Photometric stereo

15-463, 15-663, 15-862
Computational Photography
http://graphics.cs.cmu.edu/courses/15-463 Fall 2020, Lecture 18



Course announcements

« Homework assignment 5 is due on November 16,
- Large bonus component.
- Make sure to start early, as photometric stereo data acquisition is tricky:.

 Final project logistics:
- Final project presentations scheduled for December 17,
- [ will email those of you needing equipment separately for pickups, starting
tomorrow.



Overview of today’s lecture

» Light sources.

« Some notes about radiometry.

* Photometric stereo.

* Uncalibrated photometric stereo.

« (Generalized bas-relief ambiguity.



Slide credits

Many of these slides were adapted from:

« Srinivasa Narasimhan (16-385, Spring 2014).
« Todd Zickler (Harvard University).

« Steven Gortler (Harvard University).

« Kayvon Fatahalian (Stanford University; CMU 15-462, Fall 2015).
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“Physics-based” computer vision
(a.k.a “inverse optics”)
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Lighting models: Plenoptic function

 Radiance as a function of
position and direction

 Radiance as a function of
position, direction, and time

» Spectral radiance as a function
of position, direction, time and
wavelength
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Fig.1.3

The plenoptic function describes the information available to
an observer at any point in space and time. Shown here are two
schematic eyes-which one should consider to have punctate
pupils-gathering pencils of light rays. A real observer cannot
see the light rays coming from behind, but the plenoptic

function does include these rays.

e

[Adelson and Bergen, 1991]



Lighting models: far-field (or directional) approximation

« Assume that, over the observed region of interest, all source of incoming
flux are relatively far away

L(x,w,t,\) — L(w,t, \)
L(z,w) — L(w)

radiange Only depends on
dirgction; not location % %
% % ignores Close

ter-reflections

[Debevec, 1998]



Application: augmented reality

light probe

-

[Debevec, 1998]
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Application: augmented reality

(g) Final result with differential rendering

.
(b) Camera calibration grid and light probe

[Debevec, 1998]
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Application: augmented reality

http://gl.ict.usc.edu/LightStages/
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Application: augmented reality

ios Overview iPhone X iPad Machine Learning Augmented Reality

Discover
SEND FEEDBACK

Introducing ARKit S ARCore Overview

Fundamental Concepts

iOS 11 introduces ARKit, a new framework that allows you to easily
create unparalleled augmented reality experiences for iPhone and
iPad. By blending digital abjects and information with the
environment around you, ARKit takes apps beyond the screen,
freeing them to interact with the real world in entirely new ways.

ARCore is a platform for building augmented reality apps on Android.
ARCore uses three key technologies to integrate virtual content with the
real world as seen through your phone's camera:

¢ Motion tracking allows the phone to understand and track its
position relative to the world.

¢ Environmental understanding allows the phone to detect the size
and location of flat horizontal surfaces like the ground or a coffee
table.

¢ Light estimation allows the phone to estimate the environment's
current lighting conditions.

Watch "Introducing ARKit: Augmented Reality for iOS" »

From WWDC17

[https://developer.apple.com/arkit/] [https://developers.google.com/ar/]



https://developers.google.com/ar/
https://developer.apple.com/arkit/

Lighting models: far-field approximation

TABLE OF LIGHT PROBES:

HDR {T.3MB)
EXR [7.9MB)
Diffuse comoalutlon

HDR [14ME])
EXR (16ME)
Diffuse comalutlon

HDR [S4MEB)
EXR (&1ME])
Diffuse comoalution

HDR [4.3MB)
EXR [4.5MB)
Diffuse comolutlon

HDR [20MEB)
EXR (Z2MBE)
Diffuse comoalution

HDR [ZZMBE)
EXR [19MB)
Diffuse comolutlon

o One can download far-field
lighting environments that
have been captured by
others

[http://gl.ict.usc.edu/Data/HighResProbes/]

o A number of apps and
software exist to help you
capture capture your own
environments using a light
probe

]
~—N

Figure 6. To produce the equal-area cylindrical projection of a
spherical map, one projects each point on the surface of the
sphere horizontally outward onto the cylinder, and then unwraps
the cylinder to obtain a rectangular “panoramic” map.
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http://gl.ict.usc.edu/Data/HighResProbes/%5d

Application: inferring outdoor illumination

”H'

From a single image (left), we estimate the most likely sky appearance (middle) and insert a 3-D object
(right). lllumination estimation was done entirely automatically.

