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Course announcements

• Homework 6 has been posted.
- Due on Friday, December 11th.
- Make sure to re-download (no changes to writeup, but removed 
an erroneous source file).

• If you have not yet scheduled a project checkpoing meeting, please do 
so ASAP.

• Suggest topics for Friday’s reading group.
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Computational photography talk next week
• Speaker: Noah Snavely
• Time: Tuesday December 8th, 11:00 AM - noon ET.
• Zoom: see Piazza.
• Title: The Plenoptic Camera

• Abstract: Imagine a futuristic version of Google Street View that could dial up any possible 
place in the world, at any possible time. Effectively, such a service would be a recording of the 
plenoptic function—the hypothetical function described by Adelson and Bergen that captures 
all light rays passing through space at all times. While the plenoptic function is completely 
impractical to capture in its totality, every photo ever taken represents a sample of this 
function. I will present recent methods we've developed to reconstruct the plenoptic function 
from sparse space-time samples of photos—including Street View itself, as well as tourist 
photos of famous landmarks. The results of this work include the ability to take a single photo 
and synthesize a full dawn-to-dusk timelapse video, as well as compelling 4D view synthesis 
capabilities where a scene can simultaneously be explored in space and time.

• Bio: Noah Snavely is an associate professor of Computer Science at Cornell University and 
Cornell Tech, and also a researcher at Google Research. Noah's research interests are in 
computer vision and graphics, in particular 3D understanding and depiction of scenes from 
images. Noah is the recipient of a PECASE, a Microsoft New Faculty Fellowship, an Alfred P. 
Sloan Fellowship, and a SIGGRAPH Significant New Researcher Award.
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Overview of today’s lecture

• Leftover from time-of-flight imaging.

• Direct and global illumination.

• Direct-global separation using high-frequency illumination.

• Back to structured light.
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Slide credits

These slides were directly adapted from:

• Shree Nayar (Columbia).
• Matthew O’Toole (CMU).
• Supreeth Achar (Google, formerly CMU).
• Mohit Gupta (Wisconsin).
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Direct and global illumination
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Easy to separate in a renderer

=

full image direct

+

global

8



Direct-global separation using high-
frequency illumination
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High Frequency Illumination Pattern
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High Frequency Illumination Pattern
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Important insight:

• Global illumination is approximately invariant to high-frequency lighting.

• You can think of global illumination effects as a low-pass filter.
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High Frequency Illumination Pattern
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What does approximate invariance mean in this case?
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Other Global Effects:  Subsurface Scattering
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Other Global Effects:  Volumetric Scattering
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Scene

Direct Global
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V-Grooves:  Diffuse Interreflections

Direct Global

concave convex

Psychophysics:
Gilchrist 79, Bloj et al. 04
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Real World Examples:

Can You Guess the Images?
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Eggs:  Diffuse Interreflections

Direct Global
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Wooden Blocks:  Specular Interreflections

Direct Global
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Novel Images
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Photometric Stereo using Direct Images
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Variants of Separation Method

• Shadow of Line Occluder

• Shadow of Mesh Occluders

• Coded Structured Light

• Shifted Sinusoids
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Stick

Building Corner

Shadow

minLLg =

direct global

,minmax LLLd −=

3D  from Shadows:
Bouguet and Perona 99
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Direct Global

Building Corner
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Shower Curtain: Diffuser

Shadow

Mesh

minLLg =

direct global

,minmax LLLd −= β β

29



Direct Global

Shower Curtain: Diffuser
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Kitchen Sink:  Volumetric Scattering

Direct Global

Volumetric Scattering:
Chandrasekar 50,  Ishimaru 78 
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Peppers:  Subsurface Scattering

Direct Global
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Real or Fake ?
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Tea Rose Leaf

Direct Global

Leaf Anatomy: Purves et al. 03
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Translucent Rubber Balls

Direct Global
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Marble:  When BSSRDF becomes BRDF

Subsurface Measurements:
Jensen et al. 01, Goesele et al. 04 
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Hand

