
Gradient-domain image processing

15-463, 15-663, 15-862
Computational Photography

Fall 2019, Lecture 9http://graphics.cs.cmu.edu/courses/15-463

Course announcements

• Homework 2 is out.
- Due September 27th.
- Requires camera and tripod.
- Start early! Substantially larger programming and imaging components than in Homework 1.
- Generous bonus component, up to 50% extra credit.
- No really: start early!

• Computational imaging group meeting is on Fridays, 3 - 4 pm, WEH 5421.
- You are welcome to attend.
- You can also join the comp-imaging mailing list for related announcements (see Piazza for link).

Overview of today’s lecture
• Gradient-domain image processing.

• Basics on images and gradients.

• Integrable vector fields.

• Poisson blending.

• A more efficient Poisson solver.

• Poisson image editing examples.

• Flash/no-flash photography.

• Gradient-domain rendering.

• Gradient cameras.

Slide credits

Many of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).
• Fredo Durand (MIT).
• James Hays (Georgia Tech).
• Amit Agrawal (MERL).
• Jaakko Lehtinen (Aalto University).

Gradient-domain image processing

Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending

Application: Poisson blending

originals copy-paste Poisson blending

More applications

Removing Glass Reflections

Seamless Image Stitching

Yet more applications

Tonemapping

Fusing day and night photos

Entire suite of image editing tools

Main pipeline

Estimation

of Gradients

Manipulation of

Gradients

Non-Integrable

Gradient Fields

Reconstruction

from

Gradients

Images/Videos/

Meshes/Surfaces

Images/Videos/

Meshes/Surfaces

Basics of images and gradients

Image representation

We can treat images as scalar fields (i.e., two dimensional functions)

I(x,y): ℝ2 → ℝ

Image gradients

Convert the scalar field into a vector field through differentiation.

},{
y

I

x

I
I








=),(yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

Image gradients

Convert the scalar field into a vector field through differentiation.

},{
y

I

x

I
I








=),(yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

• How do we do this differentiation in real discrete images?

Finite differences

High-school reminder: definition of a derivative using forward difference

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

How do you efficiently
compute this?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

What convolution kernel
does this correspond to?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

-1 0 1 ?

?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

1D derivative filter

Finite differences

High-school reminder: definition of a derivative using forward difference

For discrete signals: Remove limit and set h = 1

We will be using forward differences in this lecture!

𝑓′ 𝑥 = 𝑓 𝑥 + 1 − 𝑓(𝑥) 1 -1

1D derivative filter

Image gradients

Convert the scalar field into a vector field through differentiation.

},{
y

I

x

I
I








=),(yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?

Vector field integration

Two core questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

Integrable vector fields

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that

𝜕𝐼

𝜕𝑥
𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ2 → ℝ 𝑣 𝑥, 𝑦 : ℝ2 → ℝ𝑢 𝑥, 𝑦 : ℝ2 → ℝ

𝜕𝐼

𝜕𝑦
𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

IICurl =)(

IIDiv •=)(

What is the dimension of this?

What is the dimension of this?

Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

IICurl =)(

IIDiv •=)(

Another vector field (in 2D, this
is parallel to a vector

orthogonal to the 2D plane).

Scalar field

How do we write these operators in terms of derivatives of I?

yyxx

yx

yx
II

y

I

x

I
IIdiv +=




+




=),(

Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

IICurl =)(
xyyx

xy

yx

II
y

I

x

I

II

yx −=



−




=







det

(here we ignore a unit vector k)

Property of twice-differentiable functions

Curl of the gradient field should be zero:

What does that mean intuitively?

0)(=−=
xyyx

IIICurl

Property of twice-differentiable functions

Curl of the gradient field should be zero:

0)(=−=
xyyx

IIICurl

What does that mean intuitively?

• Same result independent of order of differentiation.

xyyx
II =

Demonstration

Image Ix Iy

Div(Ix, Iy) Curl(Ix, Iy) Ixy Iyx

=

How do we compute this?

Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

?

first-order
finite difference

1D derivative filter

second-order
finite difference

Laplace filter

1 -1

Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

first-order
finite difference

1D derivative filter

second-order
finite difference 1 -2 1

Laplace filter

1 -1

Property of twice-differentiable functions

Curl of the gradient field should be zero:

0)(=−=
xyyx

IIICurl

What does that mean intuitively?

• Same result independent of order of differentiation.

xyyx
II =

Can you use this property to derive an integrability condition?

