Gradient-domain image processing

15-463, 15-663, 15-862
Computational Photography

http://graphics.cs.cmu.edu/courses/15-463 Fall 2019, Lecture S



Course announcements

* Homework 2 is out.
- Due September 27t
- Requires camera and tripod.
- Start early! Substantially larger programming and imaging components than in Homework 1.
- Generous bonus component, up to 50% extra credit.
- No really: start early!

 Computational imaging group meeting is on Fridays, 3 -4 pm, WEH 5421.
- You are welcome to attend.
- You can also join the comp-imaging mailing list for related announcements (see Piazza for link).



Overview of today’s lecture

Gradient-domain image processing.
Basics on images and gradients.
Integrable vector fields.

Poisson blending.

A more efficient Poisson solver.
Poisson image editing examples.
Flash/no-flash photography.
Gradient-domain rendering.

Gradient cameras.



Slide credits

Many of these slides were adapted from:

e Kris Kitani (15-463, Fall 2016).
 Fredo Durand (MIT).

e James Hays (Georgia Tech).

e Amit Agrawal (MERL).

* Jaakko Lehtinen (Aalto University).



Gradient-domain image processing



Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending



Poisson blending

Application

Poisson blending

copy-paste

originals



More applications

Seamless Image Stit'ching



Yet more applications
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Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework
for Image and Video Filtering

Pravin Bhat! C. Lawrence Zitnick? Michael Cohen!-2  Brian Curless?!
1University of Washington 2Microsoft Research

(c) Pseudo-relighting filter (d) Non-photorealistic rendering filter

(e) Compressed input-image (f) De-blocking filter (g) User input for colorization (h) Colorization filter

Figure 1: The figure shows some of the image-enhancement filters we have created using the GradientShop optimization-framework. Gradi-
entShop has been designed to allow applications to explore gradient-domain solutions for various image processing problems.




Main pipeline

Non-Integrable ‘
Gradient Fields




Basics of images and gradients



Image representation

We can treat images as scalar fields (i.e.. two dimensional functions)




Image gradients

Convert the scalar field into a vector field through differentiation.

ol Ol
scalar field 1(x,y) : R?—> R ) vector field VI :{5 " } R R
X oy




Image gradients

Convert the scalar field into a vector field through differentiation.

0
scalar field 1(x,y) :RZ2-> R - vector field VI ={

 How do we do this differentiation in real discrete images?



Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h




Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

ff(:t:) B f(ﬂl‘ + 1) — f(:l? — 1) How do you efficiently
_ 9 compute this?




Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

ff(:t:) B f(ﬂl‘ + 1) — f(:l? — 1) What convolution kernel
_ 9 does this correspond to?




Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

flz+1)— flz—1)
2

f'(z) =




Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

flx+1) — f(z—1) 1D derivative filter
2 1]0(-1

f'(z) =




Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

For discrete signals: Remove limitand seth =1
1D derivative filter

fllx) = flx+1) = f(x) 1]

We will be using forward differences in this lecture!



Image gradients

Convert the scalar field into a vector field through differentiation.

0
scalar field 1(x,y) :RZ2-> R - vector field VI ={

 How do we do this differentiation in real discrete images?

 Can we go in the opposite direction, from gradients to images?



Vector field integration

Two core questions:

 When is integration of a vector field possible?

* How can integration of a vector field be performed?



Integrable vector fields



Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

P

I(x,y): R > R
ol
E (x,y) = u(x,y)
ol
dy

such that
(x,y) =v(x,y)



Curl and divergence

Curl: vector operator showing the rate of rotation of a vector field.

Curl (VI)=V xVI What is the dimension of this?

Divergence: vector operator showing the isotropy of a vector field.

Div (V | ) =—VeV] What is the dimension of this?



Curl and divergence

Curl: vector operator showing the rate of rotation of a vector field.

Another vector field (in 2D, this
Curl (VI)=V xVI is parallel to a vector
orthogonal to the 2D plane).

Divergence: vector operator showing the isotropy of a vector field.
Div(VI)=V eV Scalar field

How do we write these operators in terms of derivatives of |?