Direct Global

Skin: Hanrahan and Krueger 93,
Uchida 96, Haro 01, Jensen et al. 01,
Igarashi et al. 05, Weyrich et al. 05
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Separation from a Single Image
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Face

Direct Global

Sum
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Blonde Hair

Direct Global

Hair Scattering: Stamm et al. 77,
Bustard and Smith 91, Lu et al. 00
Marschner et al. 03
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Pebbles:  3D Texture

Direct Global
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Pink Carnation

GlobalDirect

Spectral Bleeding: Funt et al. 91
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Mirror Ball:  Failure Case

Direct Global
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Application to structured light
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Why is global illumination a problem?
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Bowl on a Marble Slab
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Issues due to global illumination effects

Strong Inter-reflections

Low-frequency pattern

Blurring due to 
Sub-surface Scattering

High-frequency pattern
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3D Visualizations: State of the Art

Conventional Gray 
(11 images)

Modulated Phase-Shifting
(162 images)

Errors due to 
interreflections

Errors due to 
sub-surface scattering 

52



V-Groove Scene
Inter-reflections
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Conventional Gray codes

Low frequency pattern

Captured Image

Inverse Pattern

Captured Image

Pattern 
Edge I = 0.16 I = 0.25 
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Binarization error

Incorrect Binarization

One (illuminated) Zero (not-illuminated)

Errors due to inter-
reflections

Ground-truth Binarization
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Low-frequency patterns

Captured Image Captured Image

Pattern 
Edge I = 0.16 I = 0.25 

I = Direct +   α . Global I = (1 – α) .  Global 

α ∼= 0,  Direct < Global =>    Ι < Ι
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High-frequency patterns

Pattern

Captured Image

Inverse Pattern

Captured Image
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I = Direct + 0.5 Global I = 0.5 Global > 
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Binary DecodingCaptured Image

High-frequency Patterns are Decoded Correctly
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Logical Coding and Decoding



Logical Coding and Decoding

XOR=
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Depth Map Comparison

Our XOR-04 Codes (11 images)Conventional Gray Codes (11 images)
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XOR of Second-last Pattern with Patterns 1-8   XOR-04 Codes 
(10 patterns)

Making the Logical XOR Codes

Conventional Gray Codes (10 patterns)

XOR of Last Pattern with Patterns 1-9   XOR-02 Codes (10 patterns)

Base PlaneBase Plane
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Ensemble of Codes for General Scenes

Conventional Gray (10 images) Max min-SW Gray (10 images)

XOR-04 (10 images) XOR-02 (10 images)
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Reconstructing General Scenes
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Ensemble of Codes for General Scenes

Conventional Gray (10 images) Max min-SW Gray (10 images)

XOR-04 (10 images) XOR-02 (10 images)

Return the 
consistent value

Ensemble of Codes (41 images)
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Conventional Gray 
(11 images)

Our Technique
(41 images)

Modulated Phase-Shifting
(162 images)

Shape Comparison
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Qualitative Light Transport Analysis

Inter-reflections      
(Both XOR codes agree)

Sub-surface Scattering 
(Both Gray codes agree)

All four codes agree

Error-Detection            
(all four codes different)
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Translucent Wax Candle

Modulated Phase-
Shifting (162 images)

Our Ensemble Codes 
(41 images)

Scene

Errors due to strong 
sub-surface scattering
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Modulated Phase-
Shifting (162 images)

Our Ensemble Codes 
(41 images)

Scene

Translucent Wax Object

Errors due to strong 
sub-surface scattering
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Ikea Lamp

Diffusion + 
Inter-reflections
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Depth-Map Comparison

Regular Gray Codes (11 images) Our Ensemble Codes (41 images)
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3D Visualization using our ensemble codes
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Shower Curtain

Diffusion + 
Inter-reflections

Goal is to reconstruct the shape of the shower-curtain. Shape of the curtain is planar 
because it was taped to the rod to avoid movement while capture. 
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Shape Comparisons

