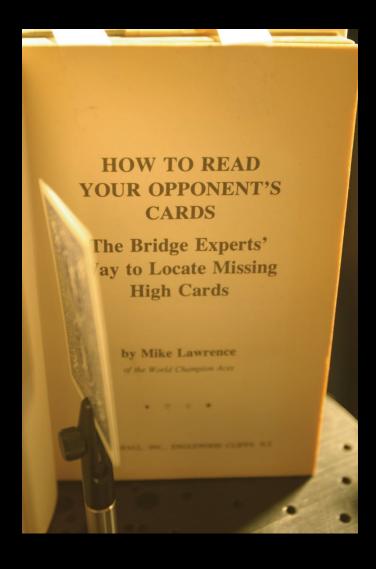
Light transport matrices



15-463, 15-663, 15-862 Computational Photography Fall 2020, Lecture 25

Course announcements

- Homework assignment 6 is due on Friday 11th.
 - Any questions?
- Optional homework assignment 7 is due on Friday 18th.
 - Very different from standard homework assignments.
- Grades for homework assignment 5 posted on Gradescope.
 - Remember that regrade requests go to Gradescope now.
- Three upcoming computational photography talks:
 - Tuesday 8th, 11 am noon, Noah Snavely, "Plenoptic camera.
 - Tuesday 8th, noon 1 pm, Matthias Niessner, "Neural rendering".
 - Tuesday 15th, 11 am noon, Ricardo Martin-Brualla, "NeRF".
- Course evaluation surveys:
 - FCEs (sorry for the auto-email saying 16-385).
 - End-of-semester survey (will be posted on Piazza this afternoon).
- Suggest topics for this Friday's *last* reading group.

Overview of today's lecture

- Leftover from previous lecture.
- The light transport matrix.
- Image-based relighting.
- Optical computing using the light transport matrix.
- Dual photography.
- Light transport probing and epipolar imaging.

Slide credits

These slides were directly adapted from:

Matt O'Toole (CMU).

The light transport matrix

How do these three images relate to each other?

How do these three images relate to each other?

the superposition principle

photo taken under two light sources = sum of photos taken under each source individually

the superposition principle

photo taken under two light sources = sum of photos taken under each source individually

the superposition principle

why is the error not exactly zero?

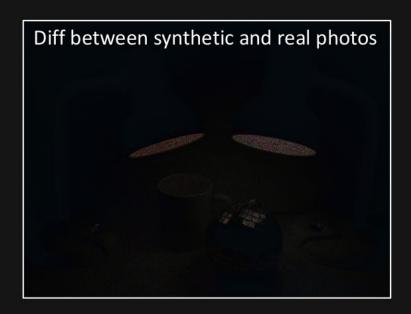


photo taken under two light sources = sum of photos taken under each source individually

Weight 1

1

-

Weight 2

1

Weight 1

1

-

Weight 2

0

Weight 1

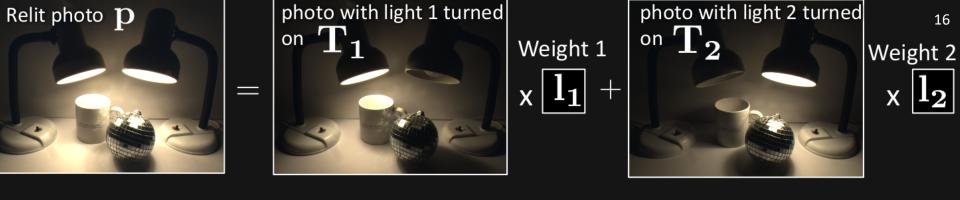
х

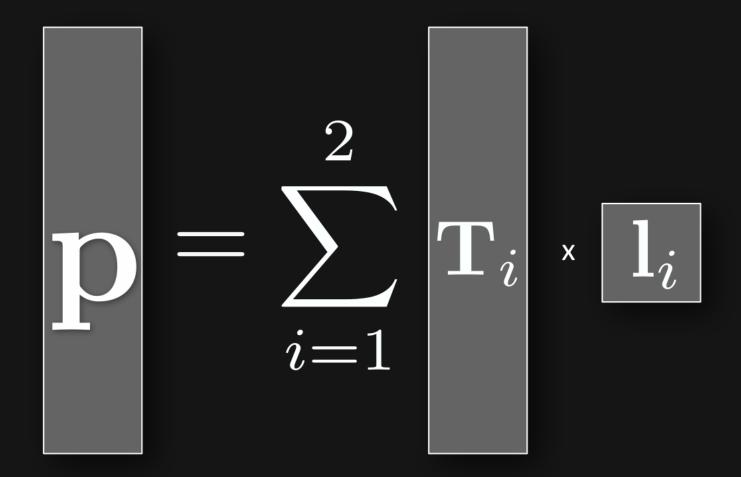
+

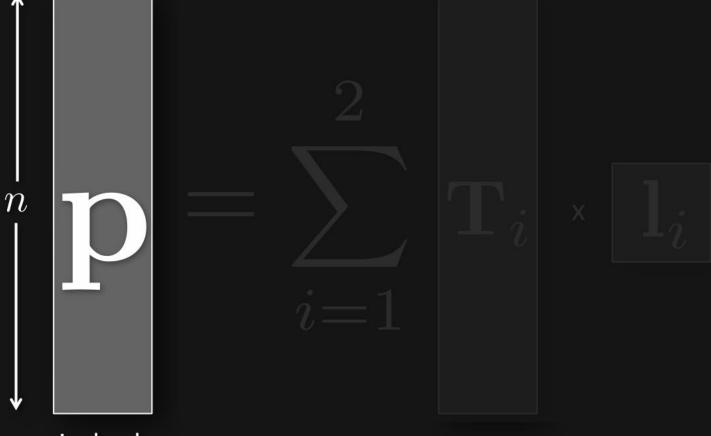
Weight 2

х

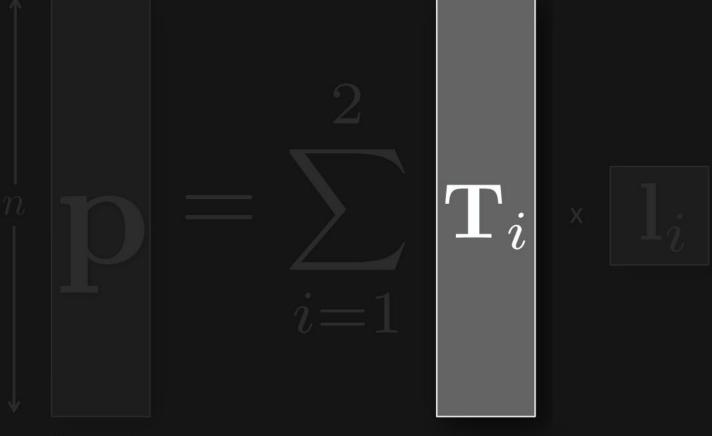
15 Weight 2 $_{\mathsf{X}}$ $\mathbf{I_2}$



