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Course announcements

• Homework 2 is out.
- Due September 27th. 
- Requires camera and tripod.
- Start early! Substantially larger programming and imaging components than in Homework 1.
- Generous bonus component, up to 50% extra credit.
- No really: start early!

• Computational imaging group meeting is on Fridays, 3 - 4 pm, WEH 5421.
- You are welcome to attend.
- You can also join the comp-imaging mailing list for related announcements (see Piazza for link).



Overview of today’s lecture
• Gradient-domain image processing.

• Basics on images and gradients.

• Integrable vector fields.

• Poisson blending.

• A more efficient Poisson solver.

• Poisson image editing examples.

• Flash/no-flash photography.

• Gradient-domain rendering.

• Gradient cameras.



Slide credits

Many of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).
• Fredo Durand (MIT).
• James Hays (Georgia Tech).
• Amit Agrawal (MERL).
• Jaakko Lehtinen (Aalto University).



Gradient-domain image processing



Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending



Application: Poisson blending

originals copy-paste Poisson blending



More applications

Removing Glass Reflections

Seamless Image Stitching



Yet more applications

Tonemapping

Fusing day and night photos



Entire suite of image editing tools



Main pipeline

Estimation

of Gradients

Manipulation of 

Gradients

Non-Integrable 

Gradient Fields

Reconstruction 

from 

Gradients

Images/Videos/

Meshes/Surfaces

Images/Videos/

Meshes/Surfaces



Basics of images and gradients



Image representation

We can treat images as scalar fields (i.e., two dimensional functions)

I(x,y): ℝ2 → ℝ



Image gradients

Convert the scalar field into a vector field through differentiation.
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Image gradients

Convert the scalar field into a vector field through differentiation.
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• How do we do this differentiation in real discrete images?



Finite differences

High-school reminder: definition of a derivative using forward difference



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

How do you efficiently 
compute this?



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

What convolution kernel 
does this correspond to?



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

-1 0 1 ?

?



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

1D derivative filter



Finite differences

High-school reminder: definition of a derivative using forward difference

For discrete signals: Remove limit and set h = 1

We will be using forward differences in this lecture!

𝑓′ 𝑥 = 𝑓 𝑥 + 1 − 𝑓(𝑥) 1 -1

1D derivative filter



Image gradients

Convert the scalar field into a vector field through differentiation.
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=),( yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?



Vector field integration

Two core questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed? 



Integrable vector fields



Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that 

𝜕𝐼

𝜕𝑥
𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ2 → ℝ 𝑣 𝑥, 𝑦 : ℝ2 → ℝ𝑢 𝑥, 𝑦 : ℝ2 → ℝ

𝜕𝐼

𝜕𝑦
𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?



Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

IICurl = )(

IIDiv •= )(

What is the dimension of this?

What is the dimension of this?



Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

IICurl = )(

IIDiv •= )(

Another vector field (in 2D, this 
is parallel to a vector 

orthogonal to the 2D plane).

Scalar field

How do we write these operators in terms of derivatives of I?
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Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.
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(here we ignore a unit vector k)



Property of twice-differentiable functions

Curl of the gradient field should be zero:

What does that mean intuitively?

0)( =−=
xyyx

IIICurl



Property of twice-differentiable functions

Curl of the gradient field should be zero:

0)( =−=
xyyx

IIICurl

What does that mean intuitively?

• Same result independent of order of differentiation.

xyyx
II =



Demonstration

Image Ix Iy

Div(Ix, Iy) Curl(Ix, Iy) Ixy Iyx

=

How do we compute this?



Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

?

first-order
finite difference

1D derivative filter

second-order
finite difference

Laplace filter

1 -1



Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

first-order
finite difference

1D derivative filter

second-order
finite difference 1 -2 1

Laplace filter

1 -1



Property of twice-differentiable functions

Curl of the gradient field should be zero:

0)( =−=
xyyx

IIICurl

What does that mean intuitively?

• Same result independent of order of differentiation.

xyyx
II =

Can you use this property to derive an integrability condition?



Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that 

𝜕𝐼

𝜕𝑥
𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ2 → ℝ 𝑣 𝑥, 𝑦 : ℝ2 → ℝ𝑢 𝑥, 𝑦 : ℝ2 → ℝ

𝜕𝐼

𝜕𝑦
𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

∇ ×
𝑢 𝑥, 𝑦

𝑣 𝑥, 𝑦
= 0 ⇒

𝜕𝑢

𝜕𝑦
𝑥, 𝑦 =

𝜕𝑣

𝜕𝑦
𝑥, 𝑦

Only if:



Vector field integration

Two core questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed? 



Different types of integration problems

• Reconstructing height field from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.



Poisson blending



Application: Poisson blending

originals copy-paste Poisson blending



When blending, retain the gradient information as best as possible

4
0

Key idea

source destination copy-paste Poisson blending



two signals regular blending blending derivatives

bright

dark

Poisson blending: 1D example



Definitions and notation

add image 
here

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation

Which one is the unknown?



Definitions and notation

add image 
here

How should we determine f?
• should it look like g?
• should it look like f*?

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation



Variational problem

what does this 
term do?

what does this 
term do?

Image gradient

Recall ...

Interpolation criterion

is this known?

“Variational” means 
optimization where 
the unknown is an 

entire function



Variational problem

gradient of f looks 
like gradient of g

f is equivalent to f* 
at the boundaries

Image gradient

Recall ...

Interpolation criterion

Yes, since the source 
function g is known

“Variational” means 
optimization where 
the unknown is an 

entire function



Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

This is where Poisson
blending comes from

what does this term do?



Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

Laplacian of f same as g



Poisson equation (with Dirichlet boundary conditions)

Equivalently

so make these guys ...

the same

How can we do this?



Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:
How did we compute 

the Laplacian?
Or for discrete images:



Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace 
filter

What’s known and what’s unknown?



Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace 
filterOr for discrete images:

f is unknown except 
at the boundary

g and its Laplacian 
are known



In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

WARNING: requires special treatment at the borders
(target boundary values are same as source )

linear equation 
of N variables

one for each pixel 
in destination

We can rewrite this as

How would you solve this?

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0



Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x



Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to 
compute the inverse of a matrix.



Integration procedures

• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques: 
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
+ Quadtree decompositions.

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.



A more efficient Poisson solver



Variational problem

gradient of f looks 
like gradient of g

f is equivalent to f* 
at the boundaries

Image gradient

Recall ...

Let’s look again at our optimization problem



Variational problem

gradient of f looks 
like gradient of g

f is equivalent to f* 
at the boundaries

Let’s look again at our optimization problem

And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1

Image gradient

Recall ...



Discrete problem
What are G, f, and v?

Let’s look again at our optimization problem

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
𝑓

𝐺𝑓 − 𝑣 2

Image gradient

Recall ... And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1



Discrete problem
matrix G formed by stacking 
together discrete gradients

Let’s look again at our optimization problem

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of 
the unknown image

vectorized version of the 
target gradient field

Image gradient

Recall ... And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1



Discrete problem
matrix G formed by stacking 
together discrete gradients

Let’s look again at our optimization problem

How do we solve 
this optimization 

problem?min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of 
the unknown image

vectorized version of the 
target gradient field

Image gradient

Recall ... And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
=?



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we do what with it?



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

What is this matrix?

What is this vector?



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

It is equal to the 
Laplacian matrix A we 

derived previously!

It is equal to the vector 
b we derived previously!



Poisson equation (with Dirichlet boundary conditions)

Reminder from variational case

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace 
filter

What’s known and what’s unknown?



In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

linear equation 
of N variables

one for each pixel 
in destination

Reminder from variational case

Same system as:

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0

𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

We arrive at the same system, no matter whether we discretize the 
continuous Poisson equation or the variational optimization problem.



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

Solving this is exactly as 
expensive as what we 

had before.



Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣 = 𝐴𝑓 − 𝑏 ≡ 𝑟

We call this term 
the residual



Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣 = 𝐴𝑓 − 𝑏 ≡ 𝑟

… and then we iteratively compute a solution:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖

are positive step sizesη𝑖
for i = 0, 1, …, N, where

We call this term 
the residual



Selecting optimal step sizes

Make derivative of loss function with respect to       equal to zero:η𝑖

𝐸 𝑓𝑖+1 = 𝐺 𝑓𝑖 + η𝑖𝑟𝑖 − 𝑣
2

𝜕𝐸 𝑓𝑖+1

𝜕η𝑖
= 𝑏 − 𝐴 𝑓𝑖 + η𝑖𝑟𝑖 𝑇

𝑟𝑖 = 0 ⇒ η𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed 

using convolutions with the Laplacian kernel.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



In practice: conjugate gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑑𝑖 , for i = 0, 1, …, N

η𝑖 =
𝑑𝑖 𝑇

𝑟𝑖

𝑑𝑖 𝑇𝐴𝑑𝑖

𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

𝛽𝑖+1 =
𝑟𝑖+1 𝑇

𝑟𝑖+1

𝑟𝑖 𝑇𝑟𝑖

𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖 , • Smarter way for selecting 
update directions

• Everything can still be done 
using convolutions

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Note: initialization

Does the initialization f0 matter?



Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

• It does matter in terms of convergence speed.
• We typically use a multi-grid approach: 

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution NxN.



In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

WARNING: requires special treatment at the borders
(target boundary values are same as source )

linear equation 
of N variables

one for each pixel 
in destination

We can rewrite this as

How would you solve this?

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0



Note: Handling (Dirichlet) boundary conditions

• Form a mask M that is 0 for pixels that should not be 
updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over 
the entire image.

• Use (conjugate) gradient descent rules to only 
update pixels for which the mask is 1. Equivalently,
change the update rules to:

𝑓𝑖+1 = 𝑓𝑖 + 𝑀η𝑖𝑟𝑖

𝑓𝑖+1 = 𝑓𝑖 + 𝑀𝑑𝑖𝑟𝑖

(gradient descent)

(conjugate gradient descent)



Poisson image editing examples



Photoshop’s “healing brush”

Slightly more advanced version 
of what we covered here:
• Uses higher-order derivatives



Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.



Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.



More blending

copy-paste Poisson blendingoriginals



Blending transparent objects



Blending objects with holes



Editing



Concealment

How would you do this 
with Poisson blending?



Concealment

How would you do this 
with Poisson blending?

• Insert a copy of the 
background.



Texture swapping



Special case: membrane interpolation

How would you do this?



Special case: membrane interpolation

How would you do this?

Poisson problem

Laplacian problem



Flash/no-flash photography



No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look



Denoising Result



• Show a larger result here

No-Flash



Denoising Result



Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?



Can we do similar flash/no-flash fusion tasks with 
gradient-domain processing?



Removing self-reflections and hot-spots
Ambient Flash
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Removing self-reflections and hot-spots
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Idea: look at how gradients are affected
Same gradient 
vector direction
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Idea: look at how gradients are affected
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Gradient projections
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Flash/no-flash with gradient-domain processing

2D 

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient 

Vector Projection

Result X

Result Y

Result

2D Integration



Gradient-domain rendering







Primal domain Gradient domain



Primal domain Gradient domain

gradients of 
natural images 

are sparse
(close to zero 

in most places)



Can I go from one image to the other?



Can I go from one image to the other?
differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson reconstruction)



Rendering

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?



Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) 

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem



Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) 

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

Why not all?



Rendering

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) in 
primal domain, to use as boundary conditions when doing Poisson reconstruction.
• In practice, do image-space stratified sampling to select these pixels.



Rendering

Primal-domain rendering: simulate 
intensities directly

Gradient-domain rendering: simulate 
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) in 
primal domain, to use as boundary conditions when doing Poisson reconstruction.
• In practice, do image-space stratified sampling to select these pixels.



Gradient-domain rendering

A lot of papers since SIGGRAPH 2013 
(first introduction of gradient-domain 
rendering) that are looking to extend 
basically all primal-domain rendering 
algorithms to the gradient domain.



Does it help?



Gradient-domain path tracing (2 minutes)



Primal-domain path tracing (2 minutes)



Primal domain Gradient domain

gradients of 
natural images 

are sparse
(close to zero 

in most places)

Remember this idea (we’ll come back to it)



Gradient cameras



One of my favorite papers

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?



Primal domain Gradient domain

gradients of 
natural images 

are sparse
(close to zero 

in most places)

What implication would this have on a camera?



One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?



One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?