Curl and divergence

Curl: vector operator showing the rate of rotation of a vector field.

0 0
— | a1, ol
Curl (VI)=det|ox oy|=——-—=1,-1,
| | OX oy
X y (here we ignore a unit vector k)

Divergence: vector operator showing the isotropy of a vector field.

_ Ol ol,
div(l,1)=—7+—=1,+1_
OX oy




Property of twice-differentiable functions

Curl of the gradient field should be zero:

Curl (VI)=1_-1_=0

Xy

What does that mean intuitively?



Property of twice-differentiable functions

Curl of the gradient field should be zero:

Curl (VI)=1_-1_=0

Xy

What does that mean intuitively?
e Same result independent of order of differentiation.



Demonstration

How do we compute this? —> Div(l, I) Curl(l, 1) | |



Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

first-order , . flx+h)— f(x) 1D derivative filter
= —>
finite difference fz) J%,IE%] h 1 | -1
second-order flz+h) = 2f(z) + f(x — h) Laplace filter

finite difference () = Jim ¥ ?



Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

first-order , . flx+h)— f(x) 1D derivative filter
= —>
finite difference fz) J%,IE%] h 1 | -1
second-order flx+h) = 2f(x) + flx — h) Laplace filter

finite difference f(:r'):%% h? 1(-211




Property of twice-differentiable functions

Curl of the gradient field should be zero:

Curl (VI)=1_-1_=0

Xy

What does that mean intuitively?
e Same result independent of order of differentiation.

Can you use this property to derive an integrability condition?



Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

P

I(x,y): R > R
0l

a(x’y) =u(x,y) Only if:
such that u(x,y) ou dv
ol Vx[ ’ =0=>—(x,y) = —(x,
(,9) = v(x,y) v(x,y) ay ) = 5y oY)

dy



Vector field integration

Two core questions:

 When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

 How can integration of a vector field be performed?



Different types of integration problems

* Reconstructing height field from gradients
Applications: shape from shading, photometric stereo

 Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

 Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
* Integration must be done approximately.



Poisson blending



Poisson blending

Application

Poisson blending

copy-paste

originals



Key idea

When blending, retain the gradient information as best as possible

f—

source destination copy-paste Poisson blending



Poisson blending: 1D example
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Definitions and notation

Notation

g: source function

S: destination o
(): destination domain 5
f: interpolant function
f*: destination function
dQ

f f

Which one is the unknown?



Definitions and notation

Notation
g: source function

S: destination

Q): destination domain 5
f: interpolant function
f*. destination function
%49
How should we determine f?
e should it look like g7 f

e should it look like f*?

f*



Interpolation criterion

|I)

Variational” means Variational problem
optimization where

the unknown is an . .
entire function m}n // IVf— V|2 with  flag = f"|aq
Q
what does this what does this
term do? term do?

Recall ...

is this known?

_|9f of _ _
Vf— _833" 8?}_ V—(Hj’U)—Vg




Interpolation criterion

Variational” means Variational problem
optimization where

the unknown is an . 9 ) .
entire function m}n // |Vf - V| with f|8ﬂ =f |8Q
Q
gradient of f looks  fis equivalent to f*
like gradient of g at the boundaries

Recall ...

Yes, since the source
function g is known

_|9f of _ _
Vf— _833" 8?}_ V—(Hj’U)—Vg




Equivalently

This is where Poisson
blending comes from

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flaao= f"|s0
what does this term do?

v = (u,v) = Vg

. ou Ov

divv=—+ —

2r o or Oy

_ 2 2
Af_amfray2 :ag+ag
Ozx? = Oy?

, ou Ov = Ag
div v =



Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa
Laplacian of f same as g

v = (u,v) = Vg

. ou Ov

divv=—+ —

2r o or Oy

_ 2 2
Af_amfray2 :ag+ag
Ozx? = Oy?

, ou Ov = Ag
div v =

oz " By



Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

so make these guys ... S
4 \
Ag Af
pV V4 90
J the same

How can we do this?



Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Afp — Agﬁ How did we compute

the Laplacian?
Or for discrete images: 4fp — Z fqo =49, — Z 9q & saplacian

qEN gENy



Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Af, = Agp Recall...
Laplace i
Or for discrete images:  4jfp — = 4q, — . 4] 1
ges: 4/p Z Ja =49 Z o  filter [-T7T5
gEND gEN,

What’s known and what’s unknown?



Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Af, = Agp Recall...
Laplace i
Or for discrete images:  4jfp — = 4q, — . 4] 1
ges: 4/p Z Ja =49 Z o  filter [-T7T5
gEND gEN,

fis unknown except g and its Laplacian
at the boundary are known



We can rewrite this as

linear equation Af, — Z fo =49, — Z g, oneforeach pixel

of N variables in destination

gENp qENp
In vector form: R
0.--—1-—1 4 —1-+-—1--0] far Age, Linear system of equations
What is this? 7 o Ades |j> Af — b
fp = | Agp
fQ‘S qu3
(each pixel adds another ‘sparse’ row here) | : : How would you solve this?
fas Agq,
| f;\r | i AMLIN |

WARNING: requires special treatment at the borders
(target boundary values are same as source )



Solving the linear system

Convert the system to a linear least-squares problem:

Eris = |[|[Af - b|?
Expand the error:

Eis=f"(ATA)f —2f"(A"b) +|b]?

Minimize the error:

Set derivative to O (ATA)f — ATb

Solve for x f = (ATA)_IATb



Solving the linear system

Convert the system to a linear least-squares problem: In Matlab:

Eris = |[|[Af - b|? f =2\ Db
Expand the error:

Eis=f"(ATA)f —2f"(A"b) +|b]?

Minimize the error:

Set derivative to O (ATA)f — ATb

Solve forx  f = (ATA)—lA‘I‘b <« Note: You almost never want to
compute the inverse of a matrix.



Integration procedures

e Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

e Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
+ Quadtree decompositions.

e Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.



A more efficient Poisson solver



Let’s look again at our optimization problem

Variational problem
][][1}][1//|Vf—‘f|2 with  flaa = f*|an
Q

gradient of f looks  fis equivalent to f*

like gradient of g at the boundaries
Recall ...
Of Of
V=15
Oz Oy _




Let’s look again at our optimization problem

Variational problem
][][1}][1//|Vf—‘f|2 with  flaa = f*|an
Q

gradient of f looks  fis equivalent to f*

like gradient of g at the boundaries
Recall ... And for discrete images:
0
) ) Ix ~1 11 -1
of Of
V= Oz’ Oy 9L
- - dy |-1




Let’s look again at our optimization problem

We can use the
gradient
approximation to
discretize the
variational problem

Recall ...

Vf

p— 0 1

Discrete problem

: 2 boundary conditions
mflnlle o U” for now.

And for discrete images:

0
ox

1 | -1

Of Of

Oz’ Oy Tl




Let’s look again at our optimization problem

Discrete problem

matrix G formed by stacking
together discrete gradients®\|

min||Gf — v

We can use the
gradient
approximation to

We will ignore the
boundary conditions

discretize the f X for now.
variational problem vectorized version of M vectorized version of the
the unknown image target gradient field
Recall ... And for discrete images:
d
Ix ~1 1 1-1

vf: afuaf 0 1
Oz Oy 5= [




Let’s look again at our optimization problem

Discrete problem

matrix G formed by stacking
together discrete gradients®\|

min||Gf — v||*
A \
vectorized version of M vectorized version of the

How do we solve
this optimization
problem?

the unknown image target gradient field
Recall ... And for discrete images:
d
Ix ~1 1] -1

vf: afuaf 0 1
Oz Oy 5= [




Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —v]|?
... We compute its derivative:

OF
— =7

of



Approach 1: Compute stationary points

Given the loss function:

E(f) =lIGf — vl
... We compute its derivative:
9))
— =GTGf - GT
of f-Gw

... and we do what with it?



