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Course announcements
• Homework assignment 4 due November 2nd.

- Generally shorter to accommodate final project proposals.
- Two bonus parts.

• Project logistics on Piazza and the course website. 
- Project ideas due on Piazza on October 23rd (optional).
- Project proposals due on Gradescope on October 30th.

• Office hour logistics for this week:
- Yannis will have extra office hours on Friday (time TBD).

• Late submissions:
- We are making an exception for homework assignment 3 and we won’t count late
days for submissions that are a few minutes late due to uploading delays.
- We will resume enforcing late days strictly for subsequent homeworks. One second 
late is one late day.
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Computational photography talks this week @ CMU
3

• Ce Liu, Google Research (October 20th, 11 am – noon).
- Title: Advancing the State of the Art of Computer Vision for Billions of Users

At Google, advancing the state of the art of computer vision is very impactful as there are billions of users of Google products, many of which 
require high-quality, artifact-free images. I will share what we learned from successfully launching core computer vision techniques for 
various Google products, including PhotoScan (Photos), seamless Google Street View panorama stitching (Geo), Super Res Zoom (Pixel 4), Auto 
Pop-out & Uncrop (Display Ads), and Rendering4AI (Cloud AI). We also conduct academic research and publish at top-tier conferences. I will 
give an overview of several representative works, including seeing through obstructions (Siggraph’15), learning the depth of moving people 
by watching frozen people (CVPR’19), GAN-based image uncrop (ICCV’19), and supervised contrastive learning (NeurIPS’20).

• Tali Dekel, Google Research (October 20th, noon – 1 pm).
- Title: Learning to Retime People in Videos

By changing the speed of frames, or the speed of objects, we can enhance the way we perceive events or actions in videos. In this talk, I will 
present two of my recent works on retiming videos, and more specifically, manipulating the timings of people’s actions. 1) “SpeedNet” (CVPR 
2020 oral): a method for adaptively speeding up videos based on their content, allowing us to gracefully watch videos faster while avoiding 
jerky and unnatural motions.  2) “Layered Neural Rendering for Retiming People” (SIGGRAPH Asia):  a method for speeding up, slowing 
down, or entirely freezing certain people in videos, while automatically re-rendering properly all the scene elements that are related to those 
people, like shadows, reflections, and loose clothing. Both methods are based on novel deep neural networks that learn concepts of natural 
motion and scene decomposition just by observing ordinary videos, without requiring any manual labels.  I’ll show adaptively sped-up videos 
of sports, of boring family events (that all of us want to watch faster), and I’ll demonstrate various retiming effects of people dancing, groups 
running, and kids jumping on trampolines.



Overview of today’s lecture

• Sources of blur.

• Deconvolution.

• Blind deconvolution.
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Slide credits

Most of these slides were adapted from:

• Fredo Durand (MIT).
• Gordon Wetzstein (Stanford).
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Why are our images blurry?
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Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.
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Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.
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Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

What is the effect of this on the images we capture?
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Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

Shift-invariant blur.

blur kernel
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Lens imperfections
What causes lens imperfections?
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Lens imperfections
What causes lens imperfections?
• Aberrations. 

• Diffraction.

large 
aperture

small 
aperture

(Important note: Oblique 
aberrations like coma and 
distortion are not shift-
invariant blur and we do 
not consider them here!)
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Lens as an optical low-pass filter

object distance D focus distance D’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture (Airy disk)

blur kernel
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Lens as an optical low-pass filter

object distance D focus distance D’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

Optical transfer function (OTF): The Fourier transform of the PSF. Equal to aperture shape.

diffraction-limited 
PSF of a circular 

aperture

blur kernel

diffraction-limited 
OTF of a circular 

aperture
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Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b
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Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b

If we know c and b, can we recover x?
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Quick aside: optical anti-aliasing
Lenses act as (optical) low-pass filters.

made of silicon, emits 
electrons from photons

photodiodephotodiode

silicon for read-
out etc. circuitry

color filtercolor filter

helps photodiode 
collect more light 

(also called lenslet)

microlensmicrolens

• Lenslets also filter the image to 
avoid resolution artifacts.

• Lenslets are problematic when 
working with coherent light.

• Many modern cameras do not 
have lenslet arrays.

