term “develop” comes from the analogy with the process of developing film into a photograph. As discussed in class,
the same process is often called “rendering” the RAW images

1

1.1 Implement a basic image processing pipeline (80 points)

RAW image conversion (5 points). The RAW image file cannot be read directly by skimage. You will
first need to convert it into a .tiff file. You can do this conversion using a command-line tool called dcraw

(https://www.dechifro.org/dcraw/). After you have downloaded and installed dcraw, you will first do a
“reconnaissance run” to extract some information about the RAW image. For this, call dcraw as follows:

dcraw -4 -d -v -T <RAW_filename>

In the output, you will see (among other information) the following:

Scaling with darkness <black>, saturation <white>, and

multipliers <r_scale> <g_scale> <b_scale> <g_scale>

Make sure to record the integer numbers for <black> and <white>.
Calling dcraw as above will produce a .tiff file. Do not use this! Instead, delete the file, and call dcraw

once more as follows (note the different flags):

dcraw -4 -D -T <RAW_filename>

This will produce a new .tiff file that you can use for the rest of this problem.

Python initials (5 points). We will be using skimage function imread for reading images. Originally,
it will be in the form of a numpy 2D-array of unsigned integers. Check and report how many bits per pixel
the image has, its width, and its height. Then, convert the image into a double-precision array. (See numpy
functions shape, dtype and astype.)

Linearization (5 points). The 2D-array is not yet a linear image. As we discussed in class, it is possible
that it has an offset due to dark noise, and saturated pixels due to over-exposure. Additionally, even though
the original data-type of the image was 16 bits, only 14 of those have meaningful information, meaning that
the maximum possible value for pixels is 4095 (that’s 212 − 1). For the provided image file, you can assume
the following: All pixels with a value lower than <black> correspond to pixels that would be black, were it
not for noise. All pixels with a value above <white> are saturated. The values <black> for the black level
and <white> for saturation are those you recorded earlier from the reconnaissance run of dcraw.

Convert the image into a linear array within the range [0, 1]. Do this by applying a linear transformation
(shift and scale) to the image, so that the value <black> is mapped to 0, and the value <white> is mapped
to 1. Then, clip negative values to 0, and values greater than 1 to 1. (See numpy function clip.)

Identifying the correct Bayer pattern (20 points). As we discussed in class, most cameras use the
Bayer pattern in order to capture color. The same is true for the camera used to capture our RAW image.

We do not know, however, the exact shift of the Bayer pattern. If you look at the top-left 2 × 2 square
of the image file, it can correspond to any of four possible red-green-blue patterns, as shown in Figure 2.

Figure 2: From left to right: ’grbg’, ’rggb’, ’bggr’, ’gbrg’.

Think of a way for identifying which Bayer pattern applies to your image file, and report the one you
identified. It will likely be easier to identify the correct Bayer pattern after performing white balancing.

White balancing (10 points). After identifying the correct Bayer pattern, we want to perform white
balancing. Implement both the white world and gray world automatic white balancing algorithms, as
discussed in class. Additionally, implement a third white balancing algorithm, where you multiply the red,

2

https://www.dechifro.org/dcraw/

green, and blue channels with the <r scale>, <g scale>, and <b scale> values you recorded earlier from the
reconnaissance run of dcraw. These values correspond to the white balancing presets used by the camera.
After completing the entire developing process, check what the image looks like when using each of the three
white balancing algorithms, and decide which one you like best. (See numpy functions max and mean.)

Demosaicing (10 points). Once white balancing is done, it is time to demosaic the image. Use bilinear
interpolation for demosaicing, as discussed in class. Do not implement bilinear interpolation on your own!
Instead, use scipy’s built-in interp2d function.

Color space correction (10 points). You now have an RGB image that is viewable with the standard
matplotlib display functions. However, the image color does not look quite right. This is because the image
pixels have RGB coordinates in the color space determined by the camera’s spectral sensitivity functions, and
not in the “standard” color space that image viewing software expects. We use scary quotes for “standard”
because what color space the image viewing software actually assumes, and what color space it should
assume, are neither the same nor trivial to determine. We will discuss these issues during the color lecture,
but in the meantime, a good default choice is to use the linear sRGB color space [1].