Approach 1: Compute stationary points

Given the loss function:

E(f) =lIGf — vl
... We compute its derivative:
9))
— =GTGf - GT
of f-Gw

... and we set that to zero:

> What is this vector?
oE . .
ﬁ =0=G Gf =G'v

| > \What s this matrix?




Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —vl|?

... We compute its derivative:

)
— =GTGf —GTv
daf
... and we set that to zero: S It is equal to the vector
0E —— b we derived previously!
ﬁ =0= GTGf = GTU It is equal to the
\—I—'

> Laplacian matrix A we
derived previously!



Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Af, = Agp Recall...
Laplace i
Or for discrete images:  4jfp — = 4q, — . 4] 1
ges: 4/p Z Ja =49 Z o  filter [-T7T5
gEND gEN,

What’s known and what’s unknown?



Reminder from variational case

linear equation Af, — Z fo =49, — Z g, oneforeach pixel

of N variables in destination

gEN qENp
In vector form: B

0.--—1-—1 4 —1-+-—1--0] fa Aga, Linear system of equations
fc';zz Agq, |fl> Af — b
fp = Agp

| , , Jas Bas Same system as:

(each pixel adds another ‘sparse’ row here) | : :
fQ4 qu4 T T
S GTGf = GTv
| .fN A i AgN i

We arrive at the same system, no matter whether we discretize the
continuous Poisson equation or the variational optimization problem.



Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —v]|?
... We compute its derivative:

0E

2 Trf _ T
57 GTGf — GTv

... and we set that to zero:

0E Solving this is exactly as
— =0 GTGf — GTU expensive as what we
af had before.



Approach 2: Use gradient descent

Given the loss function:
E(f) = lIGf —vl|?

... We compute its derivative:

0E |
_ T T.. _ _ We call this term
a7 =G Gf —G'v= Af —b=r the residual

of



Approach 2: Use gradient descent

Given the loss function:
E(f) = lIGf —vl|?

... We compute its derivative:

0E |
_ T T.. _ _ We call this term
7= Gf —G'v= Af —b=r the residual

daf
... and then we iteratively compute a solution:

fi+1 — fi + nirl' fori=0,1, .. N, where
l
1

are positive step sizes



Selecting optimal step sizes

Make derivative of loss function with respect to T]l equal to zero:

E(f) = IGf vl
E(F*1) = 6 (f* +nir') = o]

aE(fi+1) (ri)Tri

= [b—A(fi+nir)] ri=0=7i =

ont (rio)TArt



Gradient descent

Given the loss function:

E(f) = Gf —vlI?
Minimize by iteratively computing:

Fil = i gpipl gl = AFL _ (! ) rt

n - (TL)TATL

Is this cheaper than the pseudo-inverse approach?

fori=0,1, ..

. N



Gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:

T
Fitl = fi g pipl pl=p _ Af! i_(rl)rl 01N
— nr-, = , 1 = (Ti)TATi ori1=0,1, ..,

Is this cheaper than the pseudo-inverse approach?
 We never need to compute A, only its products with vectors f, r.



Gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:

T
Fil = flgpipl ol AfL i (r') r'
= +Nr, r=bp-— , — . . fori=0,1, ... N
T i (TL)TATL
Is this cheaper than the pseudo-inverse approach?

 We never need to compute A, only its products with vectors f, r.
e \Vectors f, r are images.



Gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:

T
Fitl = fi g pipl pl=p _ Af! i_(rl)rl 01N
— nr-, = , 1 = (Ti)TATi ori1=0,1, ..,

Is this cheaper than the pseudo-inverse approach?

 We never need to compute A, only its products with vectors f, r.

e \Vectors f, r are images.

 Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed
using convolutions with the Laplacian kernel.



In practice: conjugate gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:
ffl=fl4nid', rt=b—AfY, fori=0,1,.,N

i+1 _ .i+1 i+1 i
A" =r""+ 57 d",

* Smarter way for selecting
update directions

(Ti+1)T7"i+1 _ (di)TTi . Evgrything can.still be done
: : r]l — _ _ using convolutions
(ri)Tri (d)T Ad?

