Gradient-domain image processing

15-463, 15-663, 15-862 Computational Photography Fall 2019, Lecture 9

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 2 is out.
 - Due September 27th.
 - Requires camera and tripod.
 - Start early! Substantially larger programming and imaging components than in Homework 1.
 - Generous bonus component, up to 50% extra credit.
 - No really: start early!
- Computational imaging group meeting is on Fridays, 3 4 pm, WEH 5421.
 - You are welcome to attend.
 - You can also join the comp-imaging mailing list for related announcements (see Piazza for link).

Overview of today's lecture

- Gradient-domain image processing.
- Basics on images and gradients.
- Integrable vector fields.
- Poisson blending.
- A more efficient Poisson solver.
- Poisson image editing examples.
- Flash/no-flash photography.
- Gradient-domain rendering.
- Gradient cameras.

Slide credits

Many of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).
- Fredo Durand (MIT).
- James Hays (Georgia Tech).
- Amit Agrawal (MERL).
- Jaakko Lehtinen (Aalto University).

Gradient-domain image processing

Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending

Application: Poisson blending

originals

copy-paste

Poisson blending

More applications

Removing Glass Reflections

Seamless Image Stitching

Yet more applications

Fusing day and night photos

Tonemapping

Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering

Pravin Bhat¹ C. Lawrence Zitnick² ¹University of Washington Michael Cohen^{1,2} Brian Curless¹ ²Microsoft Research

(a) Input image

(b) Saliency-sharpening filter

(c) Pseudo-relighting filter

(d) Non-photorealistic rendering filter

(e) Compressed input-image

(f) De-blocking filter

(g) User input for colorization

(h) Colorization filter

Figure 1: The figure shows some of the image-enhancement filters we have created using the GradientShop optimization-framework. GradientShop has been designed to allow applications to explore gradient-domain solutions for various image processing problems.

Main pipeline

Basics of images and gradients

Image representation

We can treat images as scalar fields (i.e., two dimensional functions)

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

• How do we do this differentiation in real *discrete* images?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

How do you efficiently compute this?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

What convolution kernel does this correspond to?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\begin{array}{c|c} -1 & 0 & 1 \\ \hline 1 & 0 & -1 \end{array}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

1D derivative filter

1	0	-1
---	---	----

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

For discrete signals: Remove limit and set h = 1

$$f'(x) = f(x+1) - f(x)$$

We will be using forward differences in this lecture!

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

scalar field $I(x, y) : \mathbb{R}^2 \to \mathbb{R}$ we ctor field $\nabla I = \{\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\} : \mathbb{R}^2 \to \mathbb{R}^2$

- How do we do this differentiation in real *discrete* images?
- Can we go in the opposite direction, from gradients to images?

Vector field integration

Two core questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

Integrable vector fields

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

Curl and divergence

Curl: <u>vector</u> operator showing the rate of rotation of a vector field.

Curl
$$(\nabla I) = \nabla \times \nabla I$$
 What is the dimension of this?

Divergence: <u>vector</u> operator showing the isotropy of a vector field.

 $Div (\nabla I) = \nabla \bullet \nabla I$ What is the dimension of this?

Curl and divergence

Curl: <u>vector</u> operator showing the rate of rotation of a vector field.

$$Curl \ (\nabla I) = \nabla \times \nabla I$$

Another vector field (in 2D, this is parallel to a vector orthogonal to the 2D plane).

Divergence: <u>vector</u> operator showing the isotropy of a vector field.

$$Div (\nabla I) = \nabla \bullet \nabla I$$
 Scalar field

How do we write these operators in terms of derivatives of I?

Curl and divergence

Curl: <u>vector</u> operator showing the rate of rotation of a vector field.

$$Curl \ (\nabla I) = \det \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ I_x & I_y \end{vmatrix} = \frac{\partial I_y}{\partial x} - \frac{\partial I_x}{\partial y} = I_{yx} - I_{xy}$$
(here we ignore a unit vector k)

Divergence: vector operator showing the isotropy of a vector field.

$$div(I_x, I_y) = \frac{\partial I_x}{\partial x} + \frac{\partial I_y}{\partial y} = I_{xx} + I_{yy}$$

Property of twice-differentiable functions

Curl of the gradient field should be zero:

$$Curl \ (\nabla I) = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

Property of twice-differentiable functions

Curl of the gradient field should be zero:

$$Curl \ (\nabla I) = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

• Same result independent of order of differentiation.

$$I_{yx} = I_{xy}$$

Demonstration

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 \longrightarrow 1D derivative filter
1 -1
Second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$ \longrightarrow Laplace filter
?