To transform your image to the linear sRGB color space, implement a function that applies the following
linear transformation to the RGB vector [Rcam, Gcam, Bcam]

⊤
of each pixel of your demosaiced image: RsRGB

GsRGB

BsRGB

 = (MsRGB→cam)
−1 ·

 Rcam

Gcam

Bcam

 . (1)

The 3×3 matrixMsRGB→cam transforms a 3×1 color vector from the sRGB color space to the camera-specific
RGB color space. We use its inverse to apply the transformation in the reverse way.

Computing the matrix MsRGB→cam involves a sequence of steps that will make a lot more sense once we
have gone through the color lecture later in the course. Here, we describe these steps at a high level, with
just enough detail for you to be able to implement them. We write the matrix MsRGB→cam as:

MsRGB→cam = MXYZ→cam ·MsRGB→XYZ. (2)

As the notation suggests, the 3 × 3 matrix MsRGB→XYZ transforms a 3 × 1 color vector from the sRGB to
the XYZ color space; and analogously, the 3 × 3 matrix MXYZ→cam transforms a 3 × 1 color vector from
the XYZ to the camera-specific RGB color space. Their product, then, implements the transformation from
the sRGB to the camera-specific RGB color space, as we want. The XYZ color space is an intermediate
reference color space that color management systems use to accurately perform color space transformations.

The sRGB standard [1] provides the following values that you can use in your implementation:

MsRGB→XYZ =

 0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

 . (3)

You can find the values of the camera-specific matrix MXYZ→cam in the raw code of dcraw, under the
function adobe coeff. Look for the entry corresponding to the camera used to capture the RAW image you
are developing. Note that the dcraw code provides the matrix values multiplied by 10, 000, so make sure
to adjust the matrix you use in your implementation accordingly. Additionally, the dcraw code shows the
matrix as a 1× 9 vector, which you should rearrange to a 3× 3 matrix assuming row-major ordering.

After computing the matrix MsRGB→cam as in Equation (2), normalize it so that its rows sum to 1.
You need to do this so that you do not have to perform white balancing a second time. Finally, plug the
normalized matrix into Equation (1) to correct the color space of your image.

Brightness adjustment and gamma encoding (10 points). You now have a 16-bit, full-resolution,
linear RGB image. Because of the scaling you did at the start of the assignment, the image pixel values may
not be in a range appropriate for display. Moreover, the image is not yet gamma-encoded. As we discussed
in class, this means that when you display the image, it will appear very dark.

Brighten the image by linearly scaling it. Select the scale to set the post-brightening mean grayscale
intensity to some value in the range [0, 1]. After the scaling, clip all intensity values greater than 1 to 1. (See

3

skimage function rgb2gray for converting the image to grayscale, and numpy function clip for clipping.)
What the best value is is a highly subjective judgment, so you should experiment with many percentages and
report and use the one that looks best to you. For the photographically inclined, selecting a post-brightening
mean value of 0.25 is equivalent to scaling the image so that there are two stops of bright area detail.

You are now one step away from having an image that can be properly displayed. The last thing you
need to take care of is tone reproduction (also known as gamma encoding). For this, implement the following
non-linear transformation, then apply it to the image:

Cnon-linear =

{
12.92 · Clinear, Clinear ≤ 0.0031308,

(1 + 0.055) · C
1

2.4

linear − 0.055, Clinear > 0.0031308,
(4)

where C = {R,G,B} is each of the red, green, and blue channels. This odd-looking function is not arbitrary:
it corresponds to the tone reproduction curve specified in the sRGB standard [1], which also specifies the
sRGB color space you used earlier. It is a good default choice if the camera’s true tone reproduction curve is
unknown. We will discuss sRGB during the color lecture, but you are welcome to read up on it on Wikipedia.

Compression (5 points). Finally, it is time to store the image, either with or without compression. Use
skimage function imsave to store the image in .PNG format (no compression), and also in .JPEG format
with the quality parameter set to 95. This setting determines the amount of compression. Can you tell the
difference between the two files? The compression ratio is the ratio between the size of the uncompressed
file (in bytes) and the size of the compressed file (in bytes). What is the compression ratio?

By changing the JPEG quality settings, determine the lowest setting for which the compressed image is
indistinguishable from the original. What is the compression ratio?

1.2 Perform manual white balancing (10 points)

As we discussed in class, one way to do manual white balancing is by: 1) selecting some patch in the scene
that you expect to be white; and 2) normalizing all three channels using weights that make the red, green,
and blue channel values of this patch be equal. Implement this algorithm, and experiment with different
patches in the scene. Show the corresponding results, and discuss which patches work best. (See matplotlib
function ginput for interactively recording image coordinates).