We will discuss these issues in 
more detail at a later lecture.potential 

well
potential 

well

stores emitted 
electrons

Slide from lecture 2: Basic imaging sensor design
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Quick aside: optical anti-aliasing
Lenses act as (optical) smoothing filters.
• Sensors often have a lenslet array in front of them as an anti-aliasing (AA) filter.
• However, the AA filter means you also lose resolution.
• Nowadays, due the large number of sensor pixels, AA filters are becoming unnecessary.

Photographers often hack their 
cameras to remove the AA filter, in 
order to avoid the loss of resolution.

a.k.a. “hot rodding”
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Quick aside: optical anti-aliasing

without AA filter with AA filter

Example where AA filter is needed
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Quick aside: optical anti-aliasing

without AA filter with AA filter

Example where AA filter is unnecessary
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Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b

If we know c and b, can we recover x?
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Deconvolution
x * c = b

If we know c and b, can we recover x?
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Deconvolution
x * c = b

Reminder: convolution is multiplication in Fourier domain:

F(x) . F(c) = F(b)
If we know c and b, can we recover x?
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Deconvolution
x * c = b

After division, just do inverse Fourier transform:

Reminder: convolution is multiplication in Fourier domain:

F(x) . F(c) = F(b)
Deconvolution is division in Fourier domain:

F(xest) = F(b) \ F(c)

xest = F-1 ( F(b) \ F(c) )
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Deconvolution

Any problems with this approach?
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Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

b  = c * x + n
• The measured signal includes noise

noise term

zeros at high 
frequencies
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Deconvolution

• When we divide by zero, we amplify the high frequency noise

• The OTF (Fourier of PSF) is a low-pass filter

b  = c * x + n
• The measured signal includes noise

noise term

zeros at high 
frequencies
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Naïve deconvolution

* =

b * c-1 = xest

-1

Even tiny noise can make the results awful.
• Example for Gaussian of σ = 0.05
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Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2
xest = F-1 (                                  ⋅ )                                

|F(c)|2 + 1/SNR(ω)
F(b)
F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
signal variance at ω

noise variance at ω

29



Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2
xest = F-1 (                                  ⋅ )                                

|F(c)|2 + 1/SNR(ω)
F(b)
F(c)

Intuitively:
• When SNR is high (low or no noise), just divide by kernel.
• When SNR is low (high noise), just set to zero.
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Deconvolution comparisons

naïve deconvolution Wiener deconvolution
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Deconvolution comparisons

σ = 0.01 σ = 0.05 σ = 0.01
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Derivation

�𝑥𝑥 = 𝑐𝑐 ∗ 𝑥𝑥 + 𝑛𝑛 Noise n is assumed to be zero-
mean and independent of signal x.

Sensing model:
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Derivation

𝑏𝑏 = 𝑐𝑐 ∗ 𝑥𝑥 + 𝑛𝑛 Noise n is assumed to be zero-
mean and independent of signal x.

Sensing model:

Fourier transform:

𝐵𝐵 = 𝐶𝐶 ⋅ 𝑋𝑋 + 𝑁𝑁

Why multiplication?
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Derivation

Noise n is assumed to be zero-mean
and independent of signal x.

Sensing model:

Fourier transform:

Problem statement: Find function H(ω) that minimizes expected error in Fourier domain.

Convolution becomes 
multiplication.

min
𝐻𝐻

𝐸𝐸 𝑋𝑋 − 𝐻𝐻𝐵𝐵 2

𝑏𝑏 = 𝑐𝑐 ∗ 𝑥𝑥 + 𝑛𝑛

𝐵𝐵 = 𝐶𝐶 ⋅ 𝑋𝑋 + 𝑁𝑁
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Derivation
Replace B and re-arrange loss:

min
𝐻𝐻

𝐸𝐸 1 + 𝐻𝐻𝐶𝐶 𝑋𝑋 − 𝐻𝐻𝑁𝑁 2

min
𝐻𝐻

1 − 𝐻𝐻𝐶𝐶 2𝐸𝐸 𝑋𝑋 2 − 2 1 −𝐻𝐻𝐶𝐶 𝐸𝐸 𝑋𝑋𝑁𝑁 + 𝐻𝐻 2𝐸𝐸 𝑁𝑁 2

Expand the squares:
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Derivation
When handling the cross terms:
• Can I write the following?