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \longrightarrow 1D$$
 derivative filter
 $1 - 1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow 1D$ derivative filter
 $1 - 1$

Property of twice-differentiable functions

Curl of the gradient field should be zero:

$$Curl \ (\nabla I) = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

• Same result independent of order of differentiation.

$$I_{yx} = I_{xy}$$

Can you use this property to derive an integrability condition?

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that

Vector field integration

Two core questions:

- When is integration of a vector field possible?
 - Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?
Different types of integration problems

- Reconstructing height field from gradients Applications: shape from shading, photometric stereo
- Manipulating image gradients Applications: tonemapping, image editing, matting, fusion, mosaics
- Manipulation of 3D gradients Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.

• Integration must be done *approximately*.

Poisson blending

Application: Poisson blending

originals

copy-paste

Poisson blending

Key idea

When blending, retain the gradient information as best as possible

source

destination

copy-paste

Poisson blending

Poisson blending: 1D example

Definitions and notation

Notation

g: source function

S: destination

 Ω : destination domain

f: interpolant function

f*: destination function

Which one is the unknown?

Definitions and notation

Notation

g: source function

S: destination

 Ω : destination domain

f: interpolant function

f*: destination function

How should we determine f?

- should it look like g?
- should it look like f*?

Interpolation criterion

"Variational" means optimization where the unknown is an entire function Variational problem $\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2$ with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$ what does this
term do?what does this
term do?

Recall ...

Image gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

is this known?

 $\mathbf{v} = (u, v) = \nabla g$

Interpolation criterion

"Variational" means optimization where the unknown is an entire function

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Yes, since the source function g is known

$$\mathbf{v} = (u, v) = \nabla g$$

This is where *Poisson* blending comes from

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v}$ over Ω , with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

what does this term do?

Gradient
$$\mathbf{v} = (u, v) = \nabla g$$

Laplacian
$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

Divergence div $\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

= $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$
= Δg

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$ Laplacian of f same as g

Gradient $\mathbf{v} = (u, v) = \nabla g$

adient
$$\mathbf{v} = (u, v) = \nabla g$$

Laplacian
$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

Divergence div $\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

= $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$
= Δg

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

How can we do this?

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

So for each pixel p, do:

$$\Delta f_p = \Delta g_p$$

How did we compute the Laplacian?

Or for discrete images: $4f_p - \sum_{q \in N_p} f_q = 4g_p - \sum_{q \in N_p} g_q$

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$

What's known and what's unknown?

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

f is unknown except g and its Laplacian at the boundary are known

We can rewrite this as

WARNING: requires special treatment at the borders (target boundary values are same as source)

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\rm LLS} = \|\mathbf{A}f - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = f^{\top} (\mathbf{A}^{\top} \mathbf{A}) f - 2f^{\top} (\mathbf{A}^{\top} \mathbf{b}) + \|\mathbf{b}\|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})f = \mathbf{A}^{ op}m{b}$$

Solve for x
$$~f = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} m{b}$$

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}f - \mathbf{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = f^{\top} (\mathbf{A}^{\top} \mathbf{A}) f - 2f^{\top} (\mathbf{A}^{\top} \mathbf{b}) + \|\mathbf{b}\|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})f = \mathbf{A}^{ op}m{b}$$

Solve for x
$$f = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b} \longleftarrow$$
 Note: You almost never want to compute the inverse of a matrix

In Matlab:

$$f = A \setminus b$$

Integration procedures

- Poisson solver (i.e., least squares integration)
 - + Generally applicable.
 - Matrices A can become very large.
- Acceleration techniques:
 - + (Conjugate) gradient descent solvers.
 - + Multi-grid approaches.
 - + Pre-conditioning.
 - + Quadtree decompositions.
- Alternative solvers: projection procedures.
 - We will discuss one of these when we cover photometric stereo.

A more efficient Poisson solver

$$\begin{array}{ll} \mbox{Variational problem} \\ \mbox{min} & \displaystyle \iint_f |\nabla f - \mathbf{v}|^2 & \mbox{with} & f|_{\partial\Omega} = f^*|_{\partial\Omega} \\ \mbox{gradient of f looks} & \mbox{f is equivalent to f}^* \\ \mbox{like gradient of g} & \mbox{at the boundaries} \end{array}$$

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\begin{array}{ll} \mbox{Variational problem} \\ \mbox{min} & \displaystyle \int _{\Omega} |\nabla f - {\bf v}|^2 & \mbox{with} & f|_{\partial \Omega} = f^*|_{\partial \Omega} \\ \mbox{gradient of f looks} & \mbox{f is equivalent to } f^* \\ \mbox{like gradient of g} & \mbox{at the boundaries} \end{array}$$

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

We can use the gradient approximation to discretize the variational problem

Discrete problem

```
What are G, f, and v?
```

```
\min_{f} \|Gf - v\|^2
```

We will ignore the boundary conditions for now.