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that

𝜕𝐼

𝜕𝑥
𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ2 → ℝ 𝑣 𝑥, 𝑦 : ℝ2 → ℝ𝑢 𝑥, 𝑦 : ℝ2 → ℝ

𝜕𝐼

𝜕𝑦
𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

∇ ×
𝑢 𝑥, 𝑦

𝑣 𝑥, 𝑦
= 0 ⇒

𝜕𝑢

𝜕𝑦
𝑥, 𝑦 =

𝜕𝑣

𝜕𝑦
𝑥, 𝑦

Only if:

Vector field integration

Two core questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?

Different types of integration problems

• Reconstructing height field from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.

Poisson blending

Application: Poisson blending

originals copy-paste Poisson blending

When blending, retain the gradient information as best as possible

4
0

Key idea

source destination copy-paste Poisson blending

two signals regular blending blending derivatives

bright

dark

Poisson blending: 1D example

Definitions and notation

add image
here

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation

Which one is the unknown?

Definitions and notation

add image
here

How should we determine f?
• should it look like g?
• should it look like f*?

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation

Variational problem

what does this
term do?

what does this
term do?

Image gradient

Recall ...

Interpolation criterion

is this known?

“Variational” means
optimization where
the unknown is an

entire function

Variational problem

gradient of f looks
like gradient of g

f is equivalent to f*
at the boundaries

Image gradient

Recall ...

Interpolation criterion

Yes, since the source
function g is known

“Variational” means
optimization where
the unknown is an

entire function

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

This is where Poisson
blending comes from

what does this term do?

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

Laplacian of f same as g

Poisson equation (with Dirichlet boundary conditions)

Equivalently

so make these guys ...

the same

How can we do this?

Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:
How did we compute

the Laplacian?
Or for discrete images:

Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace
filter

What’s known and what’s unknown?

Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace
filterOr for discrete images:

f is unknown except
at the boundary

g and its Laplacian
are known

In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

WARNING: requires special treatment at the borders
(target boundary values are same as source)

linear equation
of N variables

one for each pixel
in destination

We can rewrite this as

How would you solve this?

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0

Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to
compute the inverse of a matrix.

Integration procedures

• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
+ Quadtree decompositions.

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.

A more efficient Poisson solver

Variational problem

gradient of f looks
like gradient of g

f is equivalent to f*
at the boundaries

Image gradient

Recall ...

Let’s look again at our optimization problem

Variational problem

gradient of f looks
like gradient of g

f is equivalent to f*
at the boundaries

Let’s look again at our optimization problem

And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1

Image gradient

Recall ...

Discrete problem
What are G, f, and v?

Let’s look again at our optimization problem

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
𝑓

𝐺𝑓 − 𝑣 2

Image gradient

Recall ... And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1

Discrete problem
matrix G formed by stacking
together discrete gradients

Let’s look again at our optimization problem

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ... And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1

Discrete problem
matrix G formed by stacking
together discrete gradients

Let’s look again at our optimization problem

How do we solve
this optimization

problem?min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of
the unknown image

vectorized version of the
target gradient field

Image gradient

Recall ... And for discrete images:

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

1 -1

1

-1

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
=?

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we do what with it?

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

What is this matrix?

What is this vector?

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

It is equal to the
Laplacian matrix A we

derived previously!

It is equal to the vector
b we derived previously!

Poisson equation (with Dirichlet boundary conditions)

Reminder from variational case

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace
filter

What’s known and what’s unknown?

In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

linear equation
of N variables

one for each pixel
in destination

Reminder from variational case

Same system as:

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0

𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

We arrive at the same system, no matter whether we discretize the
continuous Poisson equation or the variational optimization problem.

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝐺𝑇𝑣

Solving this is exactly as
expensive as what we

had before.

Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣 = 𝐴𝑓 − 𝑏 ≡ 𝑟

We call this term
the residual

Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝐺𝑇𝑣 = 𝐴𝑓 − 𝑏 ≡ 𝑟

… and then we iteratively compute a solution:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖

are positive step sizesη𝑖
for i = 0, 1, …, N, where

We call this term
the residual

Selecting optimal step sizes

Make derivative of loss function with respect to equal to zero:η𝑖

𝐸 𝑓𝑖+1 = 𝐺 𝑓𝑖 + η𝑖𝑟𝑖 − 𝑣
2

𝜕𝐸 𝑓𝑖+1

𝜕η𝑖
= 𝑏 − 𝐴 𝑓𝑖 + η𝑖𝑟𝑖 𝑇

𝑟𝑖 = 0 ⇒ η𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed

using convolutions with the Laplacian kernel.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