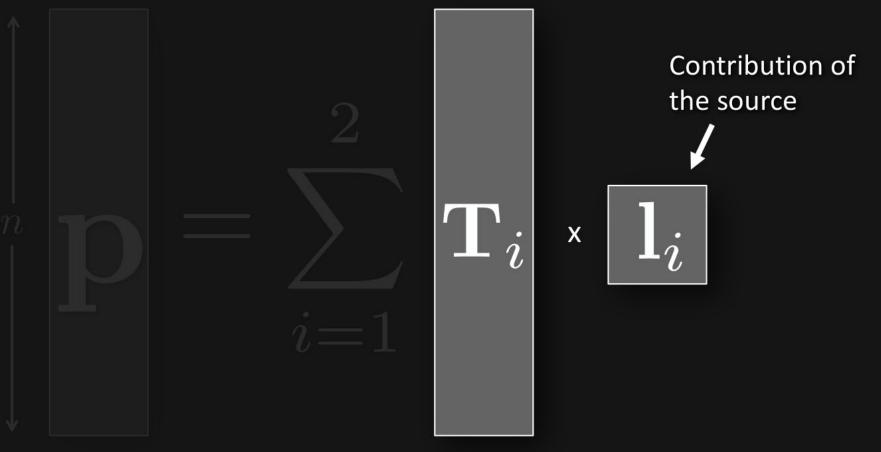


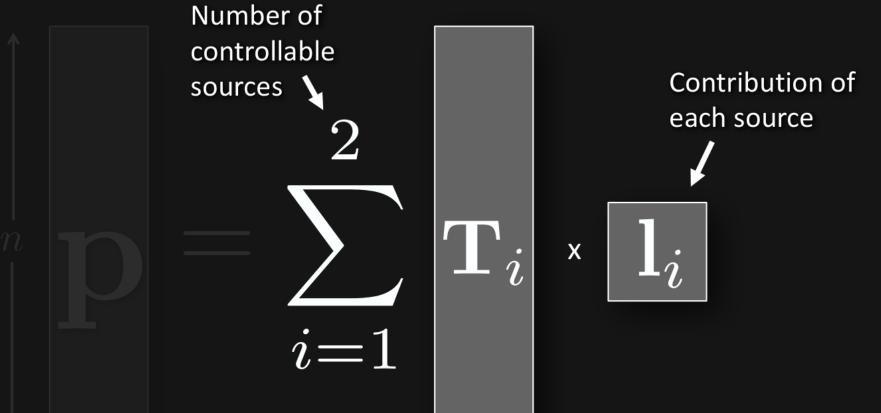


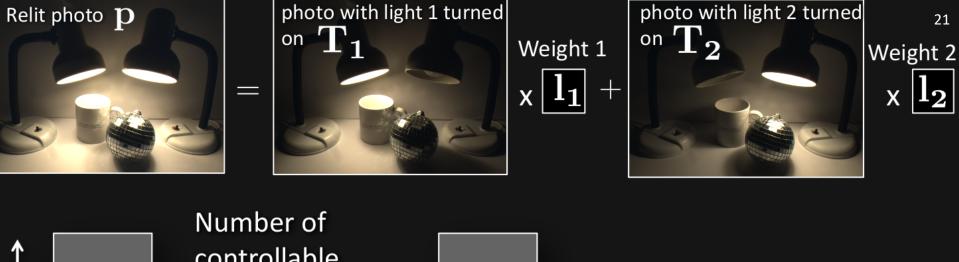
n pixel values

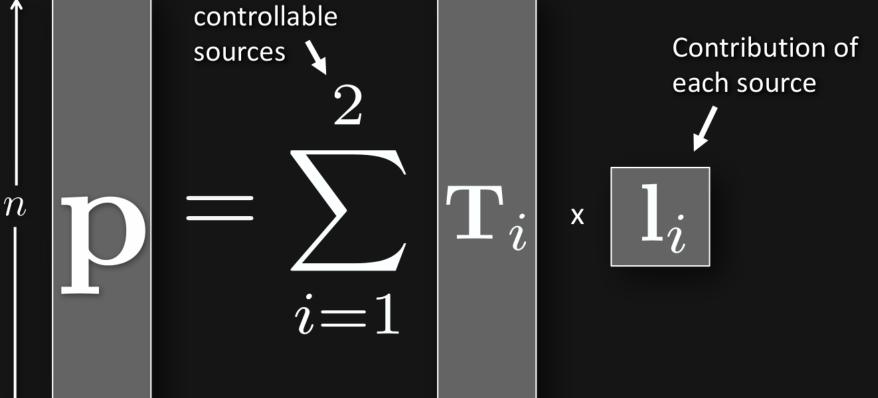


 $n\,$ pixel values

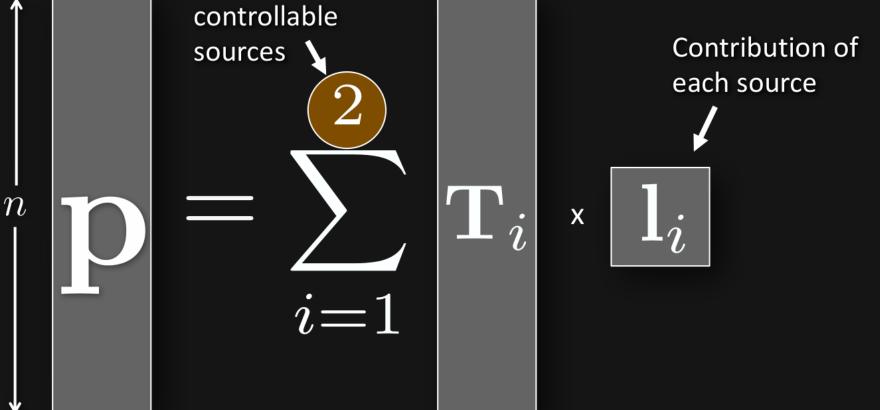




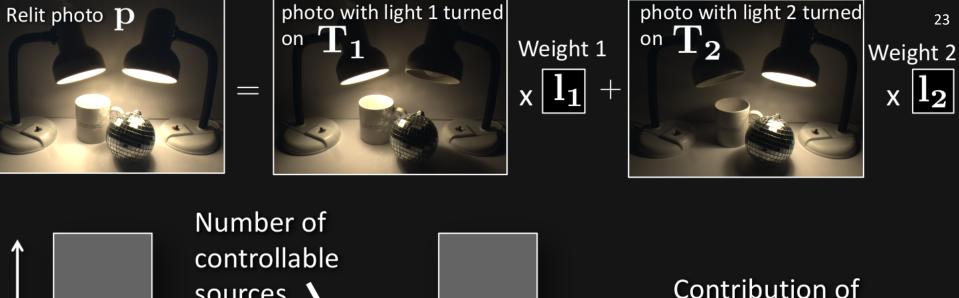


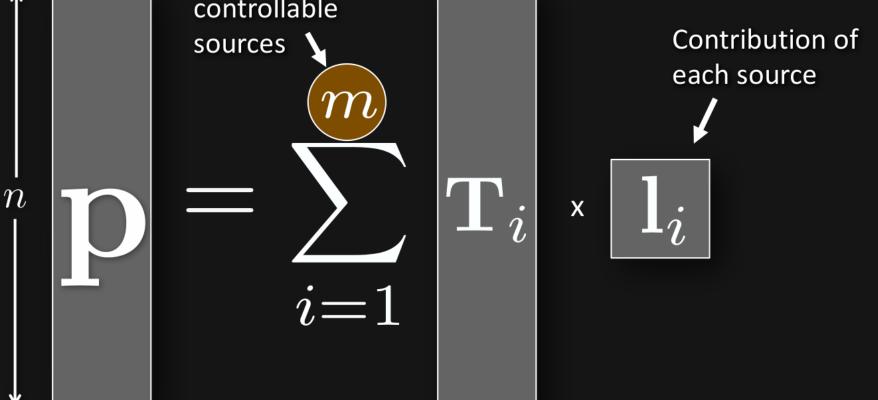


 $\overline{\imath}$ pixel values

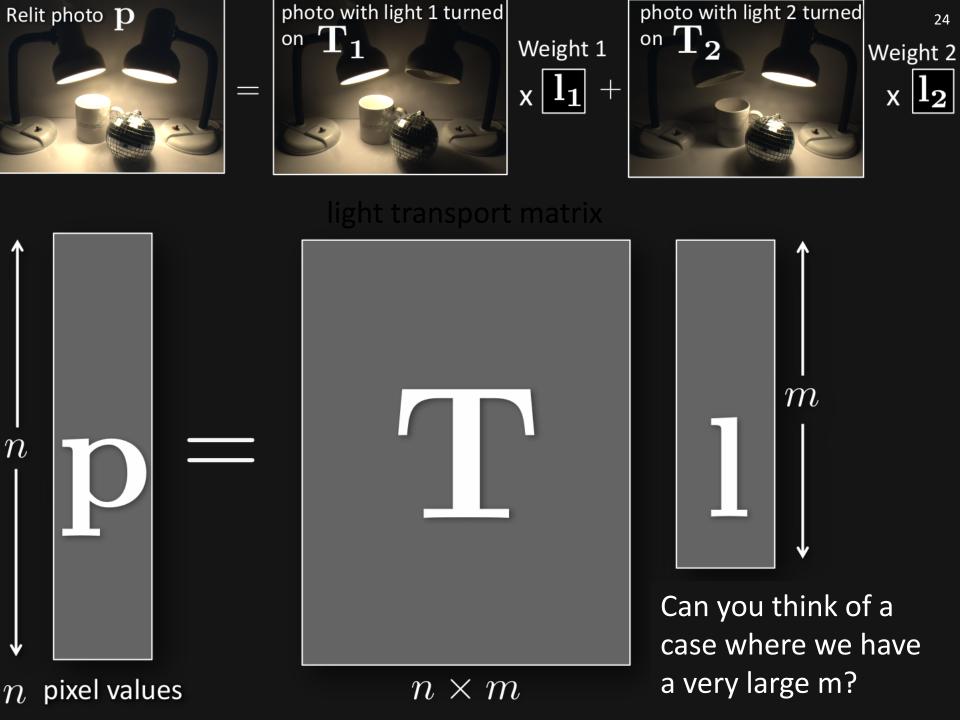


 \overline{n} pixel values

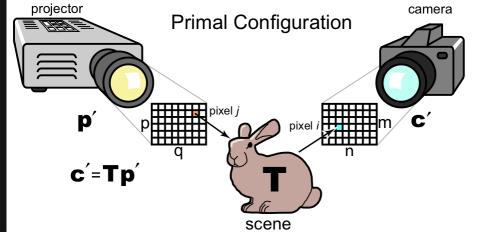


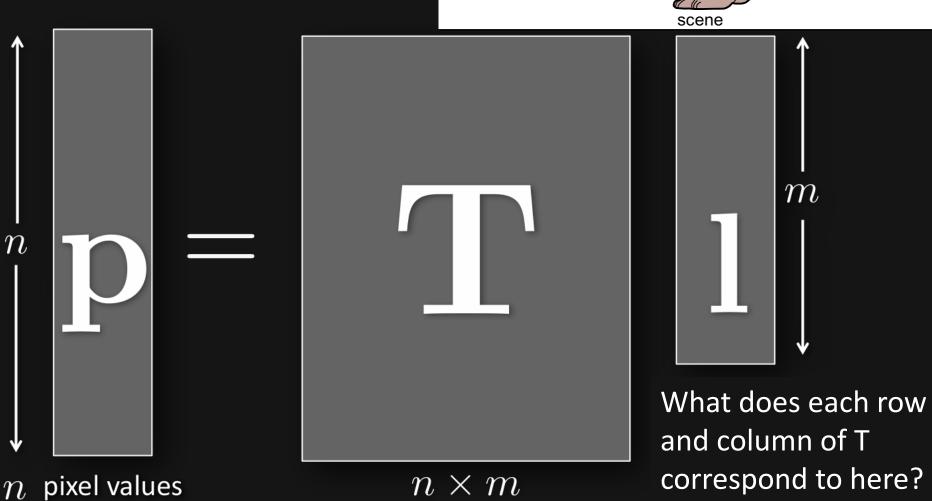


 $\overline{\imath}$ pixel values



Use a projector





Let's say I have measured T.

• What does it mean to right-multiply it with some vector !?

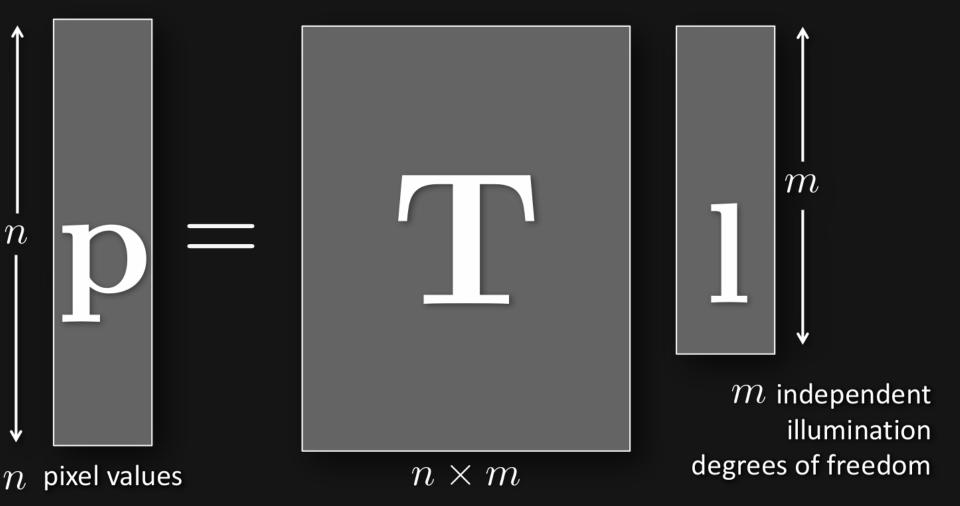
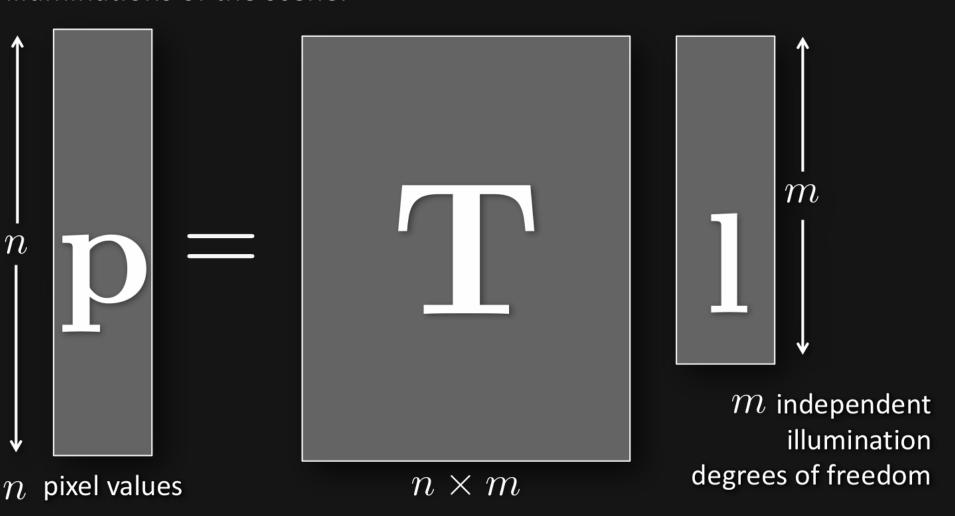


Image-based relighting: Use the measurements I already have of the scene (the pictures I took when measuring T) to simulate new illuminations of the scene.



Acquiring the Reflectance Field [Debevec et al. 2000]

image-based rendering & relighting

Reflectance field

Acquiring the Reflectance Field

image-based rendering & relighting



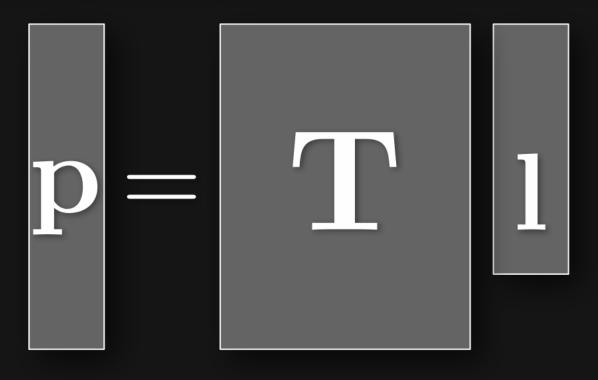
Debevec et al, SIG 2000

Acquiring the Reflectance Field

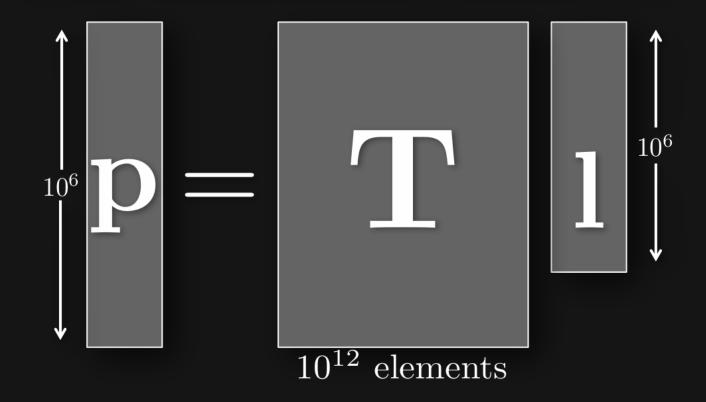
Light stage 6, Debevec et al., 2006

Optical computing using the light transport matrix

question: what are the challenges with analyzing T?