Change the sensor
Can you think how?



Change the sensor
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firing 
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Any disadvantages of this sensor?

Why is this better than computing 
gradients in post-processing?



Change the sensor
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of inputs)

firing 
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Any disadvantages of this sensor?
• Spatial resolution reduced by 2x.
• Photon and dark noise are amplified.

Why is this better than computing 
gradients in post-processing?
• Additive noise is added directly to 

gradient.
• Subtracting two intensities doubles 

additive noise.



Change the optics
Can you think how?



Change the optics
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lenslet

refractive 
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template 
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels
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Optical filtering Angle-sensitive pixels

Any disadvantages?



Change the optics

photodetectors

lenslet

refractive 
slab

template 
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

Any disadvantages?
• Reduced light efficiency (we block light).
• We can’t do subtraction very easily in optics.



One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
• Change the sensor.
• Change the optics.



We can also compute temporal gradients

event-based cameras (a.k.a. 
dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim

https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim


Slowly becoming popular in robotics and vision



Basic reading:
• Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.
• Pérez et al., “Poisson Image Editing,” SIGGRAPH 2003.

The original Poisson image editing paper.
• Agrawal and Raskar, “Gradient Domain Manipulation Techniques in Vision and Graphics,” ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/

A great resource (entire course!) for gradient-domain image processing. 
• Agrawal et al., “Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling,” SIGGRAPH 2005.

A paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:
• Georgiev, “Covariant Derivatives and Vision,” ECCV 2006.

An paper from Adobe on the version of Poisson blending implemented in Photoshop’s “healing brush”.
• Elder and Goldberg, “Image editing in the contour domain”, PAMI 2001.

One of the very first papers discussing gradient-domain image processing.
• Frankot and Chellappa, “A method for enforcing integrability in shape from shading algorithms,” PAMI 1988.
• Bhat et al., “Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems,” ECCV 2008.

A couple of papers discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
• Agrawal et al., “What Is the Range of Surface Reconstructions from a Gradient Field?,” ECCV 2006.

A paper discussing both Poisson solvers and projection-based methods for integration in a unified way, along with suggesting various generalizations.
• Szeliski, “Locally adapted hierarchical basis preconditioning,” SIGGRAPH 2006.

A standard reference on multi-grid and preconditioning techniques for accelerating the Poisson solver. 
• Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,” CMU TR 1994, http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

A great reference on conjugate gradient solvers for large linear systems.
• Briggs et al., “A multigrid tutorial,” SIAM 2000.

A nice reference book on multi-grid approaches.
• Bhat et al., “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” TOG 2010.

A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond blending, including tone-mapping, 
colorization, converting to grayscale, edge enhancement, image abstraction and non-photorealistic rendering.

• Krishnan and Fergus, “Dark Flash Photography,” SIGGRAPH 2009.
A paper proposing doing flash/no-flash photography using infrared flash lights.

• Kazhdan et al., “Poisson surface reconstruction,” SGP 2006.
• Kazhdan and Hoppe, “Screened Poisson surface reconstruction,” TOG 2013.

Two papers discussing Poisson problems for reconstructing meshes from point clouds and normals. This is arguably the most commonly used surface reconstruction algorithm.
• Lehtinen et al., “Gradient-domain metropolis light transport,” SIGGRAPH 2013.
• Kettunen et al., “Gradient-domain path tracing,” SIGGRAPH 2015.
• Hua et al., “Light transport simulation in the gradient domain,” SIGGRAPH Asia 2018 course, http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018_GradientCourse/

In addition to editing images in the gradient-domain, we can render them directly in the gradient-domain.
• Tumblin et al., “Why I want a gradient camera?” CVPR 2005.

We can even directly measure images in the gradient domain, using so-called gradient cameras.
• Koppal et al., “Toward wide-angle microvision sensors”, PAMI 2013.

Gradient cameras using optical filtering.
• Chen et al., “ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels,” CVPR 2016.

Gradient cameras using angle-sensitive pixels.
• Kim et al., “Real-time 3D reconstruction and 6-DoF tracking with an event camera,” ECCV 2016.

A paper on using evet-based cameras for computer vision applications in very fast frame rates (best paper award at ECCV 2016!).
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