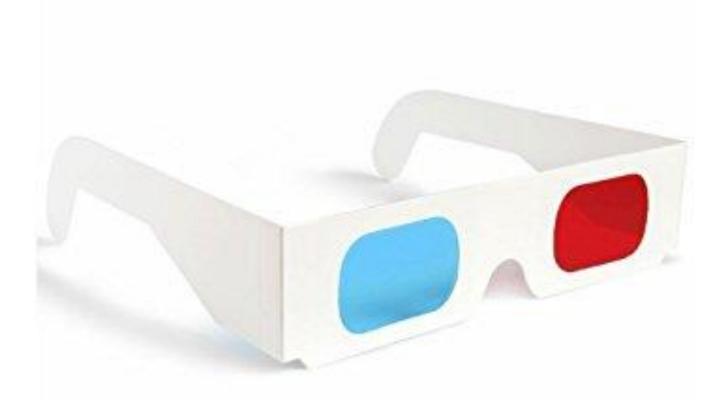
Two-view geometry



15-463, 15-663, 15-862 Computational Photography Fall 2019, Lecture 17

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 4 was due on Friday.
 - Any questions?
- Homework 5 will be posted tonight.
 - Will be due on **Monday** November 11th.
 - Start early: Capturing the photometric stereo data is challenging.
- Equipment needs for final project:

<u>https://docs.google.com/spreadsheets/d/1Mfm35okoWpzHMknBe7wfeGclbg_sRbk9G0v6m</u> <u>qCBEVM/edit#gid=2055341146</u>

• Guest lecture on November 6th: Aswin Sankaranarayanan, "Compressive Senssing".

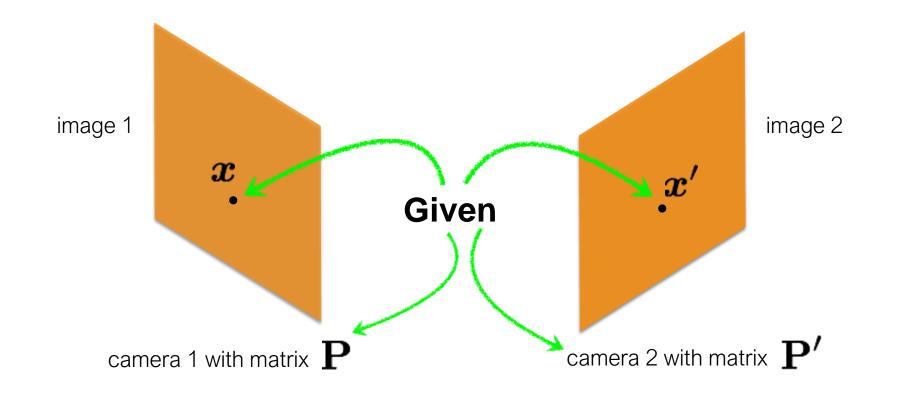
Overview of today's lecture

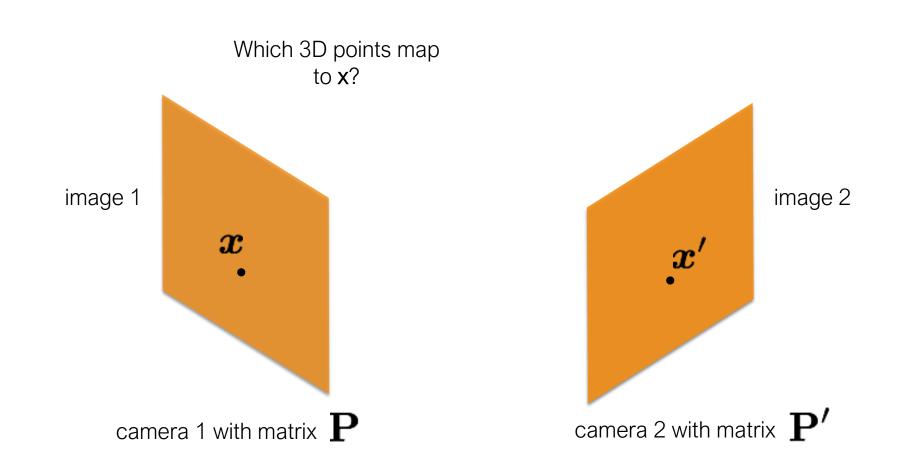
- Triangulation.
- Epipolar geometry.
- Essential matrix.
- Fundamental matrix.
- 8-point algorithm.