1.3 Learn to use dcraw (10 points)

Besides converting RAW files to .tiff, dcraw provides options to emulate all steps in the image processing
pipeline, including steps that are camera-dependent. Read through dcraw’s documentation, and figure
out what the correct flags are in order for dcraw to perform all the image processing pipeline steps you
implemented in Python. Make sure to report the exact dcraw flags you used.

Note that dcraw outputs images in .PPM format and does not have an option to use the .PNG format.
You will need to use an image editor to convert the image format. The command-line utility pnmtopng,
available in the Netpbm toolkit (http://netpbm.sourceforge.net/), is an easy way to do the conversion.
Alternatively, ImageMagick (https://www.imagemagick.org/) also does command-line format conversions.

You should now have (at least) two developed versions of the original RAW image: One (or more) you
produced using your implementation of the image processing pipeline, and another you produced using
dcraw. One more developed image is available as the file campus.jpg included in the ./data directory of
the assignment ZIP archive. This is the developed image produced by the camera’s own image processing
pipeline, alongside the RAW image you have been using. Compare the three developed images, and explain
any differences between them. Which of the three images do you like best?

2 Camera Obscura

A camera obscura is essentially a dark box with a pinhole on one face (hence also “pinhole camera”), and
a screen on the opposite face. Light reflecting off an object travels through the pinhole to the screen, and
forms an inverted image of the object on the screen. All it takes to make such a camera is having a paper

4

http://netpbm.sourceforge.net/
https://www.imagemagick.org/

box and something you can use to pinch small holes on it. The caveat is that it will be hard to see the image
formed with your naked eye. Instead, you will need to attach to the pinhole camera a digital camera with a
long exposure time. Figure 3 shows a schematic of a pinhole camera constructed in the way described above.

Figure 3: Schematic of a camera obscura.

2.1 Build the pinhole camera (70 points)

To design a basic easy-to-use pinhole camera, we recommend the following steps:

• Get a cardboard box. It does not have to be too big, but it does have to ultimately be “lightproof”.
A shoebox will do. The cardboard box should be such that the distance between the pinhole and the
screen (i.e., the focal length) is longer than the minimum focus of the digital camera. Otherwise, all
the images you will capture will be blurry.

• Obtain a digital camera that allows for long exposure times, around 15-30 seconds.

• Determine which face of the box should be your screen. Cover the screen with white paper (printer
paper generally works fine). Cover the rest of the faces on the inside with black paper. If you prefer,
you can use white and black paint instead of sheets of paper.

• On the face opposite the screen, cut a large hole. This hole should be bigger than the pinhole, e.g.,
about 1 inch in diameter.

• Take another piece of black paper, and punch the pinhole into that. Then, tape this piece of paper
over the bigger hole on the box, so that light only enters through the pinhole. The advantage of this
is that you can use multiple pieces of paper to test pinholes of varying diameters. Make your design
so that you can easily switch between papers with different pinhole diameters.

• Next to the hole for the pinhole-carrying paper, cut a hole for the digital camera. The size of the hole
should be such that you can attach the digital camera’s aperture to it in a light-tight way—no light
should enter through this hole. Additionally, the digital camera’s hole should not be too far from the
pinhole, as otherwise the digital camera’s field of view may not be wide enough to capture the screen’s
image. You may need to angle the digital camera a bit towards the pinhole. At the same time, you
should make sure that the digital camera is not blocking the light path inside or outside the box.

• Make sure that your digital camera has a memory card and a charged battery. Then attach it to the
box. While attaching it, make sure that it is still possible to change its settings (e.g., focus, exposure,
ISO) without destroying all of your construction. Turn off autofocus and adjust the focus of the camera
manually so that it is focused on the screen.

5

• Duct tape your box all over! You really want to make it lightproof.

Once you have completed everything, submit a few photos of your constructed pinhole camera. Make sure
to also report on all your design decisions, such as screen size, focal length, and field of view.

2.2 Use your pinhole camera (30 points)

It is now time to capture some images with your pinhole camera. We leave it up to you to identify interesting
scenes. Once you have found what you want to photograph, point the pinhole towards it. Figure out the
appropriate settings for the digital camera, then set it to capture an image for 16-30 seconds.