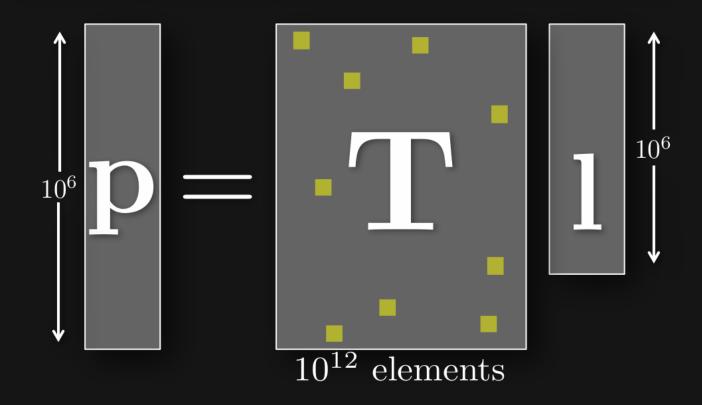


question: what are the challenges with analyzing T?



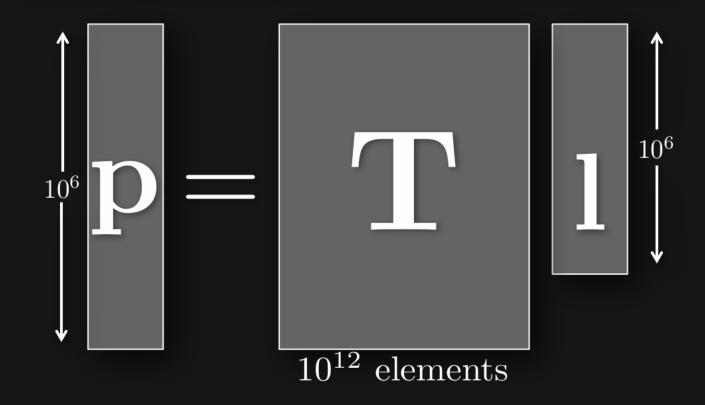
matrix can be extremely large

question: what are the challenges with analyzing \mathbf{T} ?



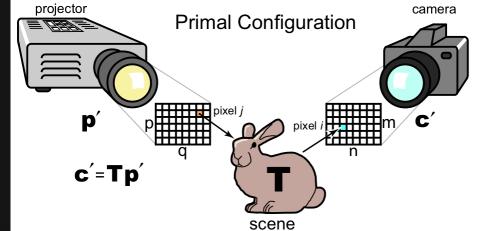
- matrix can be extremely large
- elements not directly accessible

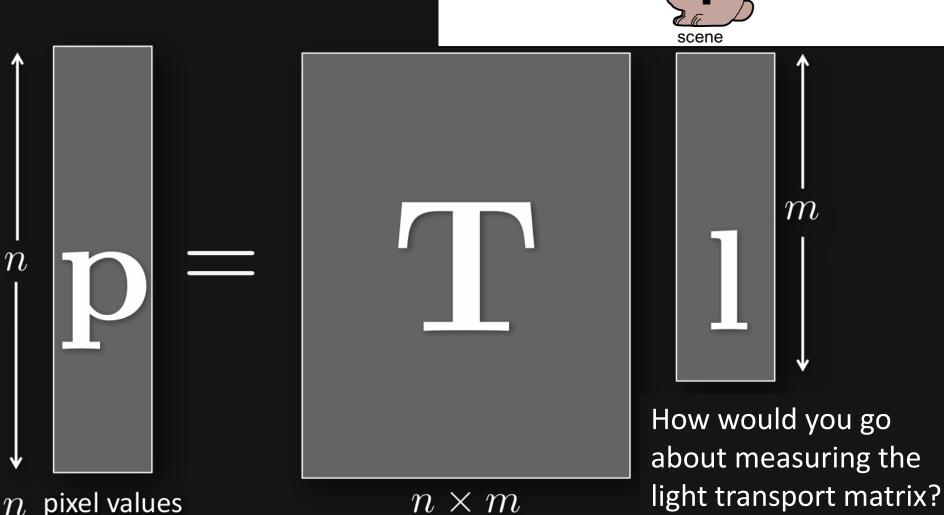
question: what are the challenges with analyzing \mathbf{T} ?



- matrix can be extremely large
- elements not directly accessible
- global structure poorly understood

Use a projector

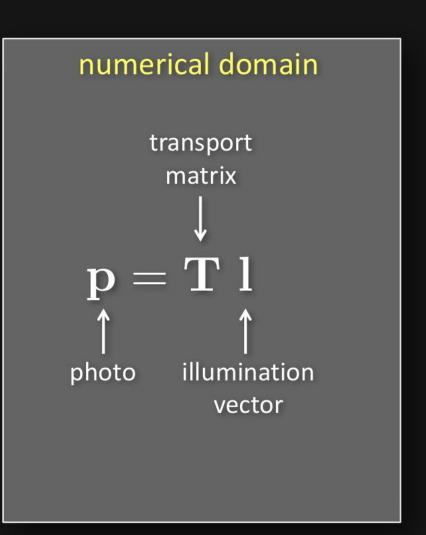




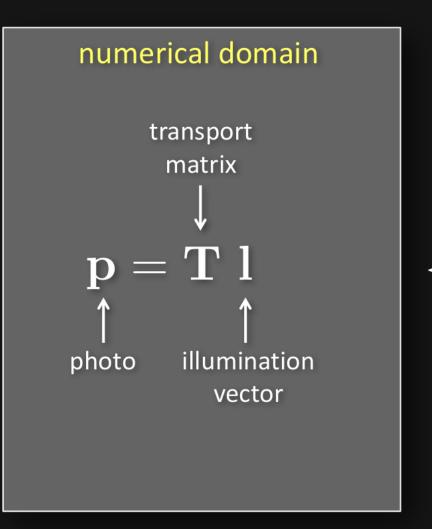
mHow would you go

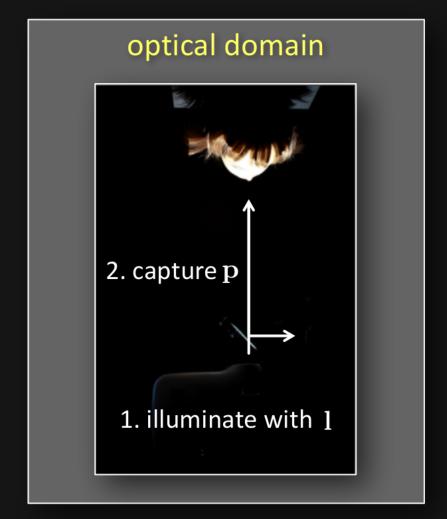
pixel values

numerical algorithms implemented directly in optics



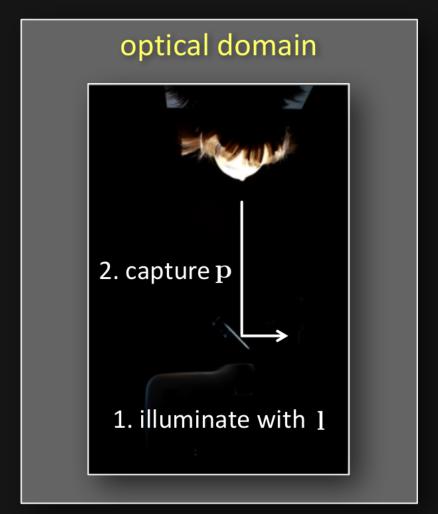
numerical algorithms implemented directly in optics





numerical algorithms implemented directly in optics

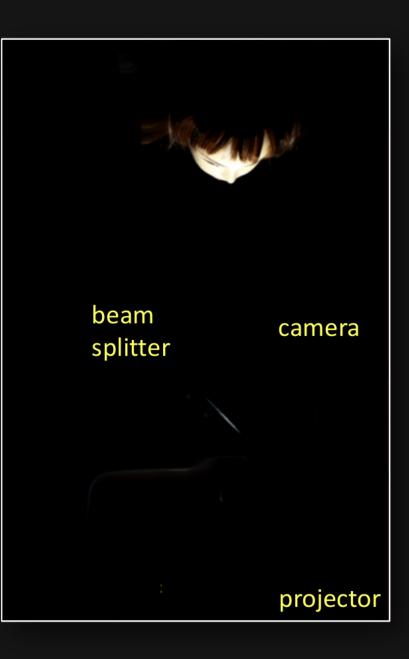
numerical domain function analyze (T)for i = 1 to k { $\mathbf{p}_i = \mathrm{Tl}_i$ $\mathbf{d}_i = \mathbf{Tr}_i$ return result



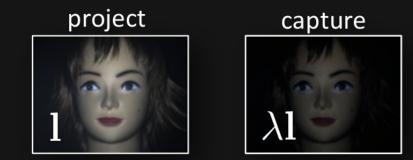
numerical algorithms implemented directly in optics

numerical domain function analyze (T)for i = 1 to k { $\overline{\mathbf{p}_i} = \overline{\mathbf{Tl}_i}$ $\mathbf{d}_i = \mathbf{Tr}_i$ return result

```
optical domain
function analyze()
for i = 1 to k  {
   project l_i, capture p_i
   project \mathbf{r}_i, capture \mathbf{d}_i
return result
```



find an illumination pattern that when projected onto scene, we get the same photo back (multiplied by a scalar)



What do we call these patterns?

computing transport eigenvectors

eigenvector of a square matrix T when projected onto scene, we get the same photo back (multiplied by a scalar)

numerical goal find $1, \lambda$ such that

$$\mathbf{Tl} = \lambda \mathbf{l}$$

and λ is maximal

goal: find principal eigenvector of ${f T}$

observation: it is a fixed point of the sequence $1, T1, T^21, T^31, \ldots$

numerical domain

function PowerIt(T)

 $l_1 = initial vector$

 $\mathbf{for} \ i = 1 \text{ to } k$ $\mathbf{p}_i = \mathbf{Tl}_i$

 $\mathbf{l}_{i+1} = \mathbf{p}_i / \|\mathbf{p}_i\|_2$

 $return l_{i+1}$

properties

- linear convergence [Trefethen and Bau 1997]
- eigenvalues must be distinct
- \mathbf{l}_1 cannot be orthogonal to principal eigenvector

goal: find principal eigenvector of ${f T}$

observation: it is a fixed point of the sequence $1, T1, T^21, T^31, \ldots$

numerical domain

function PowerIt(T)

 $l_1 = initial vector$

 $\mathbf{for} \ i = 1 \ \text{to} \ k \ \{ \mathbf{p}_i = \mathbf{Tl}_i$

 $\mathbf{l}_{i+1} = \mathbf{p}_i / \|\mathbf{p}_i\|_2$

return l_{i+1}

optical domain

function PowerIt()

 $\mathbf{l}_1 = \text{initial vector}$

 $\mathbf{for } i = 1 \text{ to } k \{ \\
\text{project } \mathbf{l}_i, \text{ capture } \mathbf{p}_i$

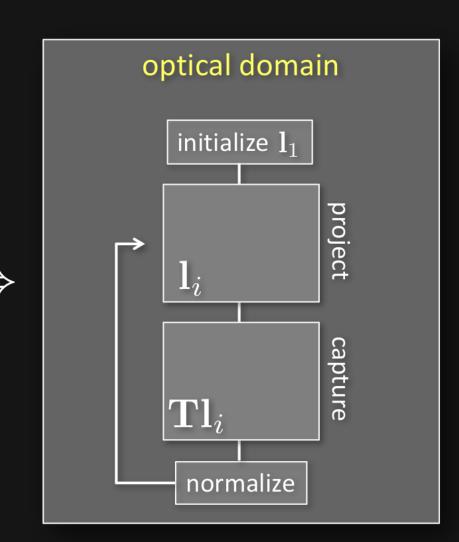
 $\mathbf{l}_{i+1} = \mathbf{p}_i / \|\mathbf{p}_i\|_2$