𝐸𝐸 𝑋𝑋𝑁𝑁 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑁𝑁
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Derivation
When handling the cross terms:
• Can I write the following?

𝐸𝐸 𝑋𝑋𝑁𝑁 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑁𝑁
Yes, because X and N are assumed independent.

• What is this expectation product equal to?
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Derivation
When handling the cross terms:
• Can I write the following?

𝐸𝐸 𝑋𝑋𝑁𝑁 = 𝐸𝐸 𝑋𝑋 𝐸𝐸 𝑁𝑁
Yes, because X and N are assumed independent.

• What is this expectation product equal to?

Zero, because N has zero mean.
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Derivation
Replace B and re-arrange loss:

min
𝐻𝐻

𝐸𝐸 1 + 𝐻𝐻𝐶𝐶 𝑋𝑋 − 𝐻𝐻𝑁𝑁 2

min
𝐻𝐻

1 − 𝐻𝐻𝐶𝐶 2𝐸𝐸 𝑋𝑋 2 − 2 1 −𝐻𝐻𝐶𝐶 𝐸𝐸 𝑋𝑋𝑁𝑁 + 𝐻𝐻 2𝐸𝐸 𝑁𝑁 2

Expand the squares:

cross-term is zero

min
𝐻𝐻

1 − 𝐻𝐻𝐶𝐶 2𝐸𝐸 𝑋𝑋 2 + 𝐻𝐻 2𝐸𝐸 𝑁𝑁 2

Simplify:

How do we solve this optimization problem?
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Derivation
Differentiate loss with respect to H, set to zero, and solve for H:

𝜕𝜕loss
𝜕𝜕𝐻𝐻

= 0

⇒ −2 1 −𝐻𝐻𝐶𝐶 𝐸𝐸 𝑋𝑋 2 + 2𝐻𝐻𝐸𝐸 𝑁𝑁 2 = 0

⇒ 𝐻𝐻 =
𝐶𝐶𝐸𝐸 𝑋𝑋 2

𝐶𝐶2𝐸𝐸 𝑋𝑋 2 + 𝐸𝐸 𝑁𝑁 2

Divide both numerator and denominator with 𝐸𝐸 𝑋𝑋 2 , extract factor 1/C, and done!
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Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2
xest = F-1 (                                  ⋅ )                                

|F(c)|2 + 1/SNR(ω)
F(b)
F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires estimate of signal-to-noise ratio at each frequency

SNR(ω) =
signal variance at ω

noise variance at ω
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Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic
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Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

What is the SNR?

44



Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

Therefore, we have that: SNR(ω) = 1 / ω2
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Wiener Deconvolution

amplitude-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2
xest = F-1 (                                  ⋅ )

|F(c)|2 + ω2
F(b)
F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
1

ω2
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Wiener Deconvolution

gradient regularization

For natural images and white noise, equivalent to the minimization problem:

minx ‖b – c ∗ x‖2 + ‖∇x‖2

How can you prove this equivalence?
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Wiener Deconvolution

gradient regularization

For natural images and white noise, it can be re-written as the minimization problem

minx ‖b – c ∗ x‖2 + ‖∇x‖2

How can you prove this equivalence?
• Convert to Fourier domain and repeat the proof for Wiener deconvolution.
• Intuitively: The ω2 term in the denominator of the special Wiener filter is the square of 

the Fourier transform of ∇x, which is i⋅ω.
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Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original
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Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original
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… and a proof-of-concept demonstration

noisy input gradient regularizationnaive deconvolution
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Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
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Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
• All the blur processes we discuss today happen optically (before capture by the sensor).
• Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?
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Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
• All the blur processes we discuss today happen optically (before capture by the sensor).
• Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?
• No, because of gamma encoding.
• Before deblurring, you must linearize your images.

How do we linearize PNG or JPEG images?

54



The importance of linearity

blurry input deconvolution after 
linearization

deconvolution without 
linearization

original
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Can we do better than that?
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Can we do better than that?
Use different gradient regularizations:

minx ‖b – c ∗ x‖2 + ‖∇x‖2
2

minx ‖b – c ∗ x‖2 + ‖∇x‖1
1

minx ‖b – c ∗ x‖2 + ‖∇x‖200

• L2 gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

• L1 gradient regularization (sparsity regularization, isotropic total variation)

• Anisotropic total variation

All of these are motivated by natural image statistics. Active research area.