Phase-Shifting (18 images)Regular Gray Codes  (11 images)

Our XOR Codes (11 images)
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Fruit Basket: Multiple Effects

Sub-surface Scattering Inter-reflections
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Regular Gray (11 images) Phase-Shifting (18 images)

Depth-maps with previous state of the art
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Regular Gray (11 images) Modulated Phase-Shifting (162 images)

Depth-maps with previous state of the art
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Depth-maps with our Ensemble Codes

Our Ensemble Codes (41 images)
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3D Visualizations with our ensemble codes
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3D Visualization with our ensemble codes
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Bowls and Milk: Multiple Effects

Interreflections

Subsurface Scattering
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Phase-Shifting (18 images) Modulated Phase-Shifting (162 images)

Our XOR Codes (11 images)Regular Gray Codes (11 images)
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3D Visualizations with our ensemble codes
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Flower-Vase

Diffusion

Sub-surface Scattering
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Comparison

Phase-Shifting (18 images) Regular Gray Code (11 images)

Modulated Phase-Shifting (162 images) Our Ensemble Codes (41 images)
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Comparison

Phase-Shifting (18 images) Regular Gray Code (11 images)

Modulated Phase-Shifting (162 images) Our Ensemble Codes (41 images)
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Shape Using Ensemble Codes Wax Bowl

Multiple Global Illumination Effects
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Shape Using Ensemble Codes Deep Wax Container

Multiple Global Illumination Effects
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Lamp made of shiny brushed metal
Strong and high-frequency inter-reflections
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Regular Gray  (11 images) Our Ensemble Codes  (41 images)

Depth Map Comparison
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Application to time-of-flight imaging
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Interreflections and ToF Imaging
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Interreflections and ToF Imaging

phase error

Interreflections Produce Incorrect Phase

total radiance
direct radiance

time

sensor 
radiance

sensorsource

scene

93



Errors in Shape Recovery
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Multipath Interference: Existing Work

interreflections
direct radiance

time

sensor 
radiance

sensorsource

scene

How To Separate Different Components?

total radiance
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Interreflections vs. Modulation Frequency

scene
sensor

source
sensor 

radiance

interreflection
direct radiance

time
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For High Temporal Frequency         
Interreflection Component  is Constant

For High Temporal Frequency         
Interreflections Do Not Affect Phase
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Phase Ambiguity
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Unambiguous Depth Range: 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 1
2𝜔𝜔

𝜑𝜑(𝐵𝐵)𝜑𝜑(𝐴𝐴)

A B

97



Disambiguating Phase

A

sensor

source

B

high frequency 1

same phase
𝜑𝜑1(𝐴𝐴) 𝜑𝜑1(𝐵𝐵)

A

sensor

source

B

high frequency 2

different phases
𝜑𝜑2(𝐴𝐴) 𝜑𝜑2(𝐵𝐵)

Compute Phases at Two High Frequencies
[Jongenelen et al. 2010, 2011]
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Micro Time-of-Flight Imaging

Modulation Signals With Micro (Small) Periods

sensor

sourcehigh frequency 1

sensor

sourcehigh frequency 2

period 1 period 2
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Micro ToF Shifting: Two High Frequencies 
Four Measurements

Conventional ToF Shifting: One Low Frequency 
Three Measurements

Conventional vs. Micro ToF Imaging
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Simulations: Cornell Box

3.
0 

m

3.0 m

sensorsource

direct 
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interreflections
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Cornell Box: Input Images

957 MHz. 930 MHz.
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Cornell Box: Phase Maps

ambiguities

0 2π

957 MHz. 930 MHz.

ambiguities
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Cornell Box: Shape Comparison

conventional ToF imaging (10 MHz.)