[Lalonde et al., 2009]
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A further simplitication:
Low-frequency illumination

First nine basis
functions are sufficient
for re-creating
Lambertian
appearance

[Ramamoorthi and Hanrahan, 2001; Basri and Jacobs, 2003]
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Low-frequency illumination

.

Fig. 2. On the left, a white sphere illuminated by three directional (distant point) sources of light. All the lights are parallel to the image plane, one
source illuminates the sphere from above and the two others illuminate the sphere from diagonal directions. In the middle, a cross-section of the
lighting function with three peaks corresponding to the three light sources. On the right, a cross-section indicating how the sphere reflects light. We
will make precise the intuition that the material acts as a low-pass filtering, smoothing the light as it reflects it.
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Figure 3. Plot of spherical harmonic terms in
Lambertian BRDF filter.

[Ramamoorthi and Hanrahan, 2001; Basri and Jacobs, 2003]
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Low-frequency illumination

L(w) = Zam(w)

\/ Truncate to first 9 terms

—

£=(b1,...,0)

[Ramamoorthi and Hanrahan, 2001; Basri and Jacobs, 2003]
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Capture light probe

Application: Trivial rendering

Rendering a (convex) diffuse object in this
environment simply requires a lookup based on the
surface normal at each pixel

Low-pass filter (truncate

to first nine SHs)
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White-out: Snow and Overcast Skies

CAN’ T perceive the shape of the snow covered terrain!

CAN perceive shape in regions
lit by the street lamp!!

WHY?
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Diffuse Reflection from Uniform Sky

Lsurface (9’, 7 ¢r ) —

T wl2

[ [L7(0.6)/(0.4:6,.4)cos6,sin0.d0,d¢,

-7 0

* Assume Lambertian Surface with Albedo = 1 (no absorption)

£(0:0,.4,) =

T

* Assume Sky radiance is constant

Radiance of any patc

L6, ¢)="L"

Substituting in above Equation:

Lsui”face ( er , ¢,, ) _ LSky

N is the same as Sky radiance !! (white-out condition)



—ven simpler:
Directional lighting

« Assume that, over the observed region of interest, all source of incoming
flux is from one direction

L(z,w,t,A\) — L(z,t,\) — s(t, A\)d(w = w,(t))
L(z,w) — L(w) — sd(w = &)

o Convenient representation

. 7
E — (ijgngz) “light direction” _£ — = = N

1£]]

“light strength” HEH = S
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Simple shading

ASSUMPTION 1: ASSUMPTION 2:

LAMBERTIAN @ DIRECTIONAL LIGHTING
\i s
Ebi;

g ) /’%\\Q
LI —an ' £ < }
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“N-dot-I" shading

ASSUMPTION 1: ASSUMPTION 2:

LAMBERTIAN @ DIRECTIONAL LIGHTING
\i s
Ebi;

=N

g ~ /’%\\\

Lmlt (L:J) = / f(f-:’in; u’)out)Li“(d‘:in) COS einda’in
Qiﬂ

[=an'f <
I=an'f

ﬁ.f\md\x(/v\“r(, O)




An ideal point light source

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4‘
I‘

Think of this as a spatially-varying directional
source where
1. the direction is away from x_o
2. the strength is proportional to 1/(distance)*2
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Summary of some useful lighting models

 plenoptic function (function on 5D domain)

« far-field illumination (function on 2D domain)

* low-frequency far-field illumination (nine numbers)

« directional lighting (three numbers = direction and strength)

 point source (four numbers = location and strength)
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Some notes about
radiometry



What about color?
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Spectral radiance

 Distribution of radiance as a function of wavelength.
+ All of the phenomena we described in this lecture can be extended to take into

account color, by considering separate radiance and BRDF functions independently
for each wavelength.

ks(A) km(A) k(D)

retinal color Cs = / ks (AN | [
_ ——
C(E(A)) T (cS? Cm, Cl i —/A—
B ——
\0\_ » LMS senstivity functions

ey @ [Fle Y L1
M]/\\t 2\ = r(\e(N)

spectral radiance

r(A)]

A
spectral reflectance

AN

. . A
lluminant spectrum




Spectral radiance

 Distribution of radiance as a function of wavelength.
+ All of the phenomena we described in this lecture can be extended to take into

account color, by considering separate radiance and BRDF functions independently
for each wavelength.

Does this view of color ignore any important phenomena?

30



Spectral radiance

 Distribution of radiance as a function of wavelength.
+ All of the phenomena we described in this lecture can be extended to take into

account color, by considering separate radiance and BRDF functions independently
for each wavelength.