In practice: conjugate gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑑𝑖 , for i = 0, 1, …, N

η𝑖 =
𝑑𝑖 𝑇

𝑟𝑖

𝑑𝑖 𝑇𝐴𝑑𝑖

𝑟𝑖 = 𝑏 − 𝐴𝑓𝑖 ,

𝛽𝑖+1 =
𝑟𝑖+1 𝑇

𝑟𝑖+1

𝑟𝑖 𝑇𝑟𝑖

𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖 , • Smarter way for selecting
update directions

• Everything can still be done
using convolutions

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Note: initialization

Does the initialization f0 matter?

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex.

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex.

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

• It does matter in terms of convergence speed.
• We typically use a multi-grid approach:

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution NxN.

In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

WARNING: requires special treatment at the borders
(target boundary values are same as source)

linear equation
of N variables

one for each pixel
in destination

We can rewrite this as

How would you solve this?

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0

Note: Handling (Dirichlet) boundary conditions

• Form a mask M that is 0 for pixels that should not be
updated (pixels on S-Ω and 𝜕Ω) and 1 otherwise.

• Use convolution to perform Laplacian filtering over
the entire image.

• Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

𝑓𝑖+1 = 𝑓𝑖 + 𝑀η𝑖𝑟𝑖

𝑓𝑖+1 = 𝑓𝑖 + 𝑀𝑑𝑖𝑟𝑖

(gradient descent)

(conjugate gradient descent)

Poisson image editing examples

Photoshop’s “healing brush”

Slightly more advanced version
of what we covered here:
• Uses higher-order derivatives

Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

More blending

copy-paste Poisson blendingoriginals

Blending transparent objects

Blending objects with holes

Editing

Concealment

How would you do this
with Poisson blending?

Concealment

How would you do this
with Poisson blending?

• Insert a copy of the
background.

Texture swapping

Special case: membrane interpolation

How would you do this?

Special case: membrane interpolation

How would you do this?

Poisson problem

Laplacian problem

Flash/no-flash photography

No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

Denoising Result

• Show a larger result here

No-Flash

Denoising Result

Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?

Can we do similar flash/no-flash fusion tasks with
gradient-domain processing?

Removing self-reflections and hot-spots
Ambient Flash

Removing self-reflections and hot-spots
Ambient Flash

Hands

Face

Tripod

Removing self-reflections and hot-spots
ResultAmbient

Flash

Reflection Layer

Idea: look at how gradients are affected
Same gradient
vector direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections

Idea: look at how gradients are affected
Reflection Ambient Gradient

VectorDifferent gradient
vector direction

With reflections

Ambient Flash

Flash Gradient Vector

Gradient projections
Residual
Gradient
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector

Ambient Flash

Flash/no-flash with gradient-domain processing

2D

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient

Vector Projection

Result X

Result Y

Result

2D Integration

Gradient-domain rendering

Primal domain Gradient domain

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

Can I go from one image to the other?

Can I go from one image to the other?
differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson reconstruction)

Rendering

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Rendering

Why would gradient-domain rendering make sense?
• Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples)

on rendering the few pixels that are non-zero in gradient space, with much lower variance.
• Poisson reconstruction performs a form of “filtering” to further reduce variance.

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

Why not all?

Rendering

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) in
primal domain, to use as boundary conditions when doing Poisson reconstruction.
• In practice, do image-space stratified sampling to select these pixels.

Rendering

Primal-domain rendering: simulate
intensities directly

Gradient-domain rendering: simulate
gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) in
primal domain, to use as boundary conditions when doing Poisson reconstruction.
• In practice, do image-space stratified sampling to select these pixels.

Gradient-domain rendering

A lot of papers since SIGGRAPH 2013
(first introduction of gradient-domain
rendering) that are looking to extend
basically all primal-domain rendering
algorithms to the gradient domain.

Does it help?

Gradient-domain path tracing (2 minutes)

Primal-domain path tracing (2 minutes)

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

Remember this idea (we’ll come back to it)

Gradient cameras

One of my favorite papers

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

Primal domain Gradient domain

gradients of
natural images

are sparse
(close to zero

in most places)

What implication would this have on a camera?

One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

Change the sensor
Can you think how?

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?

Why is this better than computing
gradients in post-processing?