 $m return \ l_{i+1}$

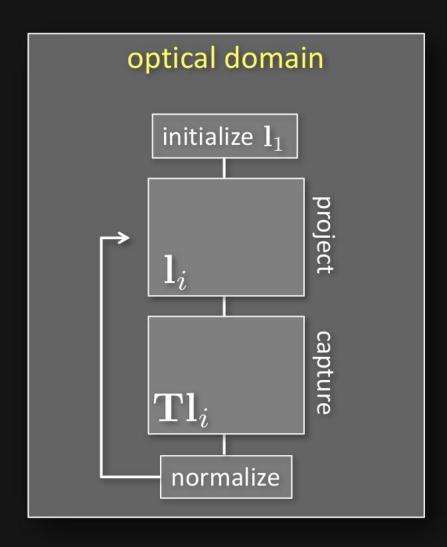
goal: find principal eigenvector of ${f T}$

observation: it is a fixed point of the sequence $1, T1, T^21, T^31, \ldots$

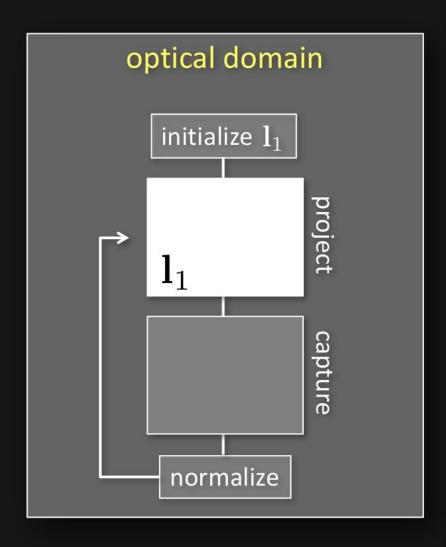
numerical domain function PowerIt(T) $\mathbf{l}_1 = \text{initial vector}$ for i = 1 to k { $\mathbf{l}_{i+1} = \mathbf{p}_i / \|\mathbf{p}_i\|_2$ return l_{i+1}



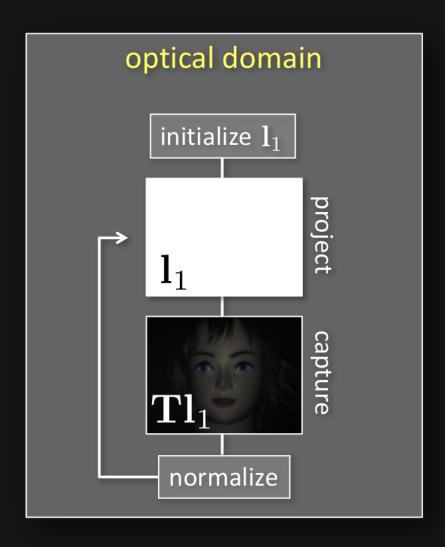
goal: find principal eigenvector of ${f T}$



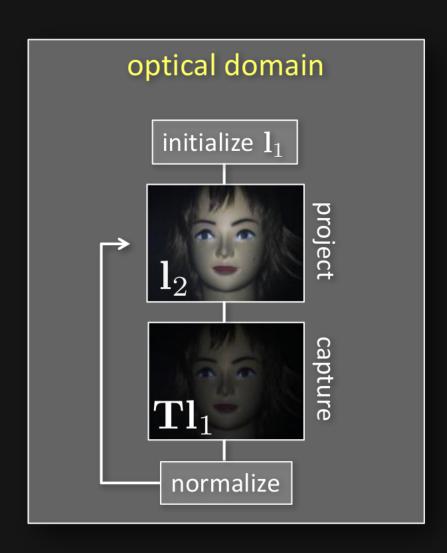
goal: find principal eigenvector of ${f T}$



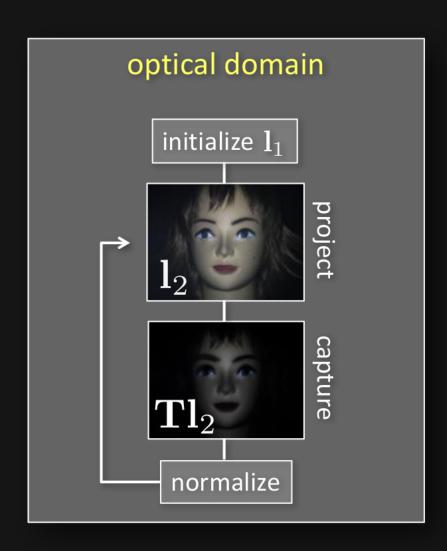
goal: find principal eigenvector of ${f T}$



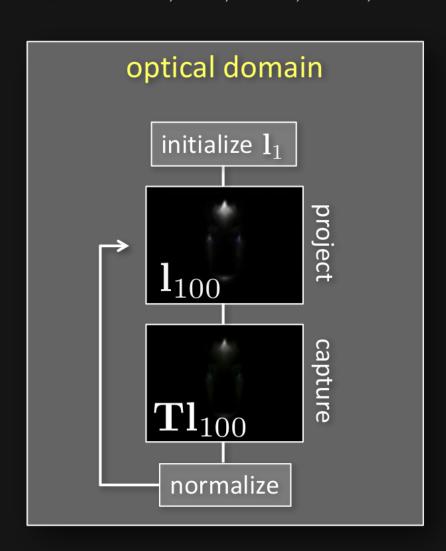
goal: find principal eigenvector of ${f T}$



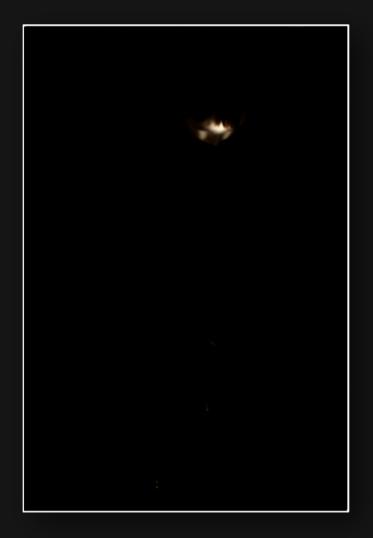
goal: find principal eigenvector of ${f T}$

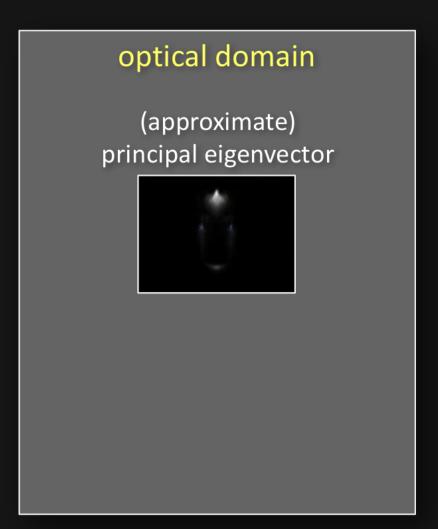


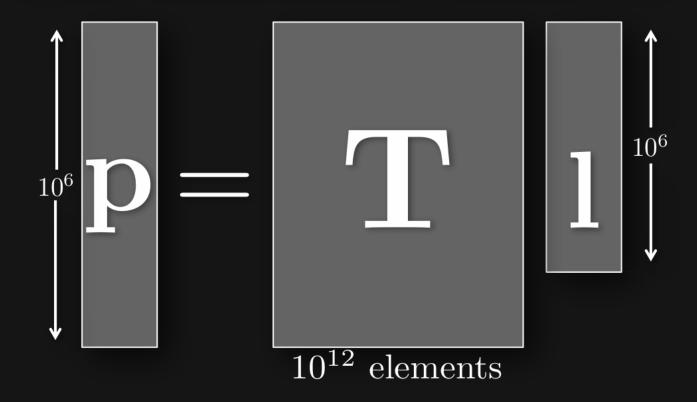
goal: find principal eigenvector of ${f T}$



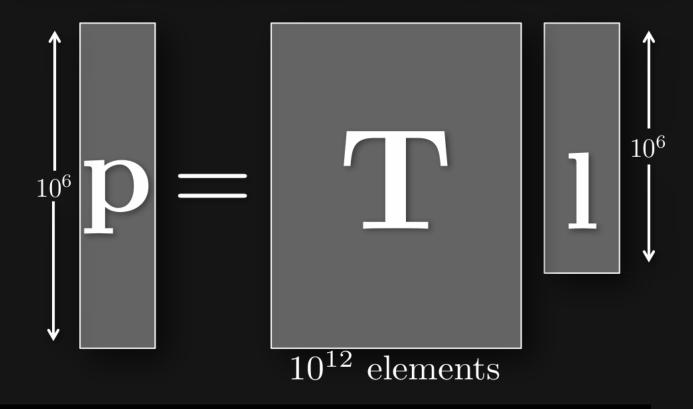
goal: find principal eigenvector of ${f T}$





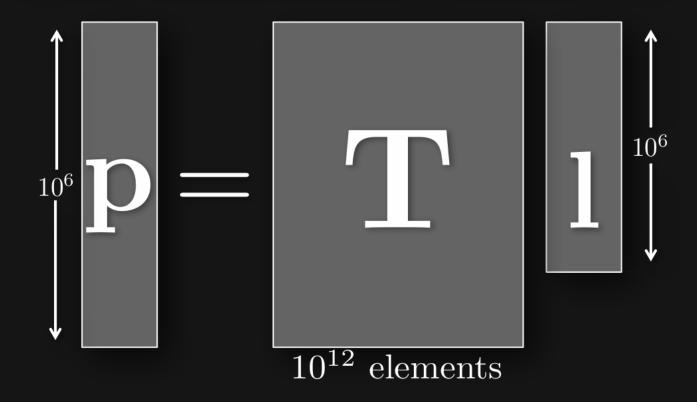


- matrix can be extremely large
- elements not directly accessible
- global structure poorly understood



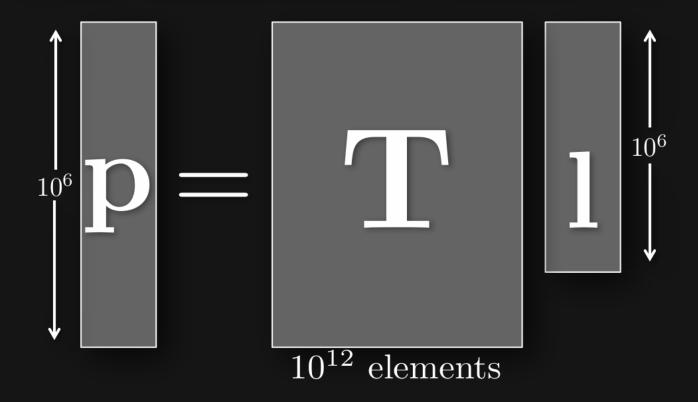
Exhaustive/naïve approach: turn on projector pixels one at a time and take a photo for each of them.

What does each photo correspond to in T?



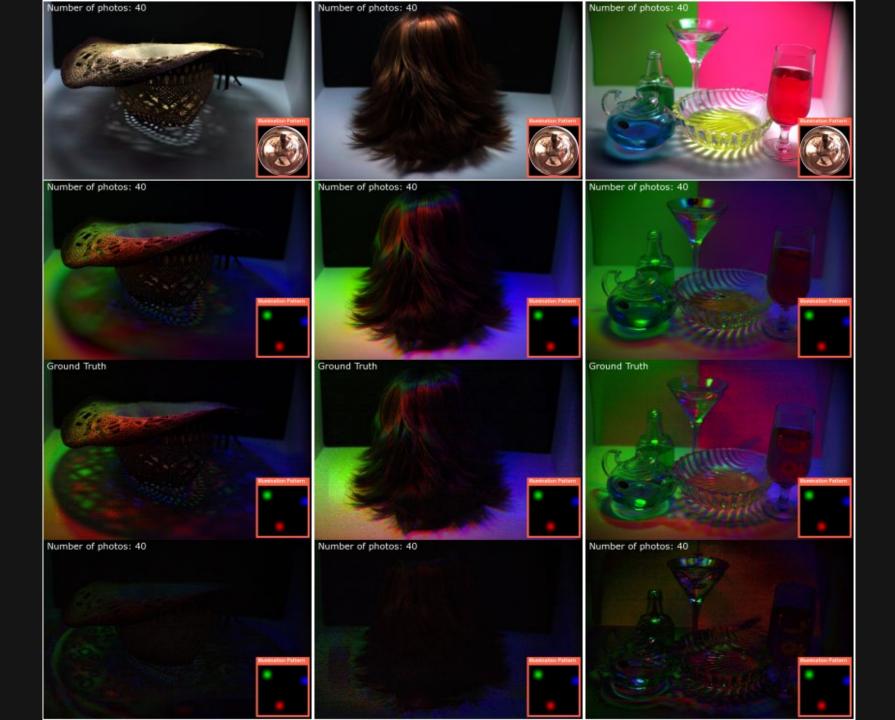
Exhaustive/naïve approach: turn on projector pixels one at a time and take a photo for each of them.

How many photos do we need to capture?