Does this view of color ignore any important phenomena?
Things like fluorescence and any other phenomena where light changes color.
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Spectral Sensitivity Function (SSF)

* Any light sensor (digital or not) has different sensitivity to different wavelengths.
* This is described by the sensor’s spectral sensitivity function

»  When measuring light of a some SPD  ®(\), the sensor produces a scalar f(A)
response:

light SPD  sensor SSF

/o
esponse > £ = X D(A) f(A)dA

Weighted combination of light's SPD: light contributes more
at wavelengths where the sensor has higher sensitivity.

The spectral sensitivity function converts radiometric units (radiance, irradiance) defined
per wavelength, to radiometric quantities where wavelength has been averaged out.



Radiometry versus photometry

® All radiometric quantities have
equivalents in photometry

®  Photometry: accounts for

to electromagnetic radiation

®  Luminance (Y) is photometric
quantity that corresponds to
radiance: integrate radiance over
all wavelengths, weight by eye’s
luminous efficacy curve, e.g.:

0E

response of human visual system y/()..|

0.4

03

- Dark adapted
- eye (scoptic)

eye (photoptic)

O\

fop e =

Daytime adapted |

L I 1 i
400 450 S00 550 BO0 B50 700

A (nm)

Y(p,w) = /ODO L(p,w, A) V(A)dA
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Radiometry versus photometry

Physics

Radiometry

Photometry

Energy

Radiant Energy

Luminous Energy

Flux (Power)

Radiant Power

Luminous Power

Flux Density

Irradiance (incoming)
Radiosity (outgoing)

llluminance (incoming)
Luminosity (outgoing)

Angular Flux Density

Radiance

Luminance

Intensity

Radiant Intensity

Luminous Intensity

34



Radiometry versus photometry

Photometry MKS (GS British
Luminous Energy Talbot Talbot Talbot
Luminous Power Lumen Lumen Lumen

IIIum'mar'lce Lux Phot Footcandle

Luminosity

: Nit, Apostlib, Stilb
Luminance Blondel Lambart Footlambert
Luminous Intensity Candela Candela Candela
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Modern LED light

Input power: 11 W

Output: 815 lumens
(~ 80 lumens / Watt)

Incandescent bulbs:
~15 lumens / Watt)

CREES \

soft white \

bo.

replacement
uses only 11 Watts

4FLOW:

=FILAMENT DESIGN —
LOOKS AND LIGHTS LIKE A LiGHT BULE

i
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Quiz 1: Measurement of a sensor using a thin lens

Lens aperture >

\6{
Sensor plane P

What integral should we write for the power measured by infinitesimal pixel p?

TLt,e) don

37



Quiz 1: Measurement of a sensor using a thin lens
A

Lens aperture

Sensor plane :

What integral should we write for the power measured by infinitesimal pixel p?

_ _ / /
Elp.t) = /@w cos & dw

Can | transform this integral over the hemisphere to an integral over the aperture area?
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Quiz 1: Measurement of a sensor using a thin lens

Lens aperture
Sensor plane >
What integral should we write for the power meas reé/by infinitesimal pixel p? .
y§aa) 147
v = "
E(p,t) = - cos 6/dw’ i -Oosp
L . ”(Q)Xp o) —

Transform integral over solid
angle to integral over lens
aperture
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Quiz 1: Measurement of a sensor using a thin lens

Lens aperture

Sensor plane

cos 0 cos 6’

E(p,t)/ L(p" = p,t) > dA’
A p” — |

cos? 0

/L(p'—>p,t) f > dA’
A p" —pl|

Can | write the denominator in a more convenient form?

Transform integral over solid

angle to integral over lens
aperture

Assume aperture and film
plane are parallel: 0 = 0’
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Quiz 1: Measurement of a sensor using a thin lens

Lens aperture ap’
d
F —
Ip" —pll = — )
Sensor plane
cos? 0
E(p,t)/L(p’%p;t) ——5 dA’
A Ip’ — p||

1
=5 L(p — D, t )@A’

What does this say about the image | am capturing?
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Vignetting

Fancy word for: pixels far off the center receive less light

L y;, -
white wall under uniform light more mterestlng example of V|gnett|ng

Four types of vignetting:

Mechanical: light rays blocked by hoods, filters, and other objects.

Lens: similar, but light rays blocked by lens elements.

Natural: due to radiometric laws (“cosine fourth falloft™).

Pixel: angle-dependent sensitivity of photodiodes.