You should capture at least three scenes, each with three different pinhole diameters, for a total of nine
photographs. Some suggested pinhole diameters are 0.1 mm (really just a pinprick), 1 mm , and 5 mm.
These diameters are suggestions: in reality, your pinhole diameter should be about 1.9

√
(fλ), where f is the

focal length, and λ is the wavelength of light (550 nm on average, for visible light). If you use this formula,
then also go a few millimeters up and down, in order to have three pinhole diameters in total.

Report what pinhole diameters you use, and discuss the differences you observe for the different pinholes.

2.3 Bonus: Camera obscura in your room (20 points)

Instead of using a cardboard box, you can build a camera obscura using a room with a window. Use thick
black paper to cover the window, and pinch a small hole at its center. Then, on the wall opposite the window,
you will see an inverted projection of the view outside your room. Use a digital camera to capture an image
showcasing this projection. See Abelardo Morell’s Camera Obscura gallery for inspiration and some further
instructions. Antonio Torralba and Bill Freeman also wrote a fun computer vision paper about room-sized
pinhole cameras [2], which is definitely worth a read.

3 Deliverables

When submitting your solution, make sure to follow the homework submission guidelines available on the
course website (http://graphics.cs.cmu.edu/courses/15-463/assignments/submission_guidelines.
pdf). Your submitted solution should include the following:

• A PDF report explaining what you did for each problem, including answers to all questions asked
throughout Problems 1 and 2, as well as any of the bonus problems you choose to do. The report
should include any figures and intermediate results that you think may help. Make sure to include
explanations of any issues that you may have run into that prevented you from fully solving the
assignment, as this will help us determine partial credit. The report should also explain any .PNG files
you include in your solution (see below).

• All your Python code, including code for the bonus problems you choose to complete, as well as a
README file explaining how to use the code.

• For Problem 1.1: At least two .PNG files, showing the final images you created with the two different
types of automatic white balancing. You can also include .PNG files for various experimental settings
if you want (e.g., different brightness values).

• For Problem 1.2: .PNG files, showing the results of manual white balancing for different patch selections.

• For Problem 1.3: The .PNG file produced by dcraw.

• For Problem 2.1: At least two photographs of your constructed pinhole camera.

• For Problem 2.2: At least nine photographs captured with your pinhole camera (three different scenes,
each captured with three different pinholes).

• For Bonus Problem 2.3: A photograph of your room’s “screen” with the projection of the view from
outside, as well as a photograph of your covered window “pinhole”.

6

https://www.abelardomorell.net/project/camera-obscura/
http://graphics.cs.cmu.edu/courses/15-463/assignments/submission_guidelines.pdf
http://graphics.cs.cmu.edu/courses/15-463/assignments/submission_guidelines.pdf

4 Hints and Information

• Make sure to download and install the latest version (version 9.28) of dcraw. In particular, the default
version that comes in older Windows versions does not support the cameras used in this class, and will
produce results with a strong purple hue.

• We recommend using Anaconda (https://www.anaconda.com/) for Python package management.
Once you install conda, you can create an environment specifically for the class using the following
command:

conda create --name <ENV-NAME> numpy scipy scikit-image

If you feel more comfortable using some other Python package management system, such as pip, you
are welcome to do so. Either way, make sure you have at least versions 1.19.1 for numpy, 1.5.0 for
scipy, 0.16.2 for skimage, and 3.3.1 for matplotlib. Newer versions should be fine.

• The package matplotlib is included with the skimage installation and is very useful for visualizing
intermediate results and creating figures for the report. For example, the following code reads in two
images and creates a single figure displaying them side by side:

import matplotlib.pyplot as plt

from skimage import io

read two images from current directory

im1 = io.imread(‘image1.tiff’)

im2 = io.imread(‘image2.tiff’)

display both images in a 1x2 grid

fig = plt.figure() # create a new figure

fig.add_subplot(1, 2, 1) # draw first image

plt.imshow(im1)

fig.add_subplot(1, 2, 2) # draw second image

plt.imshow(im2)

plt.savefig(’output.png’) # saves current figure as a PNG file

plt.show() # displays figure

Note that figures can also be saved by clicking on the save icon in the display window.

When displaying grayscale (single-channel) images, imshow maps pixel values in the [0, 1] range to
colors from a default color map. If you want to display your image in grayscale, you should use the
following instead:

read a single-channel image

imgr = io.imread(‘image_gray.tiff’)

plt.imshow(imgr), cmap=‘gray’)

plt.show()

You will need this in several places in this assignment, as many of your images will be grayscale.