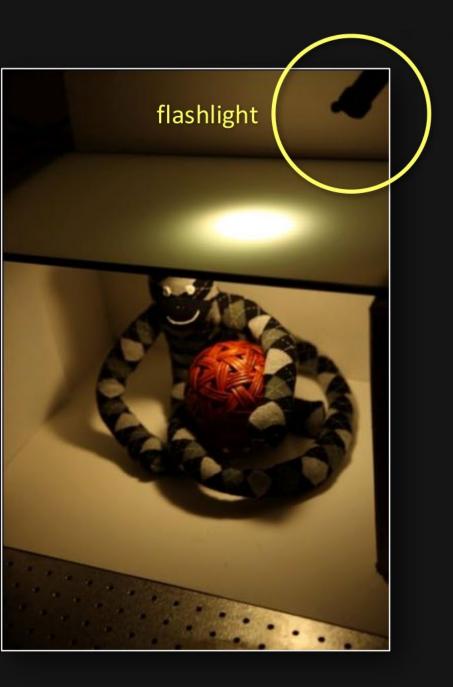


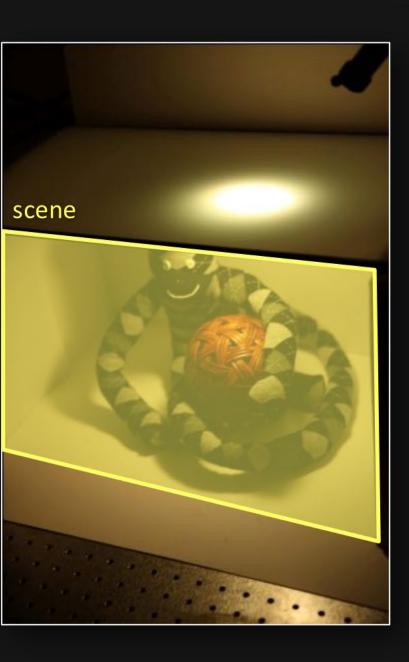
Alternative approach: use optical eigendecomposition to form a low-rank approximation to the light transport matrix.

How many photos do we need to capture?



Inverse transport



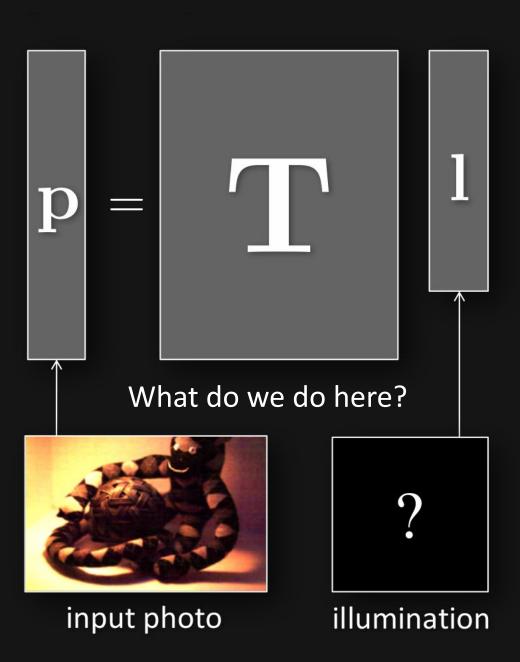


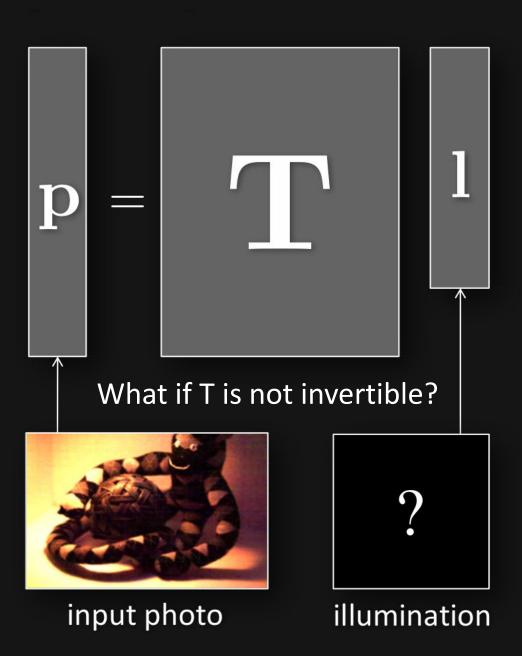
input photo

How do you solve this problem if you know the light transport matrix T?

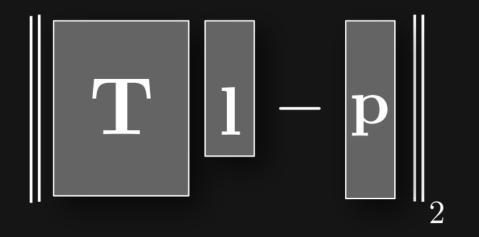
input photo

illumination





numerical goal given photo \mathbf{p} , find illumination \mathbf{l} that minimizes



How do you usually solve for I when T is large?

input photo



illumination

Reminder from lecture 10: Gradient descent

Given the loss function:

$$E(f) = ||Gf - v||^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i - \eta^i r^i$$
, $r^i = v - A f^i$, $\eta^i = \frac{(r^i)^i r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.
- Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed using convolutions with the Laplacian kernel.

Gradient descent in this case

Given the loss function:

$$E(f) = ||Gf - v||^2$$

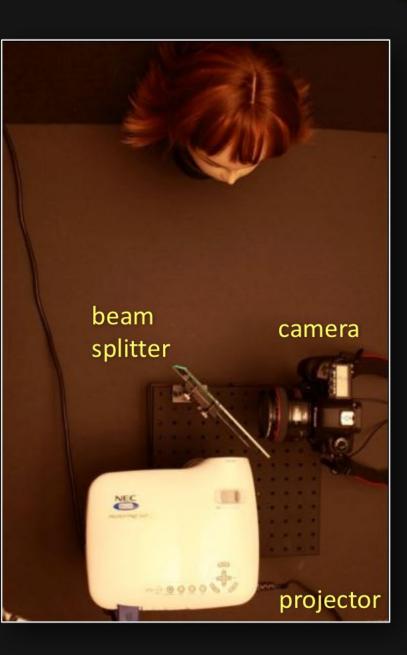
Minimize by iteratively computing:

$$f^{i+1} = f^i - \eta^i r^i$$
, $r^i = v - A f^i$, $\eta^i = \frac{(r^i)^i r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images. What are f, r in this case?
- Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed using convolutions with the Laplacian kernel. How do we compute matrix-vector products efficiently in this case?

inverting light transport



 $\begin{array}{c} \textbf{numerical goal} \\ \textbf{given photo p, find illumination 1} \\ \textbf{that minimizes} \end{array}$

remarks

- \mathbf{T} low-rank or high-rank
- T unknown & not acquired
- illumination sequence will be specific to input photo

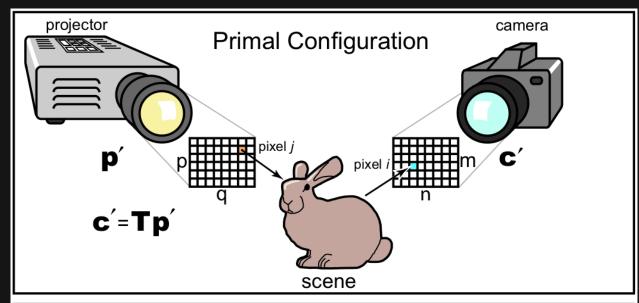
inverting light transport

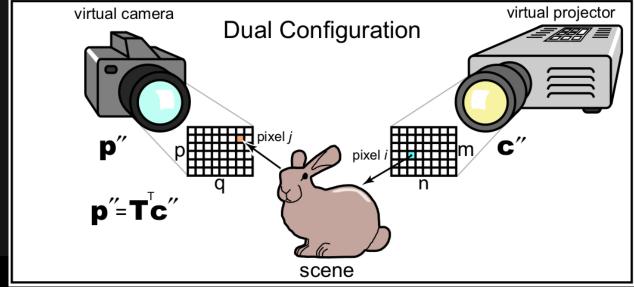
input photo

actual illumination

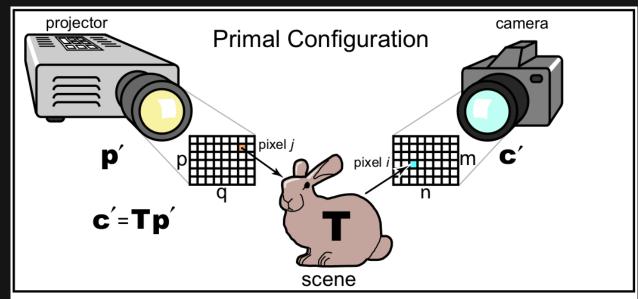
Dual photography

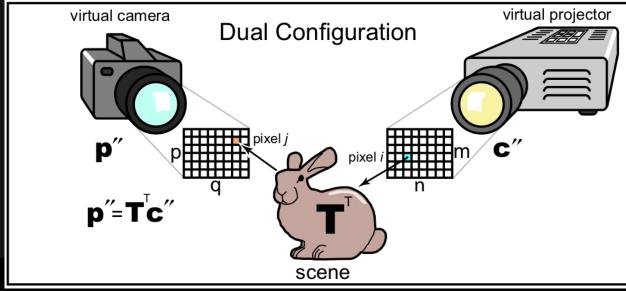
How do the light transport matrices for these two scenes relate to each other?





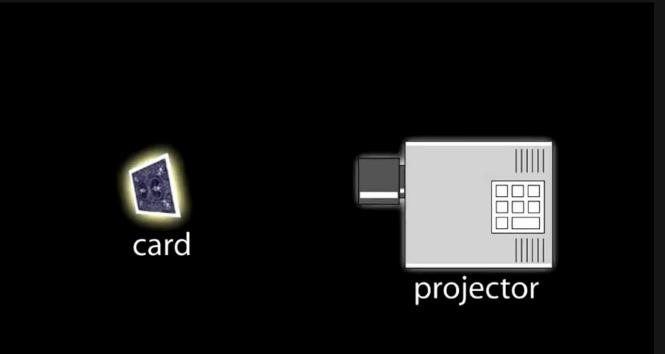
Helmholtz reciprocity: The two matrices are the transpose of each other.



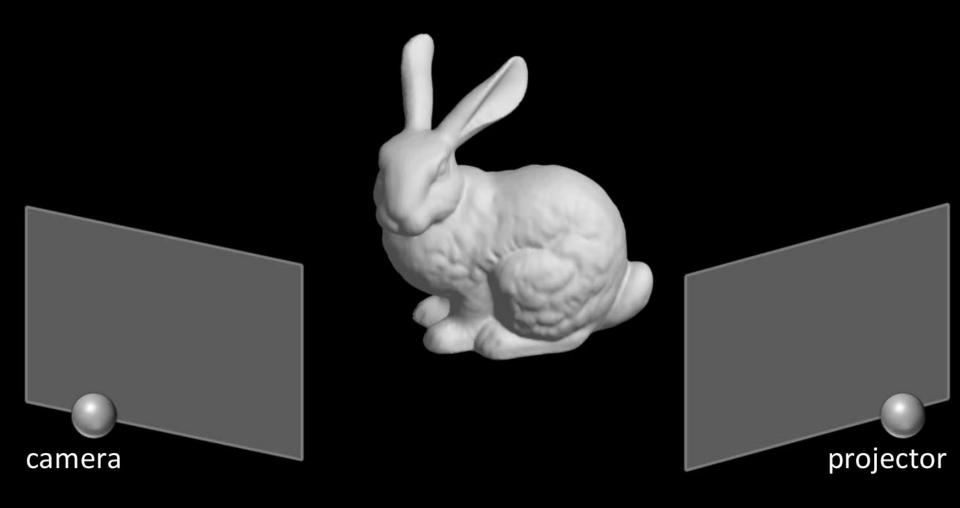


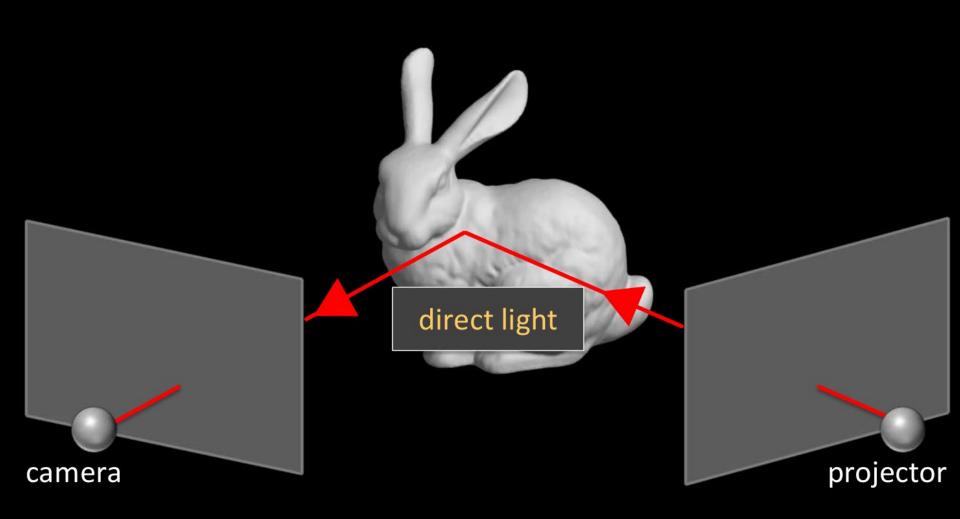
Great demonstration:

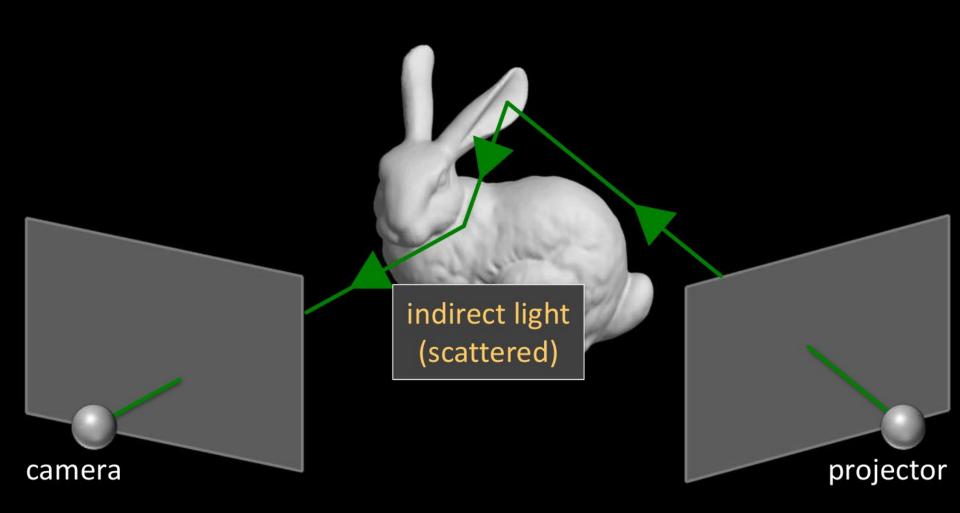
https://www.youtube.com/watch?v=eV58Ko3iFul

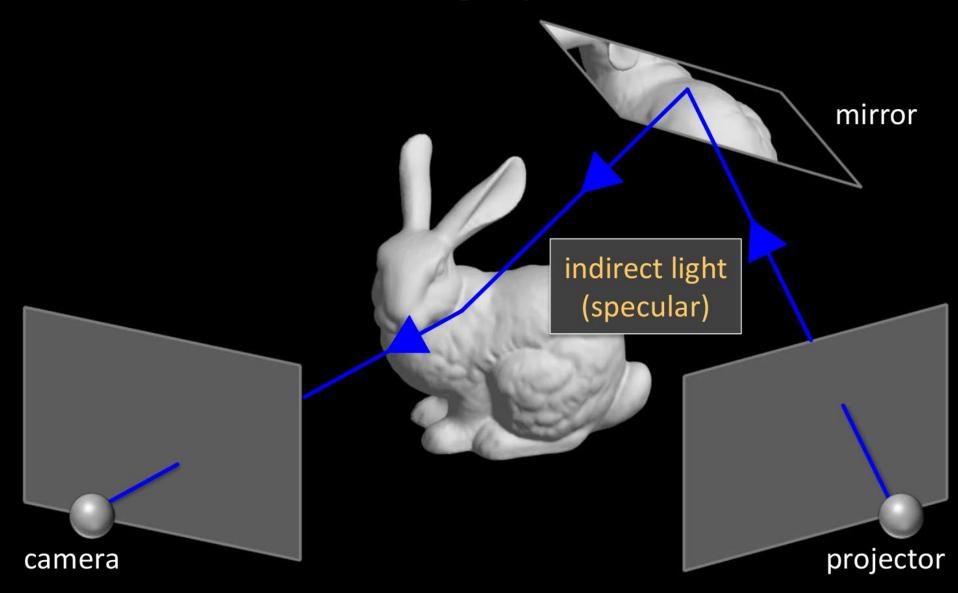


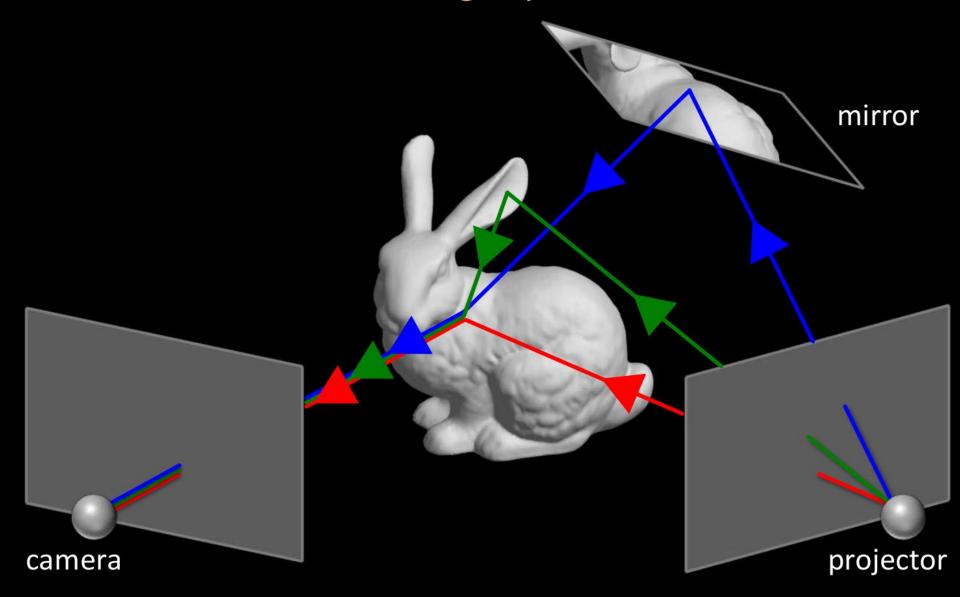
Direct-global separation using epipolar probing