Quiz 2: BR

What BRDF does the moon have?

DF of the moon
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Quiz 2:

SR

What BRDF does the moon have?

Can it be diffuse?

DF of the moon
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Quiz 2:

SR

What BRDF does the moon have?

e (Can it be diffuse?

Even though the moon
appears matte, its edges
remain bright.

DF of the moon

45




—

Rough diffuse appearance

Surface Roughness Causes Flat Appearance

— o —

Actual Vase [Lambertian Vase

46



Five important equations/integrals to remember

Flux measured by a sensor of area X and directional receptivity W:

(I)(I/V,X)zf/ L(w, x) cos 0dwdA
X Jw

Reflectance equation:
n:::-ut in
L f f wln’ wgut)L (wln) COS dewln

Radiance under d|rect|ona| lighting and Lambertian BRDF (“n-dot-| shading”):
L::::-ut_ {I,IITE

Conversion of a (hemi)-spherical integral to a surface integral:
cosf cos 6’

/ L;(p,w',t) cosf dw' / L(p" = p,t) = - dA’
H? A Ip’ —pl|

Computing (hemi)-spherical integrals:

da):ﬂ;:sinﬁdﬁd@ and Ida)::jjsinédﬂdgb
0 0

r

T2
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Photometric stereo
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Image Intensity and 3D Geometry

* Shading as a cue for shape reconstruction
* What is the relation between intensity and shape?



“N-dot-I" shading

ASSUMPTION 1:

50

ASSUMPTION 2:

=N

LAMBERTIAN @ DIRECTIONAL LIGHTING
\i s
Ebi;

N .

Lmlt (L:J) = / f(f-:’in; u’)out)Li“(d‘:in) COS einda’in
Qiﬂ

[=ah'f < %
| J

Why do we call these normal “shape”™?

TN




Surfaces and normals

imaged
surface

viewing rays for
different pixels

what is a camera
like this called?

51
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Surfaces and normals

imaged

\/ surface

viewing rays for
different pixels

orthographic
camera

Surface representation as a
depth field (also known as
Monge surface):

z=fxy)
A e

pixel coordinates
on image place

depth at each pixel

How does surface normal
relate to this representation?
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Surfaces and normals

imaged Surface representation as a
surface depth image (also known as
Monge surface):
z=f(xY)
A I

pixel coordinates
on image place

viewing rays for
different pixels

depth at each pixel

Unnormalized normal:

. df df
x  f(x,y) = X' dy’ 1

orthographic Actual normal:

camera Tl(x; y) — ﬁ(x’ y)/”ﬁ(x, Y)H

Normals are scaled spatial derivatives of depth image!




Shape from a Single Image”?

Given a single image of an object with known surface
reflectance taken under a known light source, can we
recover the shape of the object?

- —A
= ~ L

~— TTe—
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Human Perception
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Examples of the classic bump/dent stimuli used to test lighting assumptions when judging
shape from shading, with shading orientations (a) 0° and (b) 180° from the vertical.

Thomas R et al. J Vis 2010;10:6



Human Perception

» Our brain often perceives shape from shading.
* Mostly, it makes many assumptions to do so.

* For example:

Light is coming from above (sun).

Biased by occluding contours.

by V. Ramachandran



Single-lighting Is ambiguous

ASSUMPTION 1:

L AMBERTIAN @

Lmlt (L:J) = / f(f-:’in; u’)out)Li“(d‘:in) COS einda’in
Qiﬂ

N .

I=agh'f < %
| J

ASSUMPTION 2:
DIRECTIONAL LIGHTING

\\\ A/;(

=N

'////N\\
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Lambertian photometric stereo

4 —
I1 — a,'n.Tﬂl
Ig — aﬁ.ng <:j

Assumption: We know the lighting directions.
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Lambertian photometric stereo

e —
i

I1 = an -61

~T7

Ig = an £2

define “pseudo-normal” b £ an

solve linear system - - - ST T
I ¢
for pseudo-normal L
I , .
What are the
dimensions of | IN i
L TN _

these matrices?



Lambertian photometric stereo

e —
i

I1 = an -61

~T7

Ig = an £2

define “pseudo-normal” b £ an

solve linear system - _ - T T

I ¢
for pseudo-normal L

I , .