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

We can use the gradient approximation to discretize the variational problem

We will ignore the boundary conditions for now.

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = ?$$

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we do what with it?

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we set that to zero:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow G^T G f = G^T v$$
What is this vector?
What is this vector?
What is this matrix?

. . .

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we set that to zero: $\frac{\partial E}{\partial f} = 0 \Rightarrow G^T G f = G^T v$ It is equal to the vector b we derived previously! It is equal to the Laplacian matrix A we derived previously!

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$

What's known and what's unknown?

Reminder from variational case

We arrive at the same system, no matter whether we discretize the continuous Poisson equation or the variational optimization problem.

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v$$

... and we set that to zero:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow G^T G f = G^T v$$

Solving this is <u>exactly</u> as expensive as what we had before.

Approach 2: Use gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v = A f - b \equiv r$$
 We call this term
the *residual* We call this term

Approach 2: Use gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - G^T v = A f - b \equiv r$$
 We call this term
the *residual*

... and then we *iteratively* compute a solution:

$$f^{i+1} = f^i + \eta^i r^i$$
 for i = 0, 1, ..., N, where
 η^i are positive step sizes

Selecting optimal step sizes

Make derivative of loss function with respect to η^i equal to zero:

$$E(f) = \|Gf - v\|^{2}$$

$$E(f^{i+1}) = \|G(f^{i} + \eta^{i}r^{i}) - v\|^{2}$$

$$\frac{\partial E(f^{i+1})}{\partial \eta^{i}} = [b - A(f^{i} + \eta^{i}r^{i})]^{T}r^{i} = 0 \Rightarrow \eta^{i} = \frac{(r^{i})^{T}r^{i}}{(r^{i})^{T}Ar^{i}}$$

Gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i + \eta^i r^i$$
, $r^i = b - A f^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?
Gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i + \eta^i r^i$$
, $r^i = b - A f^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i + \eta^i r^i$$
, $r^i = b - Af^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.

Gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i + \eta^i r^i$$
, $r^i = b - A f^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.
- Because A is the *Laplacian matrix*, these matrix-vector products can be efficiently computed using *convolutions* with the *Laplacian kernel*.

In practice: conjugate gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i + \eta^i d^i$$
, $r^i = b - A f^i$, for i = 0, 1, ..., N

$$d^{i+1} = r^{i+1} + \beta^{i+1} d^{i},$$

$$\beta^{i+1} = \frac{(r^{i+1})^{T} r^{i+1}}{(r^{i})^{T} r^{i}} \quad \eta^{i} = \frac{(d^{i})^{T} r^{i}}{(d^{i})^{T} A d^{i}}$$

- Smarter way for selecting update directions
- Everything can still be done using convolutions

Note: initialization

Does the initialization f^0 matter?

Note: initialization

Does the initialization f^0 matter?

• It doesn't matter in terms of what final f we converge to, because the loss function is convex.

$$E(f) = \|Gf - v\|^2$$

Note: initialization

Does the initialization f^0 matter?

• It doesn't matter in terms of what final f we converge to, because the loss function is convex.

$$E(f) = \|Gf - \nu\|^2$$

- It does matter in terms of convergence speed.
- We typically use a *multi-grid* approach:
 - Solve an initial problem for a very low-resolution f (e.g., 2x2).
 - Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
 - Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).
 - Use the solution to initialize gradient descent for an f with the original resolution NxN.

We can rewrite this as

WARNING: requires special treatment at the borders (target boundary values are same as source)

Note: Handling (Dirichlet) boundary conditions

- Form a mask M that is 0 for pixels that should *not* be updated (pixels on S- Ω and $\partial \Omega$) and 1 otherwise.
- Use convolution to perform Laplacian filtering over the *entire image*.
- Use (conjugate) gradient descent rules to only update pixels for which the mask is 1. Equivalently, change the update rules to:

$$f^{i+1} = f^i + M\eta^i r^i$$
 (gradient descent)
 $f^{i+1} = f^i + Md^i r^i$ (conjugate gradient descent)

Poisson image editing examples

Photoshop's "healing brush"

Slightly more advanced version of what we covered here:

• Uses higher-order derivatives

Contrast problem

Loss of contrast when pasting from dark to bright:

- Contrast is a multiplicative property.
- With Poisson blending we are matching linear differences.