• You can access subsets of numpy arrays using the standard Python slice syntax i:j:k, where i is the
start index, j is the end index, and k is the step size. The following example, given an original image
im, creates three other images, each with only one-fourth the pixels of the originals. The pixels of each
of the corresponding sub-images are shown in Figure 4. You can also use the numpy function dstack

to combine these three images into a single 3-channel RGB image.

import numpy as np

create three sub-images of im as shown in figure below

7

https://www.anaconda.com/

im1 = im[0::2, 0::2]

im2 = im[0::2, 1::2]

im3 = im[1::2, 0::2]

combine the above images into an RGB image, such that im1 is the red,

im2 is the green, and im3 is the blue channel

im_rgb = np.dstack((im1, im2, im3));

• You will find it very helpful to display intermediate results while you are implementing the image
processing pipeline. However, before you apply brightening and gamma encoding, you will find that
displayed images will look completely black. To be able to see something more meaningful, we recom-
mend scaling and clipping intermediate image im intermediate before displaying with matplotlib.

plt.imshow(np.clip(im_intermediate*5, 0, 1), cmap=‘gray’)

plt.show()

Figure 4 shows what you should see with this command after the linearization step.

Additionally, the colors of intermediate images will be very off (e.g., have a very strong green hue), even
if you are doing everything correctly. You will not get reasonable colors until after you have performed
at least white balancing. This will come into play when you are trying to determine the Bayer pattern.

Figure 4: Left: The linear RAW image (brightness increased by 5). Right: Crop showing the Bayer pattern.

• If you decide to build your camera obscura using the camera provided by the course (recommended),
make sure to go over the camera tutorial available on the course website (http://graphics.cs.cmu.
edu/courses/15-463/index_files/camera_tutorial.pdf).

8

http://graphics.cs.cmu.edu/courses/15-463/index_files/camera_tutorial.pdf
http://graphics.cs.cmu.edu/courses/15-463/index_files/camera_tutorial.pdf

• In many point-and-shoot cameras, as well as in most manual-control cameras (DSLR, rangefinder,
mirrorless, and so on), exposures up to 30 seconds are readily available. If this exceeds your camera’s
settings, you can reduce exposure times by using a large aperture size for your lens, as well as a large
ISO setting (possibly up to 1600).

Modern smartphone cameras typically have a hardware limit on maximum exposure time at around
4 seconds. However, many phones nowadays support a “long exposure” mode, where longer exposure
times are simulated by capturing a sequence of images and summing them all up at the RAW stage.
This article provides some information for both iOS and Android phones.

If you decide to use your smartphone, you should also use an app that enables manual control of camera
settings (especially focus, exposure time, and ISO). Additionally, make sure to disable the flash.

• Below are some tips that will hopefully make capturing images with your pinhole camera easier:

1. We strongly recommend that you go outside during a sunny day. Capturing images indoors will
require extremely long exposures, which is impractical.

2. Make sure to place your pinhole camera on a surface that is absolutely steady throughout the
exposure time. Definitely do not hole it with your hand.

3. When focusing your digital camera, do so with the aperture of your lens fully open (even if you
later decide to stop down the aperture while capturing images.

4. If your photographs are blurry, it could be because either your camera is not focused correctly
on the screen, or the pinhole is too large. To make sure that it is not a focusing issue, place a
piece of paper with text on the screen and take a photo (or look at the viewfinder of your digital
camera) with your box open. Make sure the camera is focused so that the text appears sharp. If
the issue is the size of your pinhole, try another one that is smaller.

5 Credits

A lot of inspiration for the first part of this assignment came from Robert Sumner’s popular guide for
reading and processing RAW files. Some components of the first part were adapted from James Tompkin’s
computational photography course at Brown. Some inspiration for the second part came from James Hays’
and Gordon Wetzstein’s computational photography courses, at Brown and Stanford respectively.

References

[1] International Electrotechnical Commission and others. IEC 61966-2-1:1999. Multimedia systems and
equipment–Colour measurements and management–Part 2-1: Colour management–Default RGB colour
space–sRGB, 1999.

[2] A. Torralba and W. T. Freeman. Accidental pinhole and pinspeck cameras: Revealing the scene outside
the picture. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 374–381.
IEEE, 2012.

9

https://www.pocket-lint.com/phones/news/140699-how-to-take-long-exposure-photos-on-a-smartphone