,Bi+1 —




Note: initialization

Does the initialization fo matter?



Note: initialization

Does the initialization fo matter?

* [t doesn’t matter in terms of what final f we converge to, because the loss function is convex.

E(f) =lGf — vl



Note: initialization

Does the initialization fo matter?

* [t doesn’t matter in terms of what final f we converge to, because the loss function is convex.

E(f) =lGf — vl

e |t does matter in terms of convergence speed.

* We typically use a multi-grid approach:
- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

- Use the solution to initialize gradient descent for an f with the original resolution NxN.



We can rewrite this as

linear equation Af, — Z fo =49, — Z g, oneforeach pixel

of N variables in destination

gENp qENp
In vector form: R
0.--—1-—1 4 —1-+-—1--0] far Age, Linear system of equations
What is this? 7 o Ades |j> Af — b
fp = | Agp
fQ‘S qu3
(each pixel adds another ‘sparse’ row here) | : : How would you solve this?
fas Agq,
| f;\r | i AMLIN |

WARNING: requires special treatment at the borders
(target boundary values are same as source )



Note: Handling (Dirichlet) boundary conditions

Form a mask M that is O for pixels that should not be
updated (pixels on S-€) and 9€)) and 1 otherwise.

Use convolution to perform Laplacian filtering over
the entire image.

Use (conjugate) gradient descent rules to only
update pixels for which the mask is 1. Equivalently,
change the update rules to:

fi+1 — fi 1 MT]iTi (gradient descent)

fi+1 — fi 4 Mdlri (conjugate gradient descent)

dQ

f*



Poisson image editing examples



Photoshop’s “healing brush”

Slightly more advanced version
of what we covered here:
e Uses higher-order derivatives




Contrast problem

Loss of contrast when pasting from dark to bright:
* Contrastis a multiplicative property.
* With Poisson blending we are matching linear differences.




Contrast problem

Loss of contrast when pasting from dark to bright:

* Contrastis a multiplicative property.
* With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.




originals copy-paste Poisson blending



Blending transparent objects

destination



Blending objects with holes

(¢) seamless cloning and destination av-
eraged

(d) mixed seamless cloning



INg
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Concealment

'." How would you do this
with Poisson blending?




Concealment

'." How would you do this
with Poisson blending?

 « Inserta copy of the
background.
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Special case: membrane interpolation

How would you do this?




Special case: membrane interpolation

How would you do this?

Poisson problem
m}n// |‘7f—v|2 with  flaa = f|en
Q
Laplacian problem

m}nf/Wflz with  flaa = f7|an
Q




Flash/no-flash photography
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Denoising Result




No-Flash




Denoising Result




Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
 How would you do this using the image editing techniques we’ve learned about?



Can we do similar flas
gradient-do

N/No-

main

‘lash fusion tasks with

orocessing?



Removing self-reflections and hot-spots
Ambient Flash




Removing self-reflections and hot-spots
Ambient Flash




Removing self-reflections and hot-spots

thenjt Result Reflection Layer




|dea: look at how gradients are affected

Same gradient Flash Gradient Vector
vector direction
Ambient Gradient Vector

[Ambient |  Flash

No reflections
i



|dea: look at how gradients are affected

Different gradient
vector direction

Reflection Ambient Gradient

Vector

Flash Gradient Vector

With reflections



Gradient projections

Flash Gradient Vector

Result Gradient Vector




2D Integration
Intensity Gradient

/

Vector Projection
. Result

Ambient



Gradient-domain rendering
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Gradient domain.




P gradients of

’ natural images
are sparse

(close to zero

in most places)

Gradient domaih.._



Can | go from one image to the other?




Can | go from one image to the other?

differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson reconstruction)



Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
intensities directly gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?



Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
intensities directly gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

* Since gradients are sparse, | can focus most (but not all of) my resources (i.e., ray samples)
on rendering the few pixels that are non-zero in gradient space, with much lower variance.

* Poisson reconstruction performs a form of “filtering” to further reduce variance.



Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
intensities directly gradients, then solve Poisson problem

Why would gradient-domain rendering make sense? Why not all?

* Since gradients are sparse, | can focus most (but not all of) my resources (i.e., ray samples)
on rendering the few pixels that are non-zero in gradient space, with much lower variance.

* Poisson reconstruction performs a form of “filtering” to further reduce variance.



Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
intensities directly gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) in
primal domain, to use as boundary conditions when doing Poisson reconstruction.
* |n practice, do image-space stratified sampling to select these pixels.



Rendering

Primal-domain rendering: simulate Gradient-domain rendering: simulate
intensities directly gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per “flat” region in the image) in
primal domain, to use as boundary conditions when doing Poisson reconstruction.
* |n practice, do image-space stratified sampling to select these pixels.



Gradient-domain rendering

Gradient-Domain Metropolis Light Transport

Jaakko Lehtinen?:2 Tero Karras! Samuli Laine! Miika AittalaZ:! Frédo Durand? Timo Ailal

I'NVIDIA Research 2 Aalto University SMIT CSAIL

Sample density Result

Figure 1: We compute image gradients I®, IV and a coarse image I° using a novel Metropolis algorithm that distributes samples according
to path space gradients, resulting in a distribution that mostly follows image edges. The final image is reconstructed using a Poisson solver.

Gradient-Domain Path Tracing

Markus Kettunen! ~ Marco Manzi? ~ Miika Aittalal Jaakko Lehtinen!+3 Frédo Durand* Matthias Zwicker?
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Figure 1: Comparing gradient-domain path tracing (G-PT, L1 reconstruction) to path tracing at equal rendering time (2 hours). In this
time, G-PT draws about 2,000 samples per pixel and the path tracer about 5,000. G-PT consistently outperforms path tracing, with the rare
exception of some highly specular objects. Our frequency analysis explains why G-PT outperforms conventional path tracing.

—
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A lot of papers since SIGGRAPH 2013
(first introduction of gradient-domain
rendering) that are looking to extend
basically all primal-domain rendering
algorithms to the gradient domain.



Does it help?
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7. & gradients of
’ natural images
are sparse
(close to zero
in most places)

Gradient domain.



Gradient cameras



One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Amit Agrawal Ramesh Raskar
Northwestern University University of Maryland MERL
jet@cs.northwestern.edu aagrawal@umd.edu raskar@merl.com

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?
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One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Amit Agrawal Ramesh Raskar
Northwestern University University of Maryland MERL
jet@cs.northwestern.edu aagrawal@umd.edu raskar@merl.com

Why would you want a gradient camera?

 Much faster frame rate, as you only read out very few pixels (where gradient is significant).
* Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?



One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Amit Agrawal Ramesh Raskar
Northwestern University University of Maryland MERL
jet@cs.northwestern.edu aagrawal@umd.edu raskar@merl.com

Why would you want a gradient camera?
 Much faster frame rate, as you only read out very few pixels (where gradient is significant).
* Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
* You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?



Change the sensor

Can you think how?



Change the sensor

Any disadvantages of this sensor?

photodiode

photodiode

Why is this better than computing

gradients in post-processing?
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(amplify difference
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typical analog front-end




Change the sensor

Any disadvantages of this sensor?
e Spatial resolution reduced by 2x.
* Photon and dark noise are amplified.

Why is this better than computing

gradients in post-processing?

* Additive noise is added directly to
gradient.

e Subtracting two intensities doubles
additive noise.

photodiode photodiode

analog analog discrete discrete
+ voltage voltage signal signal

operational amplifier
(amplify difference
of inputs)

firing

. typical analog front-end
mechanism yP &



Change the optics

Can you think how?



Change the optics

Optical filtering Angle-sensitive pixels
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Any disadvantages?
* Reduced light efficiency (we block light).
* We can’t do subtraction very easily in optics.
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One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Amit Agrawal Ramesh Raskar
Northwestern University University of Maryland MERL
jet@cs.northwestern.edu aagrawal@umd.edu raskar@merl.com

Why would you want a gradient camera?
 Much faster frame rate, as you only read out very few pixels (where gradient is significant).
* Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?
* You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?
 Change the sensor.
 Change the optics.