Contrast problem

Loss of contrast when pasting from dark to bright:

- Contrast is a multiplicative property.
- With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

More blending

originals

copy-paste

Poisson blending

Blending transparent objects

source

destination

Blending objects with holes

(c) seamless cloning and destination averaged

(d) mixed seamless cloning

Editing

Concealment

How would you do this with Poisson blending?

Concealment

How would you do this with Poisson blending?

• Insert a copy of the background.

Texture swapping

Special case: membrane interpolation

How would you do this?

Special case: membrane interpolation

How would you do this?

Poisson problem

$$\begin{split} \min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^{2} \quad \text{with} \quad f|_{\partial\Omega} &= f^{*}|_{\partial\Omega} \\ \text{Laplacian problem} \\ \min_{f} \iint_{\Omega} |\nabla f|^{2} \quad \text{with} \quad f|_{\partial\Omega} &= f^{*}|_{\partial\Omega} \end{split}$$

Flash/no-flash photography

Flash

- + Low Noise
- + Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
- + Ambient Light
- + Natural Look

Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image

• How would you do this using the image editing techniques we've learned about?

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?

Removing self-reflections and hot-spots

Removing self-reflections and hot-spots

Removing self-reflections and hot-spots

Reflection Layer

Flash/no-flash with gradient-domain processing

Gradient-domain rendering

Primal domain

Love

...

-

Gradient domain

gradients of natural images are *sparse* (close to zero in most places)

Primal domain

Love

Gradient domain

Can I go from one image to the other?

Can I go from one image to the other?

differentiation (e.g., convolution with forward-difference kernel)

integration (e.g., Poisson reconstruction)

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

Why would gradient-domain rendering make sense?

- Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) on rendering the few pixels that are non-zero in gradient space, with much lower variance.
- Poisson reconstruction performs a form of "filtering" to further reduce variance.

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

Why would gradient-domain rendering make sense? Why not all?

- Since gradients are sparse, I can focus most (but not all of) my resources (i.e., ray samples) on rendering the few pixels that are non-zero in gradient space, with much lower variance.
- Poisson reconstruction performs a form of "filtering" to further reduce variance.

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per "flat" region in the image) in primal domain, to use as boundary conditions when doing Poisson reconstruction.

• In practice, do image-space stratified sampling to select these pixels.

Primal-domain rendering: simulate intensities directly

Gradient-domain rendering: simulate gradients, then solve Poisson problem

You still need to render a few sparse pixels (roughly one per "flat" region in the image) in primal domain, to use as boundary conditions when doing Poisson reconstruction.

• In practice, do image-space stratified sampling to select these pixels.

Gradient-domain rendering

Figure 1: Comparing gradient-domain path tracing (G-PT, L_1 reconstruction) to path tracing at equal rendering time (2 hours). In this time, G-PT draws about 2,000 samples per pixel and the path tracer about 5,000. G-PT consistently outperforms path tracing, with the rare exception of some highly specular objects. Our frequency analysis explains why G-PT outperforms conventional path tracing.

A lot of papers since SIGGRAPH 2013 (first introduction of gradient-domain rendering) that are looking to extend basically all primal-domain rendering algorithms to the gradient domain.

Does it help?

Gradient-domain path tracing (2 minutes)

1.65 m

Love

Primal-domain path tracing (2 minutes)

...

100xc

Remember this idea (we'll come back to it)

gradients of natural images are *sparse* (close to zero in most places)

Primal domain

Love

Gradient domain

Gradient cameras

One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Northwestern University jet@cs.northwestern.edu Amit Agrawal University of Maryland aagrawal@umd.edu Ramesh Raskar MERL raskar@merl.com

Why would you want a gradient camera?

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

What implication would this have on a camera?

gradients of natural images are *sparse* (close to zero in most places)

Primal domain

Gradient domain

One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Northwestern University jet@cs.northwestern.edu Amit Agrawal University of Maryland aagrawal@umd.edu Ramesh Raskar MERL raskar@merl.com

Why would you want a gradient camera?

- Much faster frame rate, as you only read out very few pixels (where gradient is significant).
- Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

How would you build a gradient camera?

One of my favorite papers

Why I want a Gradient CameraJack TumblinAmit AgrawalRamesh RaskarNorthwestern UniversityUniversity of MarylandMERLjet@cs.northwestern.eduaagrawal@umd.eduraskar@merl.com

Why would you want a gradient camera?

- Much faster frame rate, as you only read out very few pixels (where gradient is significant).
- Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

Change the sensor

Can you think how?

Change the sensor

Change the sensor

Can you think how?

