
Homework Assignment 6
15-463/663/862, Computational Photography, Fall 2020

Carnegie Mellon University

Due Friday, Dec. 11, at 11:59pm

The purpose of this assignment is to use structured light as a means for reconstructing the 3D shape of a
surface. Rather than having to use a projector, you will rely on shadows to create a structured illumination,
a technique often referred to as “weakly structured light”.

In particular, you will implement the “desktop scanner” of Bouguet and Perona [1]. As shown in Figure 1,
this system is composed of five primary items: a camera, a point-like light source (e.g., desk lamp), a stick,
two planar surfaces, and a calibration checkerboard. By waving the stick in front of the light source, you
can cast line shadows into the scene. As Bouguet and Perona demonstrate, the depth at each pixel can then
be recovered using simple geometric reasoning.

In the course of completing this homework, you will need to develop a good understanding of camera
calibration, Euclidean coordinate transformations, and manipulation of lines and planes. Rather than just
“encouraged” to read it, to solve this assignment you will need to carefully go through Bouguet and Perona [1].
So you should read it carefully before starting the assignment. Note that, for simplicity, the calibration and
reconstruction procedures (Parts 1.2 and 1.3) we use in the assignment are significantly different from those
described in the paper.

1 Implementing structured-light triangulation (100 points)

For the first part of the homework, you will be using two image sequences contained in the ./data directory
of the homework ZIP archive. One is a calib sequence you will use to estimate the intrinsic and extrinsic
calibration parameters of the camera, and consists of ten images of a checkerboard at various poses. The
second is a sequence captured for the frog object shown in Figure 1. For each sequence we have provided
both a high-resolution 1024×768 sequence, as well as a low-resolution 512×384 sequence you can use during
development. You should convert these color images to grayscale, e.g., using rgb2gray.

Figure 1: 3D Photography using Planar Shadows. From left to right: the capture setup, a single image from
the scanning sequence, and a reconstructed object (rendered as a colored point cloud).

1.1 Video processing (25 points)

Your first task is to estimate two fundamental quantities from an input video sequence: (1) the position
of the shadow edge within each frame t; and (2) the time t that a shadow enters a pixel. The following
sections outline the basic procedures for performing these tasks. You will need to consult Section 2.4 in [1]
for additional information.

1



Spatial shadow edge localization. In terms of Figure 2 in [1], you need to estimate the shadow lines
λh(t) and λv(t), for the horizontal and vertical planar regions, respectively. You will later use these lines to
recover the position and orientation of each shadow plane as a function of time.

In order to perform this and subsequent processing, you will utilize a spatio-temporal approach. We
begin by defining the maximum and minimum intensity observed at each pixel (x, y),

Imax(x, y) = max
t
I(x, y, t), (1)

Imin(x, y) = min
t
I(x, y, t). (2)

In order to detect the shadow boundaries, we choose a per-pixel detection threshold which is the midpoint
of the dynamic range observed in each pixel. Then, at each time t, the shadow edge can be localized using
the spatial zero-crossings of each line of the difference image

∆I(x, y, t) = I(x, y, t) − Ishadow(x, y), (3)

where the shadow threshold image is defined to be

Ishadow(x, y) =
Imax(x, y) + Imin(x, y)

2
. (4)

To detect the horizontal and vertical lines at each frame, for each planar region, you will need to work with
the portion of the frame where the plane is unobstructed by the object you are scanning.

For each row of these regions, by interpolating the positions of the zero-crossings of ∆I(x, y, t), you can
compute sub-pixel shadow edge locations. To produce the final estimate of the shadow edges λh(t) and λv(t),
you should find the best-fit line (in the least-squares sense) to the set of shadow edge samples. The desired
output of this step is illustrated in Figure 2(a) for one of the frames, where the best-fit lines are overlaid on
the original image.

Temporal shadow edge localization. As described in Section 1.3, in order to reconstruct the object, you
also need to know when each pixel entered the shadowed region. This task can be accomplished in a way
similar to spatial localization. Instead of estimating zero-crossing along each row for a fixed frame, you can
assign the per-pixel shadow time using the zero crossings of the difference image ∆I(x, y, t) for each pixel
(x, y) as a function of time t. The desired output of this step is illustrated in Figure 2(b), where the shadow
crossing times are quantized to 32 values (with blue indicating earlier times and red indicated later ones).
Note that you may want to include some additional heuristics to reduce false detections. For instance, dark
regions cannot be reliably assigned a shadow time—thus, you should eliminate pixels with very low contrast
Imax(x, y) − Imin(x, y).

In your submission, show a few examples of spatial and temporal edge localizations, analogous to those
shown in Figure 2.