We can also compute temporal gradients
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event-based cameras (a.k.a. Event Camera
dynamic vision sensors, or DVS) o
Concept figure for event-based camera: g 5 ] y "Siy W X W i
https://www.youtube.com/watch?v=kPCZESVfHoQ v‘ v’ : v‘ v‘ u‘
High-speed output on a quadcopter: e
https://www.youtube.com/watch?v=LauQ6LWTkxM d

no events

Simulator:
http://rpg.ifi.uzh.ch/esim

Event Camera

time


https://www.youtube.com/watch?v=kPCZESVfHoQ
https://www.youtube.com/watch?v=LauQ6LWTkxM
http://rpg.ifi.uzh.ch/esim

Slowly becoming popular in robotics and vision
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Basic reading:

Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.

Pérez et al., “Poisson Image Editing,” SIGGRAPH 2003. e e re n C e S
The original Poisson image editing paper.

Agrawal and Raskar, “Gradient Domain Manipulation Techniques in Vision and Graphics,” ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/
A great resource (entire course!) for gradient-domain image processing.

Agrawal et al., “Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling,” SIGGRAPH 2005.
A paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:

Georgiev, “Covariant Derivatives and Vision,” ECCV 2006.
An paper from Adobe on the version of Poisson blending implemented in Photoshop’s “healing brush”.
Elder and Goldberg, “Image editing in the contour domain”, PAMI 2001.
One of the very first papers discussing gradient-domain image processing.
Frankot and Chellappa, “A method for enforcing integrability in shape from shading algorithms,” PAMI 1988.
Bhat et al., “Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems,” ECCV 2008.
A couple of papers discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
Agrawal et al., “What Is the Range of Surface Reconstructions from a Gradient Field?,” ECCV 2006.
A paper discussing both Poisson solvers and projection-based methods for integration in a unified way, along with suggesting various generalizations.
Szeliski, “Locally adapted hierarchical basis preconditioning,” SIGGRAPH 2006.
A standard reference on multi-grid and preconditioning techniques for accelerating the Poisson solver.
Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,” CMU TR 1994, http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
A great reference on conjugate gradient solvers for large linear systems.
Briggs et al., “A multigrid tutorial,” SIAM 2000.
A nice reference book on multi-grid approaches.
Bhat et al., “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” TOG 2010.
A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond blending, including tone-mapping,
colorization, converting to grayscale, edge enhancement, image abstraction and non-photorealistic rendering.
Krishnan and Fergus, “Dark Flash Photography,” SIGGRAPH 2009.
A paper proposing doing flash/no-flash photography using infrared flash lights.
Kazhdan et al., “Poisson surface reconstruction,” SGP 2006.
Kazhdan and Hoppe, “Screened Poisson surface reconstruction,” TOG 2013.
Two papers discussing Poisson problems for reconstructing meshes from point clouds and normals. This is arguably the most commonly used surface reconstruction algorithm.
Lehtinen et al., “Gradient-domain metropolis light transport,” SIGGRAPH 2013.
Kettunen et al., “Gradient-domain path tracing,” SIGGRAPH 2015.
Hua et al., “Light transport simulation in the gradient domain,” SIGGRAPH Asia 2018 course, http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018 GradientCourse/
In addition to editing images in the gradient-domain, we can render them directly in the gradient-domain.
Tumblin et al., “Why | want a gradient camera?” CVPR 2005.
We can even directly measure images in the gradient domain, using so-called gradient cameras.
Koppal et al., “Toward wide-angle microvision sensors”, PAMI 2013.
Gradient cameras using optical filtering.
Chen et al., “ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels,” CVPR 2016.
Gradient cameras using angle-sensitive pixels.
Kim et al., “Real-time 3D reconstruction and 6-DoF tracking with an event camera,” ECCV 2016.
A paper on using evet-based cameras for computer vision applications in very fast frame rates (best paper award at ECCV 2016!).
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