Micro ToF imaging

ground truth

error = 1.0 meters

error = 0.6 meters

3 meters
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Scattering in Real World

Driving through a dust stormDriving through fog/mist

Images from: drivinglessonsedinburgh.blogspot.com, ngm.nationalgeographic.com
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Scattering and ToF Imaging
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Sphere: Shape Comparison

conventional ToF

ground 
truth

2 meters

error = 0.4 meters

error = 1.2 meters

Micro ToF

Depths UnderestimatedMicro ToF Achieves High Accuracy Shape
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𝐺𝐺 (global)

Direct-Indirect Separation

indirect (global)
(Interreflection)

direct 
radiance

total 
radiance

radiance

time

𝐷𝐷 (direct)
𝑂𝑂 (offset)

𝐴𝐴 (amplitude)

𝐷𝐷 = 2𝐴𝐴 𝐺𝐺 = 𝑂𝑂 − 𝐴𝐴

Direct-Global Separation Using Three Measurements

𝜑𝜑 (phase)
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Direct-Global Separation

Color Bleeding due to 
Interreflections 

Direct Component Global Component (x2)
Direct Component Global Component (x2)
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light source 
(bank of laser diodes)

sensor
(PMD CamBoard Nano)

Experimental Setup

Maximum System Modulation Frequency = 125 MHz.
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Experiments: V-Groove
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Scene Images Captured By PMD Sensor

apex angle = 45o apex angle = 60o apex angle = 90o

image resolution = 120 x 165
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Reconstructed Shape using Micro ToF

concave 
edge
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Shape Comparisons

ground truth

Micro ToF [proposed] 
mean error = 2.8 mm

conventional ToF
mean error = 86.6 mm

45o
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Reconstructed Shapes: Different Angles

𝜃𝜃 = 60°

concave 
edge

𝜃𝜃 = 90°

concave 
edge
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Shape Comparisons

conventional ToF
mean error = 69.8 mm

ground truth

Micro ToF
mean error = 6.7 mm

60o 90o

ground truth

Micro ToF
mean error = 6.2 mm

conventional ToF
mean error = 56.9 mm
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Recovered Shape vs. Frequency

45o
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Direct-Global Separation Vs. Apex Angle
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How High Should The Frequency Be?
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Technology (Devices) Required

103 m 101 m 10-1 m 10-3 m

M
at

er
ia

l P
ro

pe
rt

y 
(In

cr
ea

sin
g 

Sm
oo

th
ne

ss
)

Geometric Scale (Decreasing Scene Size)

Available 
Off-the-Shelf

PMD Camboard Nano
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Technology (Devices) Required

103 m 101 m 10-1 m 10-3 m

M
at

er
ia

l P
ro

pe
rt

y 
(In

cr
ea

sin
g 

Sm
oo

th
ne

ss
)

Geometric Scale (Decreasing Scene Size)

Available 
Off-the-Shelf

Sensors/Sources 
in Research Labs

GHz. MSM Sensor
Buxbaum et. al.

2002

GHz. LED
Chen et. al.

1999

121



Technology (Devices) Required
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References
Basic reading:
• Nayar et al., “Fast separation of direct and global components of a scene using high frequency 

illumination,” SIGGRAPH 2004.
The paper on separation of direct and global illumination using high-frequency 
illumination.

• Gupta et al., “A Practical Approach to 3D Scanning in the Presence of Interreflections, 
Subsurface Scattering and Defocus,” IJCV 2013. 

The paper on using XOR codes to deal with global illumination in structured light 3D.
• Gupta et al., “Phasor imaging: A generalization of correlation-based time-of-flight imaging,” 

TOG 2015. 
The paper on using high-frequency modulation to deal with interreflections and MPI in 
CW-ToF imaging.

Additional reading:
• Seitz et al., “A theory of inverse light transport,” ICCV 2005.

This early paper shows a way to exactly decompose light transport by number of 
bounces, under certain assumptions for the imaged scene.

• Chandraker et al., “On the duality of forward and inverse light transport,” PAMI 2011.
• Reddy et al., “Frequency-space decomposition and acquisition of light transport under spatially 

varying illumination,” ECCV 2012.
These two papers have additional analysis about the relationship between direct and 
global illumination and illumination frequency.
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