Optical filtering

Angle-sensitive pixels

One of my favorite papers

Why I want a Gradient Camera

Jack Tumblin Northwestern University jet@cs.northwestern.edu Amit Agrawal University of Maryland aagrawal@umd.edu Ramesh Raskar MERL raskar@merl.com

Why would you want a gradient camera?

- Much faster frame rate, as you only read out very few pixels (where gradient is significant).
- Much higher dynamic range, if also combined with logarithmic gradients.

Can you directly display the measurements of such a camera?

• You need to use a Poisson solver to reconstruct the image from the measured gradients.

How would you build a gradient camera?

- Change the sensor.
- Change the optics.

We can also compute temporal gradients

event-based cameras (a.k.a. dynamic vision sensors, or DVS)

Concept figure for event-based camera:

https://www.youtube.com/watch?v=kPCZESVfHoQ

High-speed output on a quadcopter:

https://www.youtube.com/watch?v=LauQ6LWTkxM

Simulator:

http://rpg.ifi.uzh.ch/esim

time

Slowly becoming popular in robotics and vision

box (indoor)

kitchen (indoor)

objects (indoor)

bikes (outdoor)

shelves (indoor)

office (indoor)

hallway (outdoor)

statue

(outdoor)

Basic reading:

- Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.
- Pérez et al., "Poisson Image Editing," SIGGRAPH 2003. The original Poisson image editing paper.

References

- Agrawal and Raskar, "Gradient Domain Manipulation Techniques in Vision and Graphics," ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/ A great resource (entire course!) for gradient-domain image processing.
- Agrawal et al., "Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling," SIGGRAPH 2005. A paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:

- Georgiev, "Covariant Derivatives and Vision," ECCV 2006.
 - An paper from Adobe on the version of Poisson blending implemented in Photoshop's "healing brush".
- Elder and Goldberg, "Image editing in the contour domain", PAMI 2001.
 - One of the very first papers discussing gradient-domain image processing.
- Frankot and Chellappa, "A method for enforcing integrability in shape from shading algorithms," PAMI 1988.
- Bhat et al., "Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems," ECCV 2008. A couple of papers discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
- Agrawal et al., "What Is the Range of Surface Reconstructions from a Gradient Field?," ECCV 2006.
 - A paper discussing both Poisson solvers and projection-based methods for integration in a unified way, along with suggesting various generalizations.
- Szeliski, "Locally adapted hierarchical basis preconditioning," SIGGRAPH 2006.
 - A standard reference on multi-grid and preconditioning techniques for accelerating the Poisson solver.
- Shewchuk, "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain," CMU TR 1994, http://www.cs.cmu.edu/~guake-papers/painless-conjugate-gradient.pdf A great reference on conjugate gradient solvers for large linear systems.
- Briggs et al., "A multigrid tutorial," SIAM 2000.
 - A nice reference book on multi-grid approaches.
- Bhat et al., "GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering," TOG 2010.
 - A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond blending, including tone-mapping, colorization, converting to grayscale, edge enhancement, image abstraction and non-photorealistic rendering.
- Krishnan and Fergus, "Dark Flash Photography," SIGGRAPH 2009.
 - A paper proposing doing flash/no-flash photography using infrared flash lights.
- Kazhdan et al., "Poisson surface reconstruction," SGP 2006.
- Kazhdan and Hoppe, "Screened Poisson surface reconstruction," TOG 2013.
 - Two papers discussing Poisson problems for reconstructing meshes from point clouds and normals. This is arguably the most commonly used surface reconstruction algorithm.
- Lehtinen et al., "Gradient-domain metropolis light transport," SIGGRAPH 2013.
- Kettunen et al., "Gradient-domain path tracing," SIGGRAPH 2015.
- Hua et al., "Light transport simulation in the gradient domain," SIGGRAPH Asia 2018 course, http://beltegeuse.s3-website-ap-northeast-1.amazonaws.com/research/2018 GradientCourse/ In addition to editing images in the gradient-domain, we can render them directly in the gradient-domain.
- Tumblin et al., "Why I want a gradient camera?" CVPR 2005.
 - We can even directly *measure* images in the gradient domain, using so-called gradient cameras.
- Koppal et al., "Toward wide-angle microvision sensors", PAMI 2013.
 - Gradient cameras using optical filtering.
- Chen et al., "ASP vision: Optically computing the first layer of convolutional neural networks using angle sensitive pixels," CVPR 2016. Gradient cameras using angle-sensitive pixels.
- Kim et al., "Real-time 3D reconstruction and 6-DoF tracking with an event camera," ECCV 2016.

A paper on using evet-based cameras for computer vision applications in very fast frame rates (best paper award at ECCV 2016!).