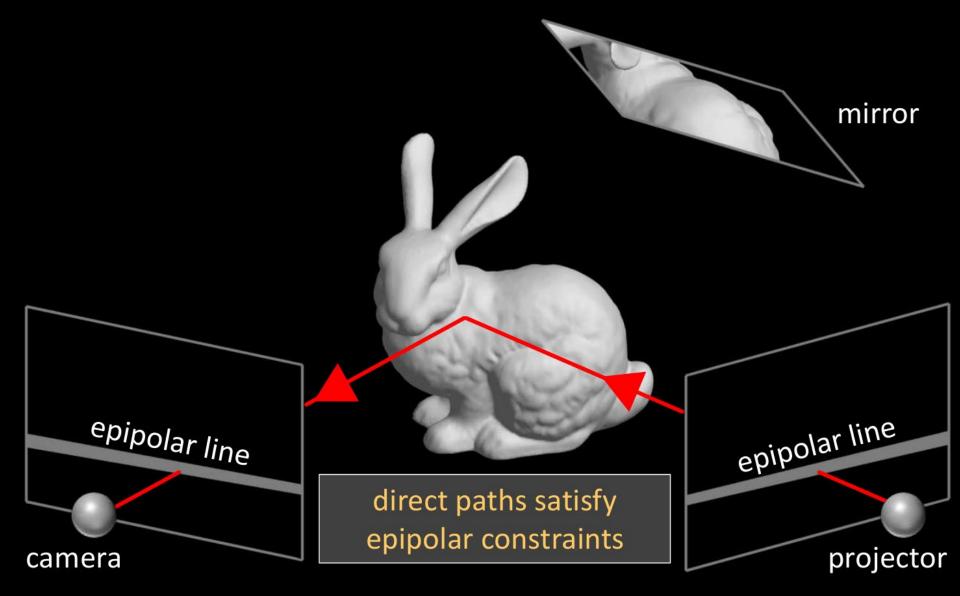




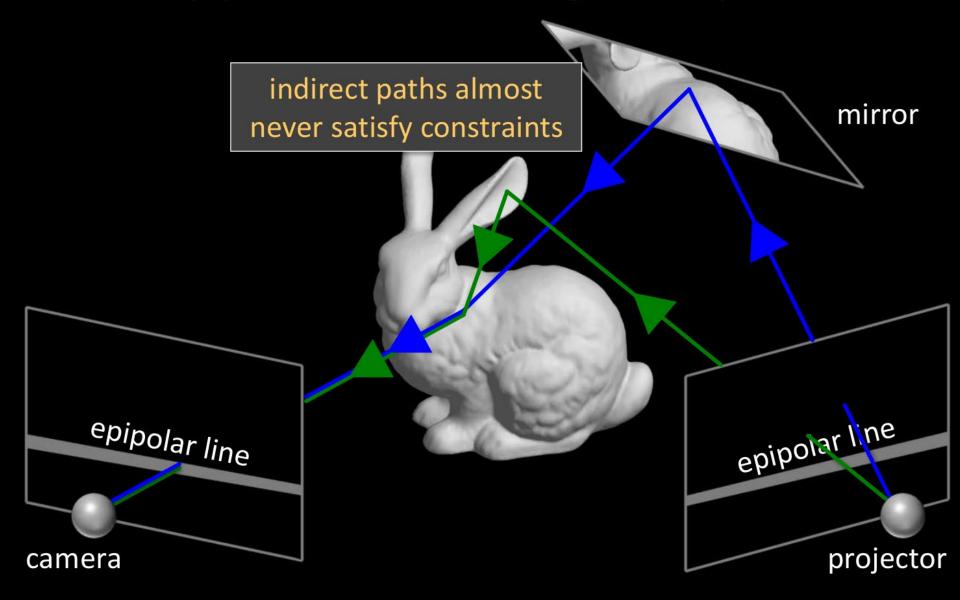




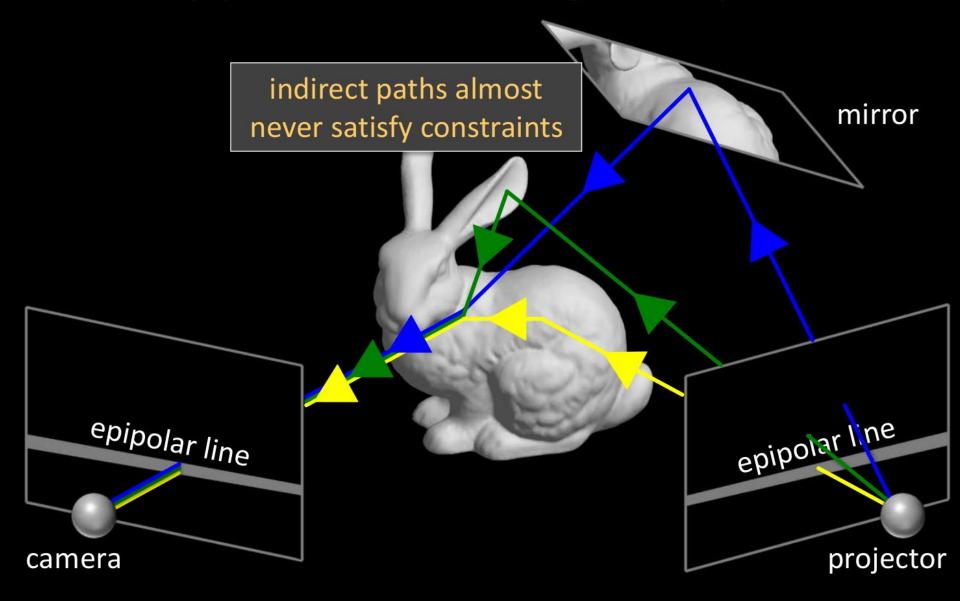
epipolar constraint & light transport



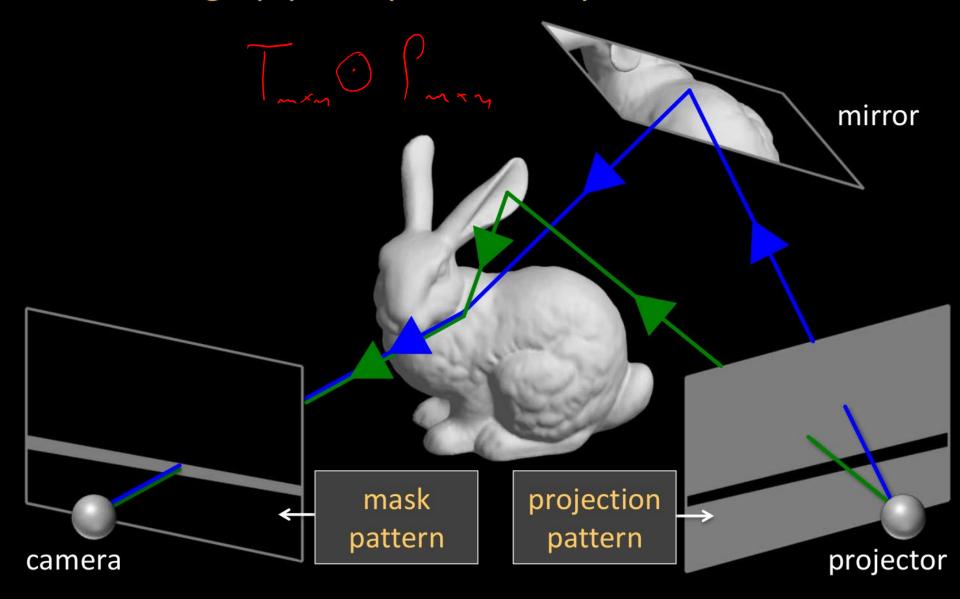
epipolar constraint & light transport



epipolar constraint & light transport



blocking epipolar paths with patterns & masks

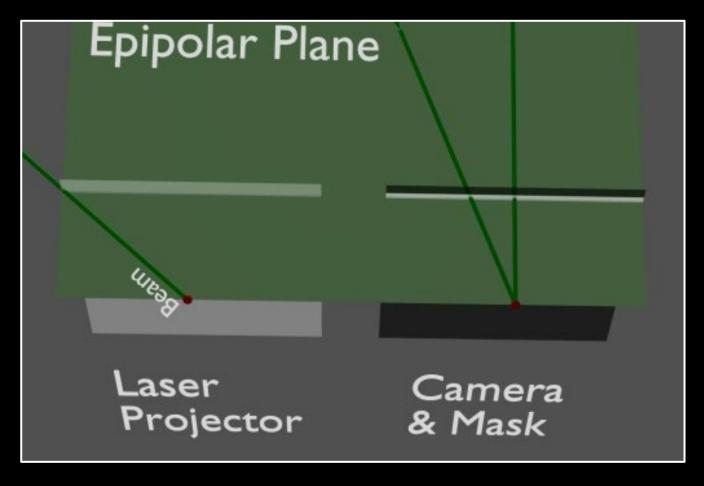


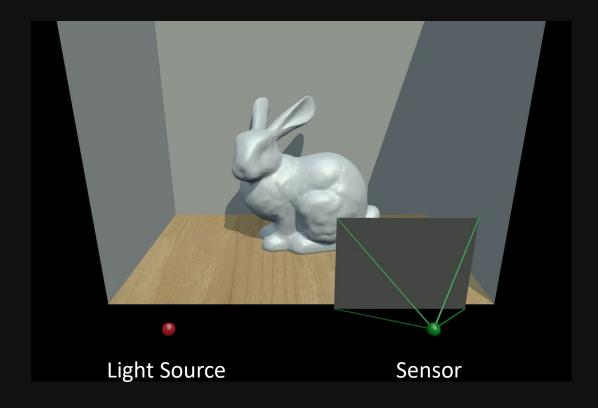
top-left: conventional top-right: indirect-only bottom-right: epipolar-only

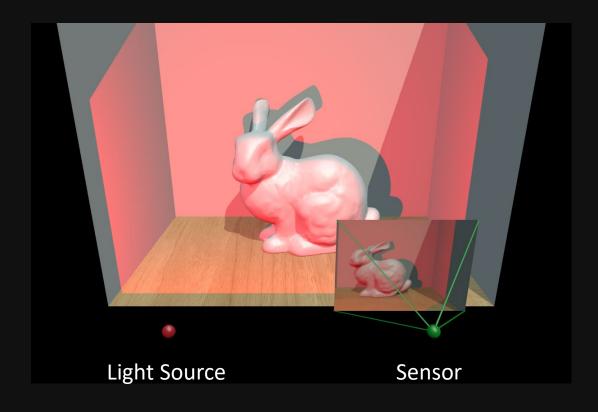
top-left: conventional top-right: indirect-only bottom-right: epipolar-only