1.2 Intrinsic and extrinsic calibration (50 points)

You will need the intrinsic and extrinsic calibration of the camera and scene in order to transfer image
measurements into the world coordinate system. We’ve provided a modified version of the calibration
pipeline used in the Camera Calibration Toolbox for Matlab, also created by Jean-Yves Bouguet. The
functions are located in cp hw6.py, and a demo of the process on the low-resolution frog example is located
in calibrationDemo.py. The intrinsic and extrinsic parameters are estimated by capturing several images
of a checkerboard at various poses.

Intrinsic calibration. The function computeIntrinsic() takes in a stack of at least ten images of a
calibration checkerboard at various poses and the dimensions of board. It will then visualize the extracted
corners for each captured image. Note that only inner corners are detected, so the provided checkerboard
dimensions should not be the number of squares but the number of inner corners (6 by 8 for the provided
example). In the case where the detected corners are noticeably misaligned from the checkerboard, you will
need to adjust the size of the search window used to refine the detected corner locations.

Include the resulting .npz file with the intrinsic calibration parameters in your submission.

2



Figure 2: Spatial and temporal shadow edge localization. (a) The shadow edges are determined by fitting a
line to the set of zero-crossings, along each row in the planar regions, of the difference image ∆I(x, y, t). (b)
The shadow times (quantized to 32 values here) are determined by finding the zero-crossings of the difference
image ∆I(x, y, t) for each pixel (x, y) as a function of time t.

Calibration of ground planes. From the previous step, you have an estimate of how pixels can be
converted into normalized coordinates (and subsequently rays in world coordinates, originating at the camera
center). You will also need to know how to convert 3D coordinate vectors between three coordinate systems:
One describing the camera, one at the horizontal plane, and one at the vertical plane. See Figure 3 for a
visualization of the three coordinate systems.

𝑥𝑣
𝑦𝑣

𝑧𝑣

𝑂𝑣

𝑥ℎ

𝑦ℎ

𝑧ℎ

𝑂ℎ

horizonal plane

vertical plane

𝑥𝑐

𝑦𝑐
𝑧𝑐

𝑂𝑐

camera

Figure 3: The three world coordinate frames we are concerned with.

You will do this by running computeExtrinsic() twice, one for each ground plane. An example of this
is shown in calibrationDemo.py.

In each run, the demo will allow you to select four corners on the scene plane, to determine the Euclidean
transformation from this plane to the camera reference frame. (Always start by selecting the corner in the
bottom-left and proceed in a counter-clockwise order. For your reference, the corners define a 558.8 mm ×
303.2125 mm rectangle.) Once run, the demo will provide you with a rotation matrix R and translation
matrix T that allows you to convert from the camera coordinate system to the plane’s coordinate system as

Pplane = RT (Pcamera − T ), (5)

where Pcamera and Pplane are heterogeneous 3D coordinate vectors. The demo shows an example of this, by

3



using T and R to convert the camera center Oc = [0, 0, 0]T from the camera to the plane coordinate system.
Report the rotation and translation matrices you obtain for each of the two planes.

Calibration of shadow lines. Now that you have calibrated the two ground planes, you need to, for each
frame, find 3D parameterizations for the shadow lines cast on these planes by the moving stick. Figure 4
visualizes the steps for this part.

At each frame, it is sufficient to find two 3D points on each of the two shadow lines, for a total of four
3D points per frame (points P1, P2, P3, P4 in Figure 4). We describe how to find the points P1 and P2 on
the shadow line of the horizontal plane, and the procedure for points P3 and P4 follows exactly analogously.

horizonal plane

vertical plane

camera

𝑃1
𝑃2

𝑃3

𝑃4

𝑟1

𝑟2

𝑟3

𝑟4

𝑝1

𝑝2
𝑝3

𝑝4𝑂𝑐

Figure 4: Calibration of shadow lines.

First, select two points p1 and p2 on the image that lie on the horizontal shadow line. You computed
the equations for this line in Part 1.1, so you can simply interpolate two points using that equation. The
extrinsics demo shows how to backproject these pixels into 3D rays, r1 and r2, expressed in the camera
3D coordinate system (see provided function pixel2ray), as well as how to convert these rays into the 3D
coordinate system of the horizontal plane.

You can now determine the 3D point P1 by performing an intersection, between ray r1 and the horizontal
plane. You should make sure that you use consistent coordinate systems for the intersection (i.e., both the
ray and plane are in the coordinate system of the horizontal plane; or both the ray and plane are in the
coordinate system of the camera). Once you have P1, you should convert it to the camera coordinate system
as described earlier. Repeat the same procedure for P2.

