Two-view geometry

15-463, 15-663, 15-862
Computational Photography
http://graphics.cs.cmu.edu/courses/15-463 Fall 2020, Lecture 19



Course announcements

* Homework 5 is due today.
- Any questions?

« Homework 6 will be posted tonight.
- Start early: Capturing structured light stereo is challenging.



Overview of today’s lecture

Leftover from cameras.
Triangulation.

Epipolar geometry.
Essential matrix.
Fundamental matrix.

8-point algorithm.



Overview of today’s lecture

Leftover from cameras.
Triangulation.

Epipolar geometry.
Essential matrix.
Fundamental matrix.

8-point algorithm.



Slide credits

Many of these slides were adapted from:

e Kris Kitani (16-385, Spring 2017).
e Srinivasa Narasimhan (16-720, Fall 2017).
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Triangulation

image 1 image 2

Given

>

camera 1 with matrix P camera 2 with matrix P"




Triangulation

Which 3D points map
to x?

image 1 image 2

camera 1 with matrix P camera 2 with matrix P"



Triangulation

How can you compute
this ray?

image 1 image 2

camera 1 with matrix P camera 2 with matrix P"



Triangulation

Create two points on the ray:

1) find the camera center; and

2) apply the pseudo-inverse of P on x.
Then connect the two points.

This procedure is called backprojection

image 1

camera 1 with matrix P

P

xr

Why does this
point map to x?

image 2

camera 2 with matrix P;
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Triangulation

How do we find the
exact point on the ray? P+93

image 1

camera 1 with matrix P

image 2

camera 2 with matrix Pf
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Triangulation

Find 3D object point

Will the lines intersect?

image 1 image 2

C!

. . /
camera 1 with matrix P camera 2 with matrix P
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Triangulation

Find 3D object point

(no single solution due to noise)

image 1 image 2

C!

. . /
camera 1 with matrix P camera 2 with matrix P
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Triangulation

Given a set of (noisy) matched points

{‘T’E! 1}

and camera matrices

P.P

Estimate the 3D point

X

14



X =PX

known known

Can we compute X from a single
correspondence x?
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x =PX

(homogeneous
coordinate)

This is a similarity relation because it involves homogeneous coordinates

x = aPX
ooranate)
Same ray direction but differs by a scale factor
_ . _ - X
L P1 P2 P3 P4 %
y | =« Pps Pe Pr D8 7
| <] P9 Pio P11 P12 | 1

How do we solve for unknowns in a similarity relation?
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x =PX

(homogeneous
coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

x=aoaPX
" ooranate)
Same ray direction but differs by a scale factor
_ . _ - X
L P1 P2 P3 P4 %
y | =« Pps Pe Pr D8 7
| <] P9 Pio P11 P12 | 1

How do we solve for unknowns in a similarity relation?
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Linear algebra reminder: cross product

Vector (cross) product
takes two vectors and returns a vector perpendicular to both

c=aXxb -@263—{13b2-
aXxXb= ﬁgbl—albg
G_',lbg —{Igbl

cross product of two vectors in
the same direction is zero vector

axa=~_

remember this!!!
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Linear algebra reminder: cross product

Cross product

i {1263 — (1362 |
aXxXb= {Igbl—albg,
i aibs — azb, i

Can also be written as a matrix multiplication

0 —asg a- bl
ﬂ,Xb:[a]be as 0 —a1q bg
i — a9 a1 0 1 L bg i

Skew symmetric



Compare with: dot product

le=axb

-

a

c-a=>0 cb

|
-



Back to triangulation

X = aPX

Same direction but differs by a scale factor

How can we rewrite this using vector products?
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X = aPX

Same direction but differs by a scale factor

xXPX =0

Cross product of two vectors of same direction is zero
(this equality removes the scale factor)
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Do the same after first
expanding out the camera
matrix and points

—

o O

e’