Change the sensor

photodiodephotodiode

microlensmicrolens

potential
well

potential
well

analog
voltage

analog
voltage

discrete
signal

discrete
signal

typical analog front-end

+

-

operational amplifier
(amplify difference

of inputs)

firing
mechanism

Any disadvantages of this sensor?
• Spatial resolution reduced by 2x.
• Photon and dark noise are amplified.

Why is this better than computing
gradients in post-processing?
• Additive noise is added directly to

gradient.
• Subtracting two intensities doubles

additive noise.

Change the optics
Can you think how?

Change the optics

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

Change the optics

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

Any disadvantages?

Change the optics

photodetectors

lenslet

refractive
slab

template
(edge filter)

resulting image

Physical Layout Impulse Response (2D)

Optical filtering Angle-sensitive pixels

Any disadvantages?
• Reduced light efficiency (we block light).
• We can’t do subtraction very easily in optics.

One of my favorite papers

Why would you want a gradient camera?
• Much faster frame rate, as you only read out very few pixels (where gradient is significant).
• Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
• Change the sensor.
• Change the optics.

We can also compute temporal gradients

event-based cameras (a.k.a.
dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim

https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim

Slowly becoming popular in robotics and vision

Basic reading:
• Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.
• Pérez et al., “Poisson Image Editing,” SIGGRAPH 2003.

The original Poisson image editing paper.
• Agrawal and Raskar, “Gradient Domain Manipulation Techniques in Vision and Graphics,” ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/

A great resource (entire course!) for gradient-domain image processing.
• Agrawal et al., “Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling,” SIGGRAPH 2005.

A paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:
• Georgiev, “Covariant Derivatives and Vision,” ECCV 2006.

An paper from Adobe on the version of Poisson blending implemented in Photoshop’s “healing brush”.
• Elder and Goldberg, “Image editing in the contour domain”, PAMI 2001.

One of the very first papers discussing gradient-domain image processing.
• Frankot and Chellappa, “A method for enforcing integrability in shape from shading algorithms,” PAMI 1988.
• Bhat et al., “Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems,” ECCV 2008.

A couple of papers discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
• Agrawal et al., “What Is the Range of Surface Reconstructions from a Gradient Field?,” ECCV 2006.

A paper discussing both Poisson solvers and projection-based methods for integration in a unified way, along with suggesting various generalizations.
• Szeliski, “Locally adapted hierarchical basis preconditioning,” SIGGRAPH 2006.

A standard reference on multi-grid and preconditioning techniques for accelerating the Poisson solver.
• Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,” CMU TR 1994, http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

A great reference on conjugate gradient solvers for large linear systems.
• Briggs et al., “A multigrid tutorial,” SIAM 2000.

A nice reference book on multi-grid approaches.
• Bhat et al., “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” TOG 2010.

A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond blending, including tone-mapping,
colorization, converting to grayscale, edge enhancement, image abstraction and non-photorealistic rendering.

• Krishnan and Fergus, “Dark Flash Photography,” SIGGRAPH 2009.
A paper proposing doing flash/no-flash photography using infrared flash lights.

• Kazhdan et al., “Poisson surface reconstruction,” SGP 2006.
• Kazhdan and Hoppe, “Screened Poisson surface reconstruction,” TOG 2013.

Two papers discussing Poisson problems for reconstructing meshes from point clouds and normals. This is arguably the most commonly used surface reconstruction algorithm.
• Lehtinen et al., “Gradient-domain metropolis light transport,” SIGGRAPH 2013.
• Kettunen et al., “Gradient-domain path tracing,” SIGGRAPH 2015.
• Hua et al., “Light transport simulation in the gradient domain,” SIGGRAPH Asia 2018 course, http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018_GradientCourse/

In addition to editing images in the gradient-domain, we can render them directly in the gradient-domain.
• Tumblin et al., “Why I want a gradient camera?” CVPR 2005.

We can even directly measure images in the gradient domain, using so-called gradient cameras.
• Koppal et al., “Toward wide-angle microvision sensors”, PAMI 2013.

Gradient cameras using optical filtering.
• Chen et al., “ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels,” CVPR 2016.

Gradient cameras using angle-sensitive pixels.
• Kim et al., “Real-time 3D reconstruction and 6-DoF tracking with an event camera,” ECCV 2016.

A paper on using evet-based cameras for computer vision applications in very fast frame rates (best paper award at ECCV 2016!).

References

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018_GradientCourse/