You can follow the exactly analogous procedure for extracting points P3 and P4, and converting them
to the camera coordinate system. You will need to perform this procedure for each frame in your video
sequence.

Store the reconstructed 3D points for all the shadow lines in a .npz file, and include that in your
submission.

Calibration of shadow planes. Finally, you will need to use the four 3D points you computed per frame,
to calibrate the corresponding 3D shadow plane. Figure 5 visualizes the steps for this part.

A frame’s four points P1, P2, P3, P4 all lie on that frame’s shadow plane. Then, you can use them to
express the shadow plane as:

S : (P − P1) · n̂ = 0, where n̂ = normalize[(P2 − P1) × (P4 − P3)], (6)

where P is a generic point on the shadow plane. Make sure that the shadow plane is in the camera coordinate
system (i.e., by first converting all points P1, . . . , P4 to the camera coordinate system).

Store the equations for all 3D lines in a .npz file, and include that in your submission. Once you have
computed the shadow plane for each frame, you have completed the extrinsic calibration.

1.3 Reconstruction (25 points)

At this point, you have estimated all the parameters required to recover the depth of each pixel in the image
(or at least those pixels where the shadow could be observed). See Figure 6 for a visualization of what you

4



horizonal plane

vertical plane

camera

𝑃1
𝑃2

𝑃3

𝑃4𝑝1

𝑝2
𝑝3

𝑝4

shadow

plane

𝑂𝑐

Figure 5: Calibration of shadow planes.

need to do in this section.

horizonal plane

vertical plane

camera

shadow

plane

𝑂𝑐

𝑟

𝑝

𝑃

Figure 6: Reconstruction of 3D points.

First, crop the part of the image you want to reconstruct (e.g., a rectangle that includes all of the
shape). Then, for each pixel p = (x, y) in this rectangle, find the associated frame t where this pixel is on a
shadow line—you computed these frames in Part 1.2. Next, fetch the shadow plane S(t) for that frame—you
computed these planes in part 1.2.

Backproject the pixel p into a 3D ray r. Finally, intersect this ray with the shadow plane S(t). The
resulting intersection point P is your reconstructed 3D point.

Repeat this process for all pixels in your crop, to recover a 3D point cloud, which you will need to
visualize. You can use matplotlib’s scatter function on a 3D plot to convert the reconstructed 3D points
into a point-cloud structure. (You can additionally “color” each point in your point cloud, by assigning to it
its intensity in a frame where it is not shadowed.) You can then display this structure using the command
imshow. To give you some expectation of reconstruction quality, Figure 7 shows the results we obtained with
our reference implementation. Note that there are several choices you can make in your implementation; some
of these may allow you to obtain additional points on the surface or increase the reconstruction accuracy.
Please document the methods you used to optimize your reconstruction.

2 Building your own 3D scanner (100 points)

You will now build your own version of the weakly-structured light 3D scanner. You can replicate the setup
of Figure 1, using a desk lamp, and the class camera and tripod.

You will additionally need to print a checkerboard for performing camera calibration on your own. We
recommend using the same checkerboard configuration (in terms of number of boxes and their dimensions)

5



Figure 7: Reconstruction results for the frog sequence.

as in the data sequence provided with the homework.
Finally, in setting up the scanner, you will need to create the configuration of the two planes. You should

use appropriate holders (e.g., thick books) to ensure that the vertical plane is as close to orthogonal to the
floor as possible. You should also mark the corners of a rectangle of known dimensions on each plane, to
simplify calibration.

Use your 3D scanning setup to scan at least two objects, and include images of the scanned images and
the final reconstruction. Additionally, include a photograph of the setup you built.

3 Bonus: Implement the dual-space geometry procedure (50 points)

The algorithms described in Bouguet and Perona [1] for the calibration and reconstruction parts of the 3D
scanning procedure are significantly different from those you were asked to implement above. In particular,
they use a so-called dual-space geometry formulation, that provides increased robustness. For example, when
calibrating shadow lines and planes, you used only two points per line and four points per plane, despite
the fact that you had two entire lines available to you, resulting in discounted information and decreased
robustness. Dual-space geometry is an elegant formulation for making full use of all the information available
to you in this problem.

Read through the paper, and implement the proposed algorithm for calibration and reconstruction. In
your write-up, provide a short explanation of how the procedure works, and show the reconstructions you
obtain by applying it on the dataset provided with the homework, as well as the two datasets you capture
with your own 3D scanner. Compare with the 3D reconstructions you obtained earlier, and discuss your
observations.

4 Bonus: Implement direct-global separation (100 points)

As we discussed in glass, Nayar et al. [2] show how to use the stick-shadow procedure to produce pairs
of direct-only and global-only images for a scene. Read through this paper, and implement the procedure
discussed in Section 4.2 to produce direct-only and global-only images for two scenes (you do not need to
implement the photometric stereo part discussed in that section).