Using the fact that the cross product should be zero

xXPX =0

) yp3X pérX 1 [0]
p1X—$pX =0
$P2X lelx _0_

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you quuations

24



Using the fact that the cross product should be zero

xXPX =0

i yp3X pérX 1 [0
p1X—$pX =0
$P2X lelx _0_

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations
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yng pérX
P1X_33P X

-

-

-

Remove third row, and yp?, p2 X

rearrange as system on

unknowns pl —_ $p3

-

Now we can make a system of linear equations
(two lines for each 2D point correspondence)




Two rows from camera one

Two rows from camera two

I'T A
D7 — TIP3

Concatenate the 2D points from both images

yp3 — Py
p{ —Zp3
y'ps' — ph

X

sanity check! dimensions?

AX =0

How do we solve homogeneous linear system?

o OO O
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I'T A
 P1 — T Pj3

Concatenate the 2D points from both images

yp3 — Py
p{ —Zp3
y'ps' — ph

AX =0

o OO O

How do we solve homogeneous linear system?

S VD
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Epipolar geometry



Epipolar geometry

7 Baseline e

Epipole

(projection of 0" on the image plane)
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Epipolar geometry

p

Epipolar plane

K Baseline &
Image plane

Epipole

(projection of 0" on the image plane)
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Epipolar geometry

Epipolar line =
(intersection of Epipolar
plane and image plane)

p

Epipolar plane

Baseline e

Image plane Epipole
(projection of 0" on the image plane)
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Quiz

p

What is this?
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Quiz

p

Epipolar plane
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What is this?

Quiz

p

Epipolar plane
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Epipolar line =
(intersection of Epipolar
plane and image plane)

Quiz

p

Epipolar plane
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Epipolar line
(intersection of Epipolar
plane and image plane)

Quiz

p

Epipolar plane

What is this?
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Quiz

Epipolar line =
(intersection of Epipolar
plane and image plane)

p

Epipolar plane

Epipole

(projection of 0" on the image plane)
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Quiz

Epipolar line =
(intersection of Epipolar
plane and image plane)

p

Epipolar plane

€ What is this?

Epipole

(projection of 0" on the image plane)
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Quiz

Epipolar line =
(intersection of Epipolar
plane and image plane)

p
Epipolar plane
Baseline

Epipole

(projection of 0" on the image plane)
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Epipolar constraint

Backproject & to a
ray in 3D '
h Epipolar ling =
\ (intersection of Epipolar
plane and image plane)

Another way to construct the epipolar plane, this time given &
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Epipolar constraint

\

Potential matches for & lie on the epipolar line '~
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lf
T, 1 '
/‘\ ) g /\o’
The point x (left image) maps to a in the right image
The baseline connects the and
An epipolar line (left image) maps to a In the right image
An epipole e is a projection of the on the image plane

All epipolar lines in an image intersect at the




Converging cameras

Where is the epipole in this image?
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Converging cameras

here!

Where is the epipole in this image? It's not always in the image
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Parallel cameras

Where is the epipole?
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Parallel cameras

epipole at infinity
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The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

g J1F -
1 E < ]

Left image Right image

How would you do it?
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Epipolar constraint

\

Potential matches for & lie on the epipolar line '~



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line
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The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

How do you compute the epipolar line?
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The essential matrix



Recall:Epipolar constraint

Potential matches for & lie on the epipolar line 7



Given a point in one image,
multiplying by the essential matrix will tell us
the epipolar line in the second view.
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\Viotivation

The Essential Matrix is a 3 x 3 matrix that
encodes epipolar geometry

Given a point in one image,
multiplying by the essential matrix will tell us
the epipolar line in the second image.
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Repres

EpIPO

ar +by+c=20

enting the ...

in vector form

ar Line

[ —

a
b

C

If the point & is on the epipolar line [ then
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Epipolar Line

ar +by+c=20

in vector form l —

a
b

C

If the point & is on the epipolar line [ then

x'l=0
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/
soit 2'Tl'=0ad Ex =1 then

" EBx = ?