. = b |
What are the 3x1
knowns and | IN =T

Nx1 EN N3

unknowns? - -



Lambertian photometric stereo

e —
i

I1 = an -61

~T7

Ig = an £2

define “pseudo-normal” b £ an

solve linear system ~ - i ET ]
for pseudo-normal | 1 L
15 9 .
| S b |
How many lights . 3 >xd
N ,
do | need for | 1 nx1 N N

unique solution? - il



Lambertian photometric stereo

4 —
i
I1=r:m. -61
~T7
Ingm, £2
S
INZG,TI. EN
\ )

define “pseudo-normal” b £ an

solve linear system
for pseudo-normal

How do we solve
this system?

Nx1

1
Sl

Nx3

I

3x1

once system is solved,
b gives normal
direction and albedo



Solving the Equation with three lights

7
7, S
1
L 7
I, |=]s5 |on
7
7, S3
\ ) \ J\ )
Y Y L
— T~
'ﬁ’ — S_II inverse
p=|n
Is there any reason to use "I‘i

i ?
more than three lights’ n—=———



I=Sn
S'I=S"Sn

6's)'s"

Solve for O, N as before

n=

Get better SNR by using more lights

T
S

1

T
SN

Least squares solution:

More than Three Light Sources

Nx1=(Nx3)3x1)

Moore-Penrose pseudo inverse
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Computing light source directions

Trick: place a chrome sphere 1n the scene

— the location of the highlight tells you the source direction
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[Limitations

Big problems

Doesn’t work for shiny things, semi-translucent things

Shadows, inter-reflections

Smaller problems

Camera and lights have to be distant

Calibration requirements

* measure light source directions, intensities

e camera response function

——— e
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Depth from normals

« Solving the linear system per-pixel gives us an
estimated surface normal for each pixel

Estimated normals
(needle diagram)

Input photo Estimated normals

 How can we compute depth from normals?
 Normals are like the “derivative” of the true depth

68
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Surfaces and normals

imaged Surface representation as a
surface depth image (also known as
Monge surface):
z=f(xY)
A I

pixel coordinates
In Image space

viewing rays for
different pixels

depth at each pixel

Unnormalized normal:

. df df
x  f(x,y) = X' dy’ 1

orthographic Actual normal:

camera Tl(x; y) — ﬁ(x’ y)/”ﬁ(x, Y)H

Normals are scaled spatial derivatives of depth image!




Depth from normals

(m,y-+-12

(z,y)»
(z+1,y)

Use vector field integration
techniques as in gradient-
domain image processing.
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1.
2.
3.
4,
.

Results

Estimate light source directions

Compute surface normals

Compute albedo values

Estimate depth from surface normals

Relight the object (with original texture and uniform albedo)
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Results: Lambertian Sphere

Input Images

\

IR i
Ar A A&,
Fr s Ao
e
ey
L e L
v e w omog

k
hY
*
*
x
*
b
*
.
.
.

Needles are projections
of surface normals on
image plane

R
B T R e

B N
P

Estimated Surface Normals Estimated Albedo
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[Lambertain Mask
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Results — Albedo and Surface Normal

—

File Edit “iew Insert Tools Desktop window Help "

DedE k RANG @ & 0EH 1

rrdrr»

I ra 81058

|
& #*+ H & & F =B 4 4
[T T A A T . B Y

T F 1
CRE IR N B R R N B N
w & F F od &2 & & 5 B 4 d

L

AT vy v
]

—
[ ]
(]
L]

P N R

L 5
o
L
I
-
L
Fa
]

L
.
.
-
{l‘\

A

¥ L T T T Y N T

T 5% b % % b
I v % %1 1%
[ T T |

o

A
Py e
L B T |

A
e

[

B EENE,

I #F 7 1 Fr 1
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Results — Shape of Mask

1m0 |

0.
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Results: Lambertian Toy
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Non-i1dealities: interreflections
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Non-i1dealities: interreflections

' Figure 3

File Edit Wiew Insert Tools Desktop Window Help ~ M Fil= Edit “iew Insert Tools Deskbop ‘Window Help

DS E& K RANS (08| = O W& b A_/ANEE 0B =50

IENE 3

a0~/ i i

Accurate reconstruction
(after removing interreflection:

Shal.'low reconstruction
(effect of interreflections)

a

>
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What if the light directions are unknown?

79



Uncalibrated pnhotometric
stereo



What if the light directions are unknown?

4 —
i
I1 = an -61
~T7
Ig = an £2

In =an' €y
\_ %

define “pseudo-normal” b £ an

solve linear system - [ i ET i
for pseudo-normal 1 L
Ip X .
o= Le
: 3 x1
In =T
- 4 Nx1
. €y d Nx3




What if the light directions are unknown?