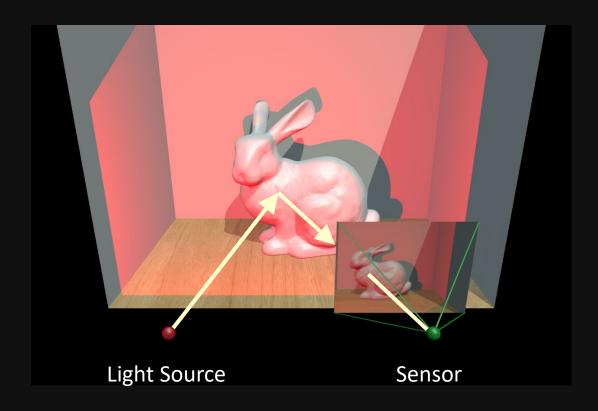
Energy-efficient epipolar imaging

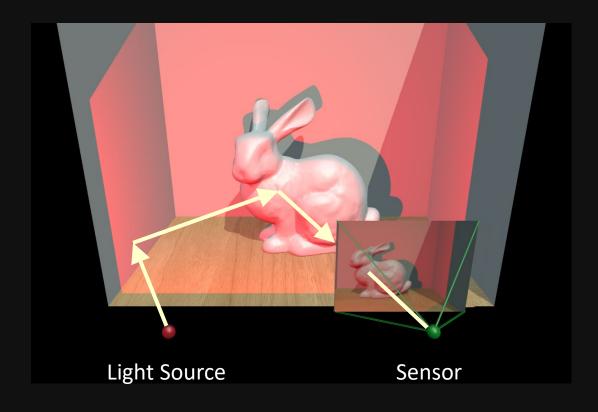
Energy-efficient transport parsing

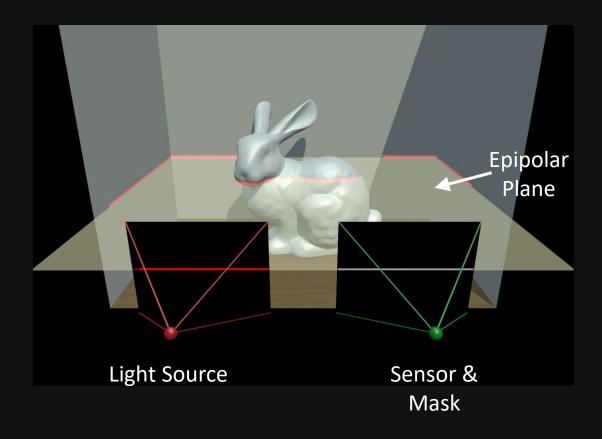


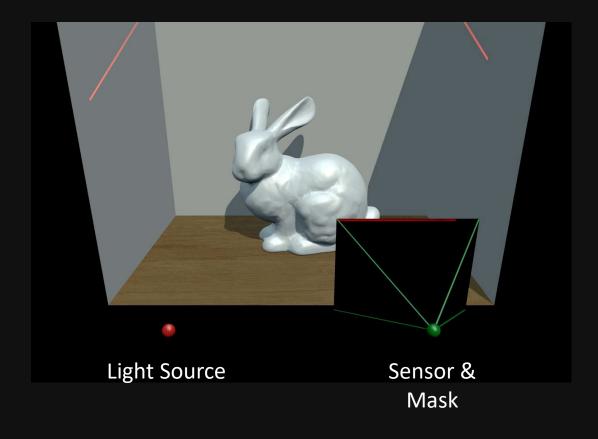


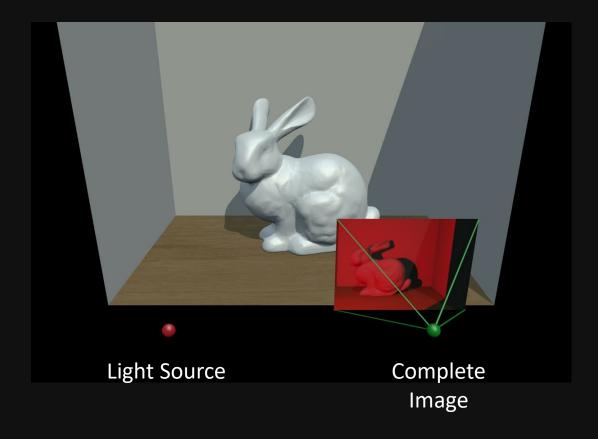


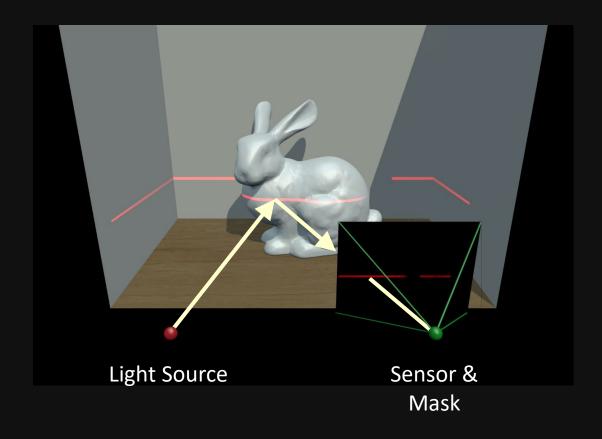


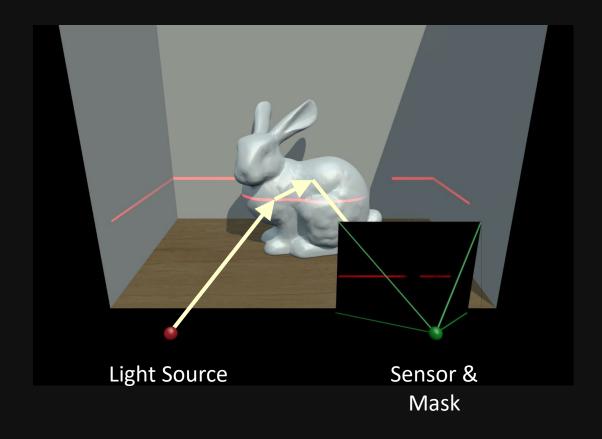




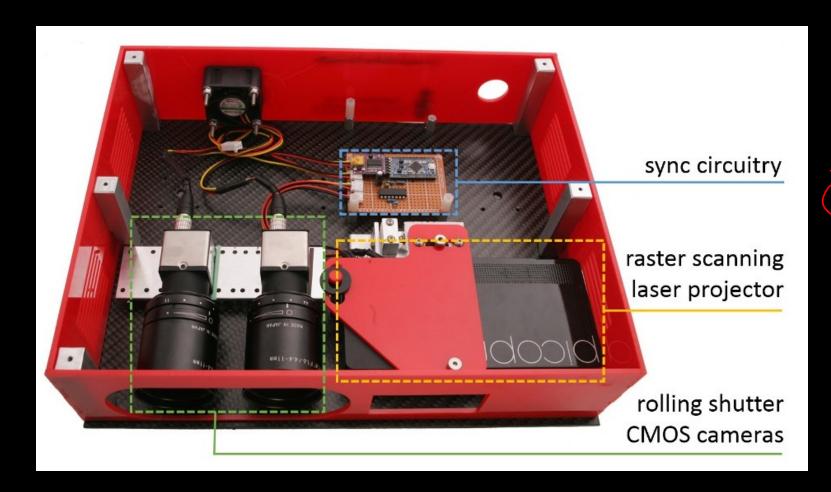








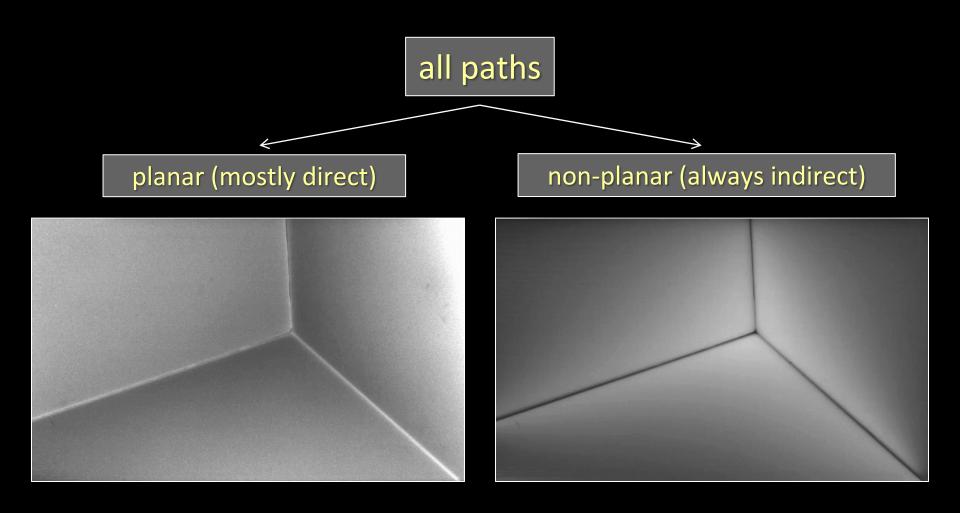
Energy-efficient transport parsing



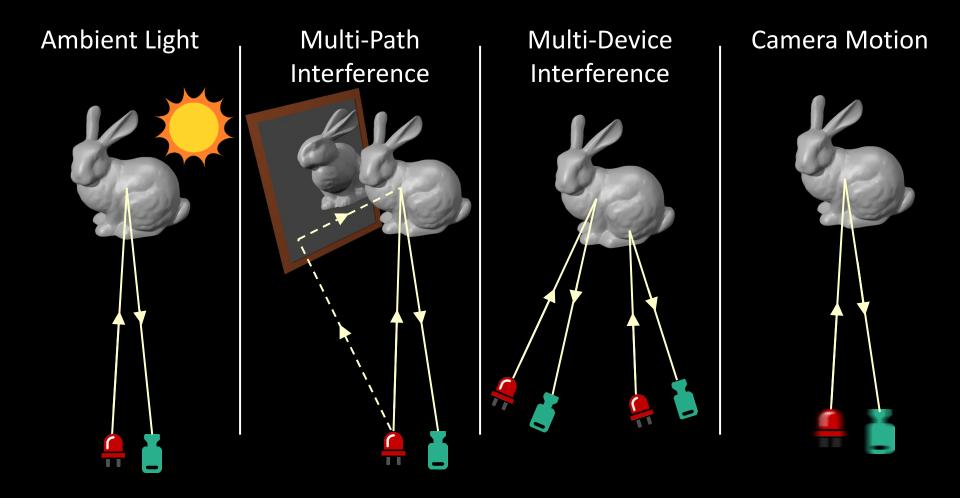
all paths

planar (mostly direct)

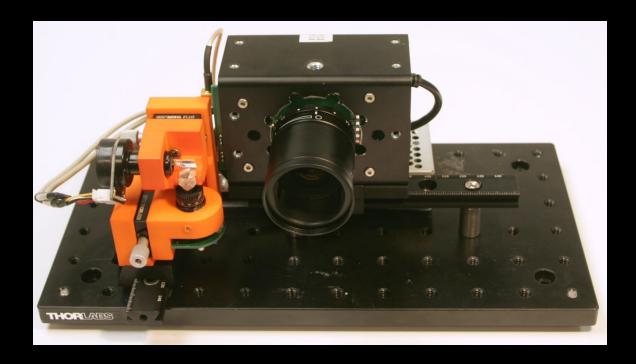
non-planar (always indirect)



Benefits of Epipolar ToF Imaging

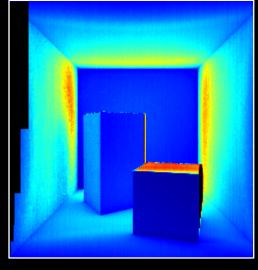


Epipolar ToF Prototype

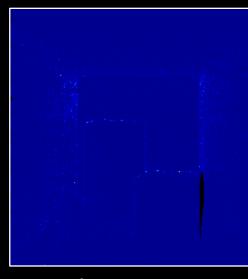


Epipolar ToF and Global Illumination

Depth Errors (in meters)



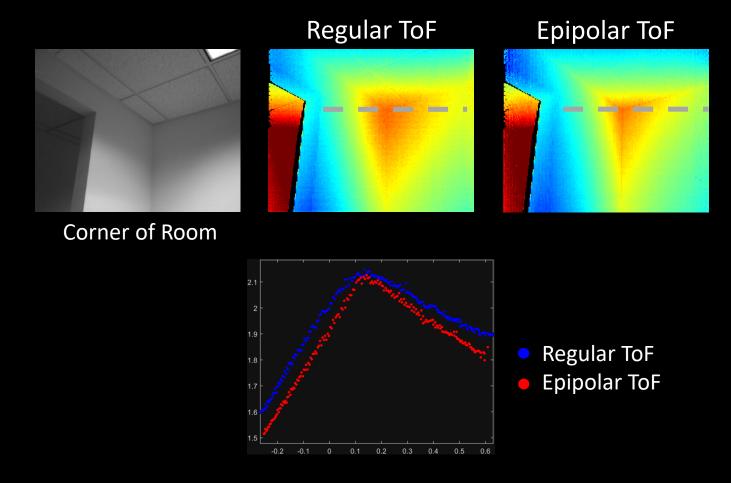
Regular ToF @ 30MHz



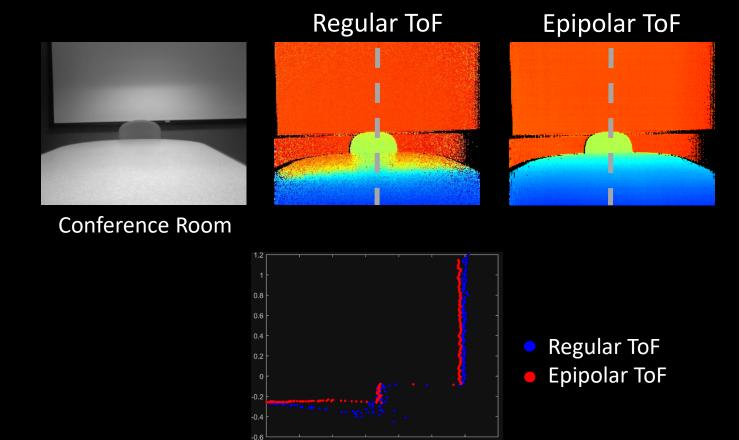
Epipolar ToF @ 30MHz



Epipolar ToF and Global Illumination

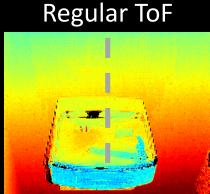


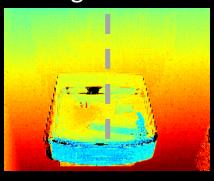
Epipolar ToF and Global Illumination

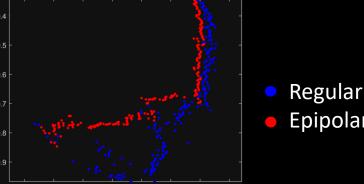


Epipolar ToF and Global Illumination

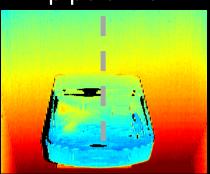
Water Fountain





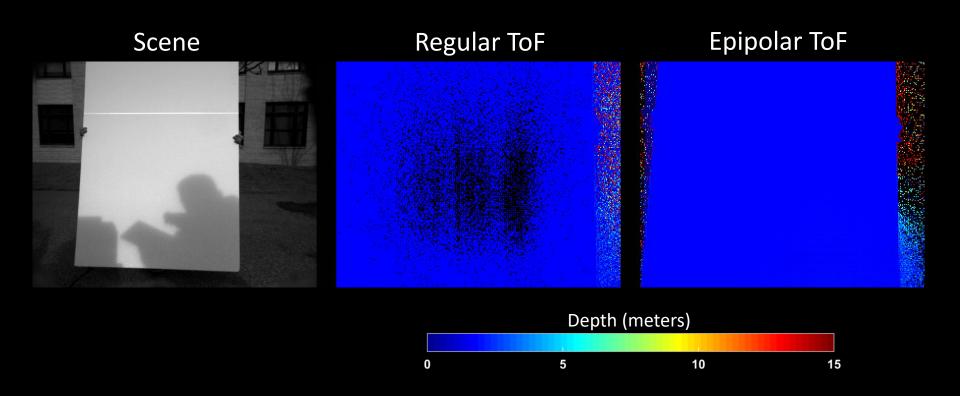


Epipolar ToF

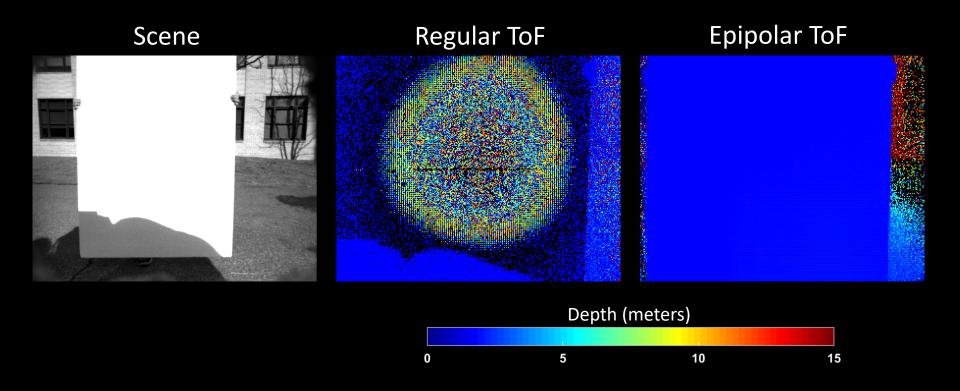


- Regular ToF
- **Epipolar ToF**

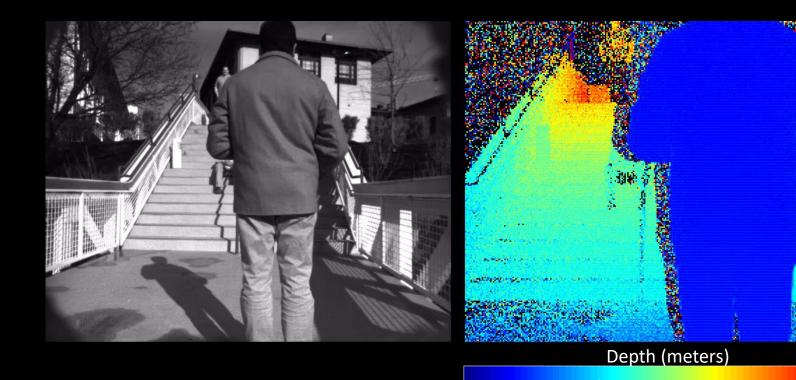
Outdoors (Cloudy – 10 kilolux)



Outdoors (Sunny – 70 kilolux)



Outdoors (Sunny – 70 kilolux)



References

Basic reading:

- Sloan et al., "Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments," SIGGRAPH 2002.
- Ng et al., "All-frequency shadows using non-linear wavelet lighting approximation," SIGGRAPH 2003.
- Seitz et al., "A theory of inverse light transport," ICCV 2005.
 - These three papers all discuss the concept of light transport matrix in detail.
- Debevec et al., "Acquiring the reflectance field of a human face," SIGGRAPH 2000.
 - The paper on image-based relighting.
- O'Toole and Kutulakos, "Optical computing for fast light transport analysis," SIGGRAPH Asia 2010. The paper on eigenanalysis and optical computing using light transport matrices.
- Sen et al., "Dual photography," SIGGRAPH 2005.
 - The dual photography paper.
- O'Toole et al., "Primal-dual coding to probe light transport," SIGGRAPH 2012.
- O'Toole et al., "3d shape and indirect appearance by structured light transport," CVPR 2014.
- These two papers introduce the concepts of light transport probing and epipolar probing, as well as explain how to use primal-dual coding to achieve them.
- O'Toole et al., "Homogeneous codes for energy-efficient illumination and imaging," SIGGRAPH 2015.

 This paper shows how to efficiently implement epipolar imaging with a simple projector and

camera.

- Achar et al., "Epipolar time-of-flight imaging," SIGGRAPH 2017.
 - This paper combines epipolar imaging and time-of-flight imaging.

Additional reading:

- Peers et al., "Compressive light transport sensing," TOG 2009.
- Wang et al., "Kernel Nyström method for light transport," SIGGRAPH 2009.
- These two papers discuss alternative ways for efficient acquisition of the light transport matrix, using assumptions on its algebraic structure.