X
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/
soit 2'Tl'=0ad Ex =1 then

' "Ex =0

X
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Essential Matrix vs Homography

What’s the difference between the essential matrix and a homography?



Essential Matrix vs Homography

What’s the difference between the essential matrix and a homography?
They are both 3 x 3 matrices but ...

l! = Ex r' = Hax

Essential matrix maps a Homography maps a
point to a line point to a point
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Where does the essential matrix come from?
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' =R(x

Does this look familiar?
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' =R(x

Camera-camera transform just like world-camera transform
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These three vectors are coplanar

z, t,x
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If these three vectors are coplanar ¢, t? :B’then

' (txx)= 7
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70

If these three vectors are coplanar ¢, t? :B’then

' (txx)=0

dot product of orthogonal vectors cross-product: vector orthogonal to plane



If these three vectors are coplanar ¢, t? :B’then

(x—t)' (txx)= 7
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If these three vectors are coplanar ¢, t? :B’then

(x—t) (txx)=0
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putting It together

rigid motion coplanarity

' =R(x —t) (x—t) (txx)=0

(' "R)(t x z) =0



putting It together

rigid motion coplanarity

' =R(x —t) (x—t) (txx)=0

('"R)(tx x) =0

use skew-symmetric matrix 1T o
to represent cross product (:I: R) ([t X]m) =0



putting It together

rigid motion coplanarity

' =R(x —t) (x—t)"(txx)=0
(' "R)(t x z) =0
(@' R)([tx]z) =0
' (Rlty])z =0



putting It together
rigid motion coplanarity
' =R(x —t) (x—t)"(txx)=0

(' "R)(t x z) =0
(@' R)([tx]z) =0
' (Rlty])z =0

' "Ex =0



putting It together

rigid motion coplanarity

' =R(x —t) (x—t)"(txx)=0
(' "R)(t x z) =0
(@' R)([tx]z) =0
' (Rlty])z =0

Essential Matrix

IT _
xr Ex =0 [Longuet-Higgins 1981]




properties of the E matrix

(2D points expressed in camera coordinate system)
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(2D points expressed in camera coordinate system)




properties of the E matrix

(2D points expressed in camera coordinate system)




81

Given a point in one image,
multiplying by the essential matrix will tell us
the epipolar line in the second view.

Assumption:
2D points expressed in camera coordinate system (i.e., intrinsic matrices are identities)



How do you generalize
to non-identity Intrinsic
matrices”



The fundamental matrix



The
fundamental matrix
IS a
generalization
of the
essential matrix,
where the assumption of
Identity matrices
IS removed
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2 "Eg =0

The essential matrix operates on image points expressed in
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Af o~
2 "Ex =0

The essential matrix operates on image points expressed in
2D coordinates expressed in the camera coordinate system

Writing out the epipolar constraint in terms of image coordinates

K- "EK 'z =0
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Same equation works in image coordinates!

' Fe =0

It maps pixels to epipolar lines
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properties of thesE matrix

(points in image coordinates)



Breaking down the fundamental matrix

F=K "EK!
F=K [t | RK™!

Depends on both intrinsic and extrinsic parameters
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Breaking down the fundamental matrix

F=K "EK!
F=K [t | RK™!

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

/T _
z,, Fzr, =0
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The 8-point algorithm



Assume you have M matched image points

{Xm, 2} m=1,...,.M

Each correspondence should satisty

2 _
z Fx, =0

How would you solve for the 3 x 3 F matrix?

92



Assume you have M matched image points

{Xm, 2} m=1,...,.M

Each correspondence should satisty

2 _
z Fx, =0

How would you solve for the 3 x 3 F matrix?

S V. D

93



Assume you have M matched image points

{Xm, 2} m=1,...,.M

Each correspondence should satisty

2 _
z Fx, =0

How would you solve for the 3 x 3 F matrix?