How are 
these two 
different?
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Deconvolution comparisons

Wiener deconvolution ADMM + TV, λ = 0.01 ADMM + TV, λ = 0.1

72

• image becomes too flat as we increase weight of TV prior
• Image becomes too noisy as we decrease weight of TV prior



Deconvolution comparisons

Wiener deconvolution ADMM + TV, λ = 0.01 ADMM + TV, λ = 0.1

73

• image becomes too flat as we increase weight of TV prior
• Image becomes too noisy as we decrease weight of TV prior





Can we do better than that?
Use different gradient regularizations:

minx ‖b – c ∗ x‖2 + ‖∇x‖2
2

minx ‖b – c ∗ x‖2 + ‖∇x‖1
1

minx ‖b – c ∗ x‖2 + ‖∇x‖0.8
0.8

• L2 gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

• L1 gradient regularization (sparsity regularization, same as total variation)

• Ln<1 gradient regularization (fractional regularization)

All of these are motivated by natural image statistics. Active research area.
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Comparison of gradient regularizations

input squared gradient 
regularization

fractional gradient 
regularization
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Derivation

�𝑥𝑥 = 𝑐𝑐 ∗ 𝑥𝑥 + 𝑛𝑛 Noise n is assumed to be zero-
mean and independent of signal x.

Sensing model:

77

Is this a reasonable noise model?



• recover signal by setting gradient to zero
• generally challenging



High quality images using cheap lenses

[Heide et al., “High-Quality Computational Imaging Through Simple Lenses,” TOG 2013]
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Deconvolution

* =

x * c = b

If we know b and c, can we recover x?

?

How do we 
measure this?
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PSF calibration

Take a photo of a point source

Image of PSF

Image with sharp lens Image with cheap lens
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Deconvolution

* =

x * c = b

If we know b and c, can we recover x?

?
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Blind deconvolution

* =

x * c = b

If we know b, can we recover x and c?

? ?
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Camera shake
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Camera shake as a filter

image from static camera

*

PSF from camera motion

=

image from shaky camera

x * c = b

If we know b, can we recover x and c?
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Multiple possible solutions

How do we 
detect this 

one?
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Use prior information
Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.
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Use prior information
Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.
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Shake kernel statistics
Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

sharp 
natural 
image

blurry 
natural 
image
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Shake kernel statistics
Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

sharp 
natural 
image

blurry 
natural 
image

Can be approximated by ‖∇x‖0.8
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Use prior information
Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.

Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

Shake kernels are very sparse, have 
continuous contours, and are always positive

How do we use this information for blind deconvolution?
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Regularized blind deconvolution
Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

What does each term in this summation correspond to?

92



Regularized blind deconvolution

natural image prior

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

data term shake kernel prior

Note: Solving such optimization problems is complicated (no longer linear least squares).
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A demonstration

input deconvolved image and kernel
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A demonstration

input deconvolved image and kernel

This image looks worse 
than the original…

This doesn’t look like a 
plausible shake kernel…
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Regularized blind deconvolution
Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function
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Regularized blind deconvolution
Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function
inverse 

loss

pixel intensity

Where in this graph is 
the solution we find?
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Regularized blind deconvolution
Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function
inverse 

loss

pixel intensityoptimal solution

many plausible 
solutions here

Rather than keep just 
maximum, do a weighted 

average of all solutions
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A demonstration

input maximum-only

This image looks worse 
than the original…

average
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More examples
100



Results on real shaky images
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Results on real shaky images
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Results on real shaky images
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Results on real shaky images
104



More advanced motion deblurring

[Shah et al., High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008]
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Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems using (blind) deconvolution?
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Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems using (blind) deconvolution?
• We can deal with (some) lens imperfections and camera 

shake, because their blur is shift invariant.
• We cannot deal with scene motion and depth defocus, 

because their blur is not shift invariant.
• See coded photography lecture.
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the paper on high-quality imaging using cheap lenses, which also has a great discussion of all matters relating to 
blurring from lens aberrations and modern deconvolution algorithms.

• Levin, “Blind Motion Deblurring Using Image Statistics,” NIPS 2006.
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posteriori versus Bayesian estimates, the use of variational inference, and efficient optimization algorithms. 

• Minskin and MacKay, “Ensemble Learning for Blind Image Separation and Deconvolution,” AICA 2000.
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