4 —
i
I1=r:m. -61
~T7
Ingm, £2
S
INZG,TI. EN
\ )

solve linear system
for pseudo-normal at
each image pixel

L 4 NxM

M: number of pixels
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What if the light directions are unknown?

solve linear system
for pseudo-normal at
each image pixel

NxM

How do we solve this
system without
knowing light matrix L?



Factorizing the measurement matrix

d

What are the dimensions?




Factorizing the measurement matrix

« Singular value decomposition:

H Iy
> n 1
< > < >
I
X.>.H

> <
To reduce to rank 3, we

just need to set all the
singular values to 0 except
3 for the first 3

M

This
decomposition
minimizes
[I-LB|?




Are the results unique?
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Are the results unique?

We can insert any 3x3 matrix Q in the decomposition and get the same images:

I=LB=(LQ"(QB)
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Are the results unique?

We can insert any 3x3 matrix Q in the decomposition and get the same images:
I=LB=(LQ")(QB)

Can we use any assumptions to remove some of these 9 degrees of freedom?

88



(Generalized bas-relief
ambiguity



-nforcli

Ng Integrabllity

What does the matrix B corresponc

to?
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—nforcing integrability

What does the matrix B correspond to?

* Surface representation as a depth image (also known as Monge surface):

z=f(x,y)

0) —

depth at each pixel pixel coordinates in image space

df d
x,) :(di’dfz' 1)

n(x,y) = nlx,y)/lllx, y)ll

e Pseudo-normal:

e Unnormalized normal:

e Actual normal:

b(x,y) = alx,y)n(x,y)

* Rearrange into 3xN matrix B.
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—nforcing integrability

What does the integrability constraint correspond to?
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-nforcing integrability
What does the integrability constraint correspond to?

e Differentiation order should not matter:

d df (x,y) _ d df(x,y)
dy dx dx dy

 (Can vyou think of a way to express the above using pseudo-normals b?
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-nforcing integrability
What does the integrability constraint correspond to?

e Differentiation order should not matter:

d df (x,y) _ d df(x,y)
dy dx dx dy

 (Can vyou think of a way to express the above using pseudo-normals b?

d bi(x,y) _ d by(x,y)
dy bsz(x,y) dxbsz(x,y)
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—nforcing integrability

What does the integrability constraint correspond to?

Differentiation order should not matter:

d df (x,y) _ d df(x,y)
dy dx dx dy

Can you think of a way to express the above using pseudo-normals b?

d bi(x,y) _ d by(x,y)
dy bsz(x,y) dxbsz(x,y)

Simplify to:

dbl(x' y) _ de(x' y) _ dbl(xJ y) _ de(xi y)

b3(x'y) dy bl(x’y) dy bZ(x'y) dx bl(x’y) d.x

95
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-nforcing integrability
What does the integrability constraint correspond to?

e Differentiation order should not matter:

d df (x,y) _ d df(x,y)
dy dx dx dy

 (Can vyou think of a way to express the above using pseudo-normals b?

d bi(x,y) _ d by(x,y)
dy bsz(x,y) dxbsz(x,y)

 Simplify to:

dbl(x' y) db3 (X, y) dbl(xJ y) de (X, y)
b —b =D —b

* |If B, is the pseudo-normal matrix we get from SVD, then find the 3x3
transform D such that B=D-B, is the closest to satistying integrability in the
least-squares sense.



—nforcing integrability

Does enforcing integrability remove all ambiguities?
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Generalized Bas-relief ambiguity

If Bis integrable, then:
« B’=GT-Bis also integrable for all G of the form (4 # 0)

1 0 O
G=|0 1 O
u v A

 Combined with transformed lights S’=G-S, the transformed pseudonormals
produce the same images as the original pseudonormals.

* This ambiguity cannot be removed using shadows.

* This ambiguity can be removed using interreflections or additional assumptions.

This ambiguity is known as the generalized bas-relief ambiguity.
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Generalized Bas-relief ambiguity

When u=v =0, Gis equivalent to the transformation employed by relief sculptures.

[N
When L=V S O and/l -+ 1 top/down amb|gU|ty_v - Otherwise, includes shearing.

L ot i
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What assumptions have we made for all this?
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What assumptions have we made for all this?

*Lambertian BRDF
*Directional lighting

*No interreflections or scattering



Shape independen

"Helmho

-

= |

- of BRDF via reciprocity:
tz Stereopsis”

[Zickler et al., 2002]
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