Set up a homogeneous linear system with 9 unknowns

94



2 _
z, Fx, =0

| fi f2 f3 ) Lm
oz, ym 1| fa fs S Ym | =0
fr fs fo || 1

How many equation do you get from one correspondence?



- fi f2 fa
T Ym 1| o S5 fo
7 fs fo

ONE correspondence gives you ONE equation

TmTh f1 + Tm¥Yl f2 + Tm f3+
YmZom f4 + YmYin 5 + Ym fo+

u’U;nf? y;nfs

fo=0
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- fi

[ﬂ'f';n, Yrn 1] fa
7

Set up a homogeneous linear system with 9 unknowns

/ / /
1Ty 11 X1 Y11

! ! ! ! ! !
TMTh TMYy TM YMTy YMmYy Ym Thy Y 1]

fa 13
fs fe
fs  fo

(751 yi Y1

zy oy 1

How many equations do you need?

fi
f2
/3
fa
f5
fe
f7
/s
| fo

97



Each point pair (according to epipolar constraint)
contributes only one scalar equation

Al _
z,, Fx, =0

Note: This is different from the Homography estimation where
each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

98



How do you solve a homogeneous linear system?

AX =0
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100

How do you solve a homogeneous linear system?

AX =0

Total Least Squares
minimize  ||Az|?

subjectto ||z[[* =1



101

How do you solve a homogeneous linear system?

AX =0

Total Least Squares
minimize HA::::H2

subjectto  ||z||* =

SVD'



Eight-Point Algorithm

0. (Normalize points)

1. Construct the M x 9 matrix A

2. Find the SVD of A

3. Entries of F are the elements of column of V
corresponding to the least singular value

4. (Enforce rank 2 constraint on F)

5. (Un-normalize F)
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Eight-Point Algorithm

0. (Normalize points)

1. Construct the M x 9 matrix A

2. Find the SVD of A

3. Entries of F are the elements of column of V
corresponding to the least singular value

4. (Enforce rank 2 constraint on F)

5. (Un-normalize F) \ See Hartley-Zisserman
for why we do this
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5. (Un-normalize F) \ How do we do this?



Eight-Point Algorithm

0. (Normalize points)

1. Construct the M x 9 matrix A

2. Find the SVD of A

3. Entries of F are the elements of column of V
corresponding to the least singular value

4. (Enforce rank 2 constraint on F)

5. (Un-normalize F) \ How do we do this?

SVD!




106

Enforcing rank constraints

Problem: Given a matrix F, find the matrix F’ of rank k that is closest to F,
min ||F — F'||?
F/
rank(F')=k
Solution: Compute the singular value decomposition of F,
F=UzyT
Form a matrix 2" by replacing all but the k largest singular values in Z with O.

Then the problem solution is the matrix F’ formed as,

F' =Ux'vT



Eight-Point Algorithm

0. (Normalize points)

1. Construct the M x 9 matrix A

2. Find the SVD of A

3. Entries of F are the elements of column of V
corresponding to the least singular value

4. (Enforce rank 2 constraint on F)

5. (Un-normalize F)
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InNes

ar |l

epIipo
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- —0.00310695 —0.0025646  2.96584
F = —0.028094 —0.00771621 56.3813
- 13.1905 —29.2007  —9999.79
[ 343.53 |
- = | 221.70
10
! = Fx
- 0.0295
— 0.9996

| —265.1531




Fx

0.0295
0.9996
| —265.1531
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Where Is the epipole?

How would you compute it?
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Fe=0

The epipole is in the right null space of F

How would you solve for the epipole?
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The epipole is in the right null space of F

How would you solve for the epipole?

SVD!



References

Basic reading:
e Szeliski textbook, Section 8.1 (not 8.1.1-8.1.3), Chapter 11, Section 12.2.
* Hartley and Zisserman, Section 11.12.
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