Note that applying the technique of this paper requires having access to radiometrically linear images. Un-
fortunately, the class camera does not allow you to capture RAW video. Therefore, in order to apply the equa-
tions used in the paper, you will need to perform radiometric calibration and convert the non-linear frames
you extract from the video sequences into linear ones. In Homework 2, you implemented radiometric calibra-
tion on your own, but here, you can use OpenCV’s implementation (see function createCalibrateDebevec).
This function requires as input a non-linear exposure stack, which you can capture with your camera. Make
sure that the exposure stack is captured under the exact same exposure settings as the ones you will use for

6



your videos. Show the camera response functions you captured, as well as a collage of your exposure stack
before and after linearization.

Apply the linearization and direct-global separation procedures on two scenes, and show for each scene
four images: A regular image of the scene captured with your camera and without any shadows; an image
showing the stick shadow; and the pair of direct-only and global-only images. The total number of points
you will get for this part will depend on how visually compelling the direct-global separation results are.

Deliverables

As described on the course website, solutions are submitted through Gradescope. We recommend you use
one of the methods that use git to maintain your directory structure. Your submission should include the
following:

• A PDF report explaining what you did for each problem, including the various visualizations of shadow
planes and point clouds that are requested throughout Parts 1 and 2, as well as answers to all questions
asked throughout both problems. The report should include any figures and intermediate results that
you think may help. Make sure to include explanations of any issues that you may have run into that
prevented you from fully solving the assignment, as this will help us determine partial credit.

• All of your Python code, as well as a README file explaining how to use the code.

• All .npz files requested through Parts 1 and 2.

• If you do Bonus Part 3: all your python code, as well as the discussion and figures requested in that
part.

• If you do Bonus Part 4: all your python code, as well as the discussion and figures requested in that
part.

Hints and Information

• When visualizing your point cloud, you should set the axes aspect ratio to be equal, otherwise it will
be difficult to see whether your results are truly reasonable. In order to do this in matplotlib, you must
use function set box aspect to match the aspect ratio of the displayed 3D grid. We have provided
the function set aspect equal, which will attempt to find reasonable axes limits for the plotted data
that will match a (1, 1, 1) box aspect ratio. You may want to expand upon this function.

• When building your own version of the 3D scanner, you should note some practical issues associated
with this approach.

First, it is important that every pixel be shadowed at some point in the sequence. As a result, you
must move the stick slowly enough to ensure that this condition holds.

Second, the reconstruction method requires reliable estimates of the plane defined by the light source
and the edge of the stick. Ambient illumination must be reduced so that a single planar shadow is cast
by each edge of the stick, otherwise your shadow estimates will be off.

Third, The light source you use must be sufficiently bright to allow the camera to operate with reason-
able exposures and minimal gain, otherwise sensor noise will corrupt the final reconstruction. It is best
to use a small lamp, such as a desk lamp or similar. This ensures that the light source is sufficiently
point-like to produce abrupt shadow boundaries. Otherwise, the estimate of the shadow plane will not
be reliable.

Fourth, when calibrating your own camera, it is important to ensure planarity of the checkerboard
pattern. We recommend that you stick the pattern on a flat surface (e.g., a wooden panel). Addi-
tionally, it is important that you capture a sufficient number of images, spanning a large variety of
checkerboard poses everywhere in the field of view of your camera. The calibration sequence we provide
in the homework should give you a sense of what sort of images you need.

7



Fifth, in a departure from previous homework assignments, here it is not necessary to use RAW images.
The class camera allows you to capture non-RAW video, from which you can extract frames using either
Python, or a utility such as ffmpeg. (If you do Bonus Part 4, see the discussion there about radiometric
calibration.)

Finally, you should set the focal length, focus, and aperture settings of your lens appropriately, so that
all of the scanning setup is within your field of view and sharply in focus. Blurry regions will result
in poor shadow estimates, and therefore inaccurate reconstruction. Additionally, all lens parameters
should remain constant throughout capture, so make sure to set everything to manual.

Credits

This homework was directly adapted from the 3D photography class offered by Gabriel Taubin at Brown
and modified for python using the OpenCV camera calibration tutorial. This includes the write-up, figures,
and data.

References

[1] J.-Y. Bouguet and P. Perona. 3d photography using shadows in dual-space geometry. International
Journal of Computer Vision, 35(2):129–149, 1999.

[2] S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar. Fast separation of direct and global compo-
nents of a scene using high frequency illumination. In ACM Transactions on Graphics (TOG), volume 25,
pages 935–944. ACM, 2006.

8