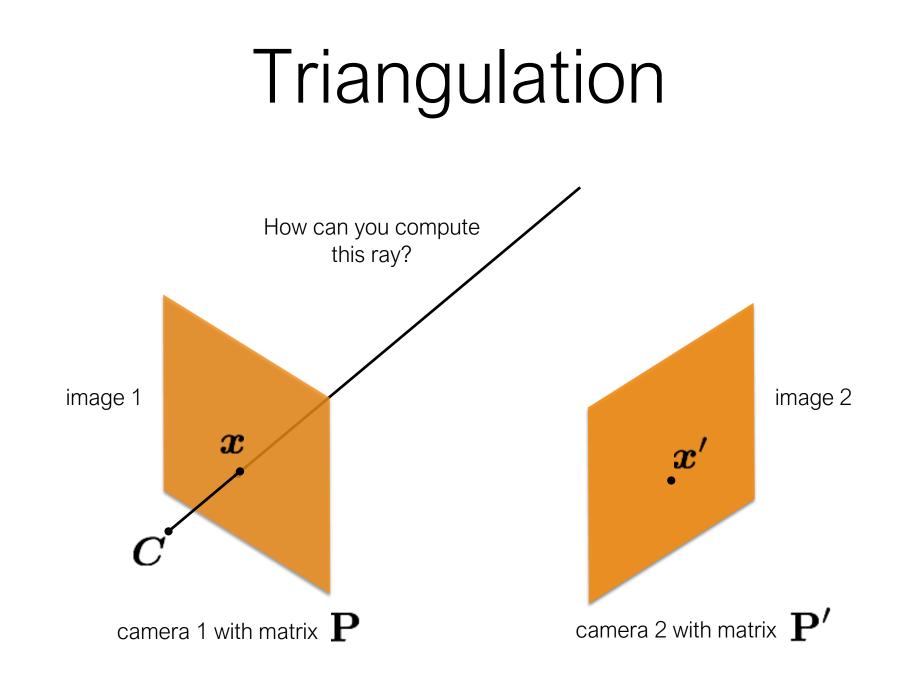
Slide credits

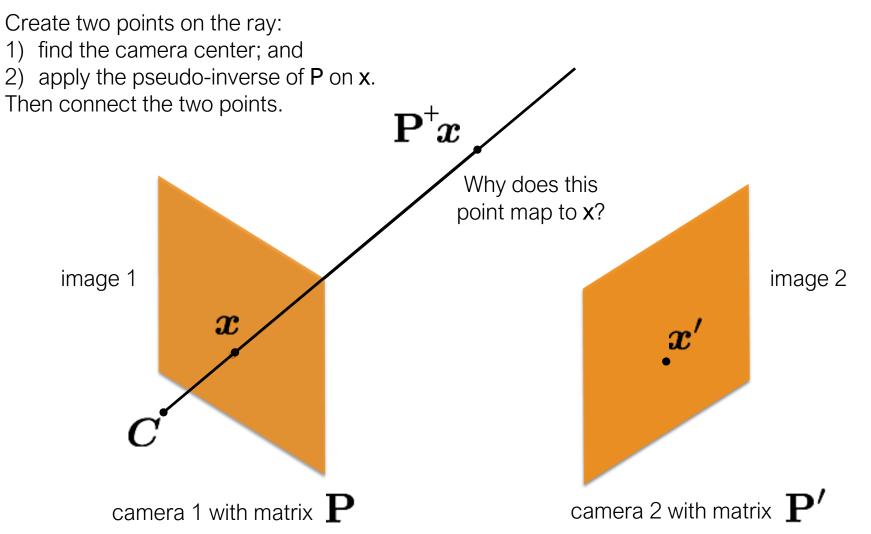
Many of these slides were adapted from:

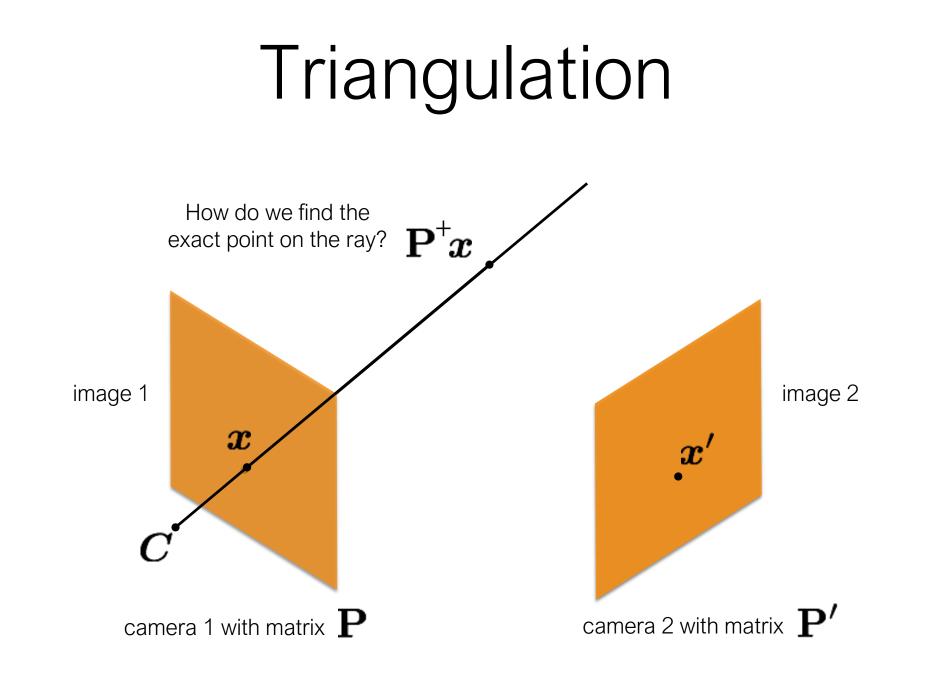
- Kris Kitani (16-385, Spring 2017).
- Srinivasa Narasimhan (16-720, Fall 2017).

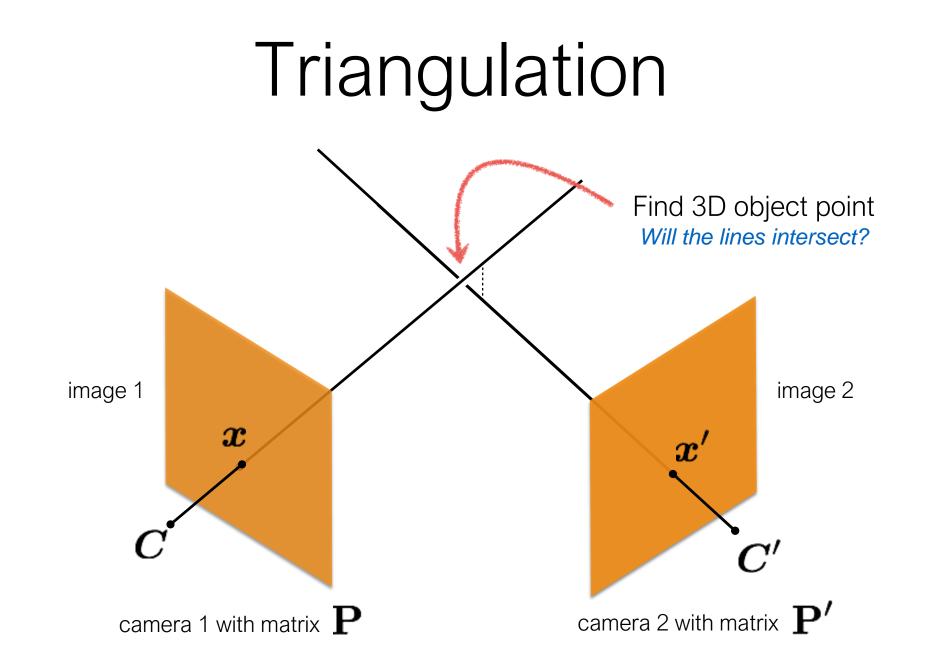


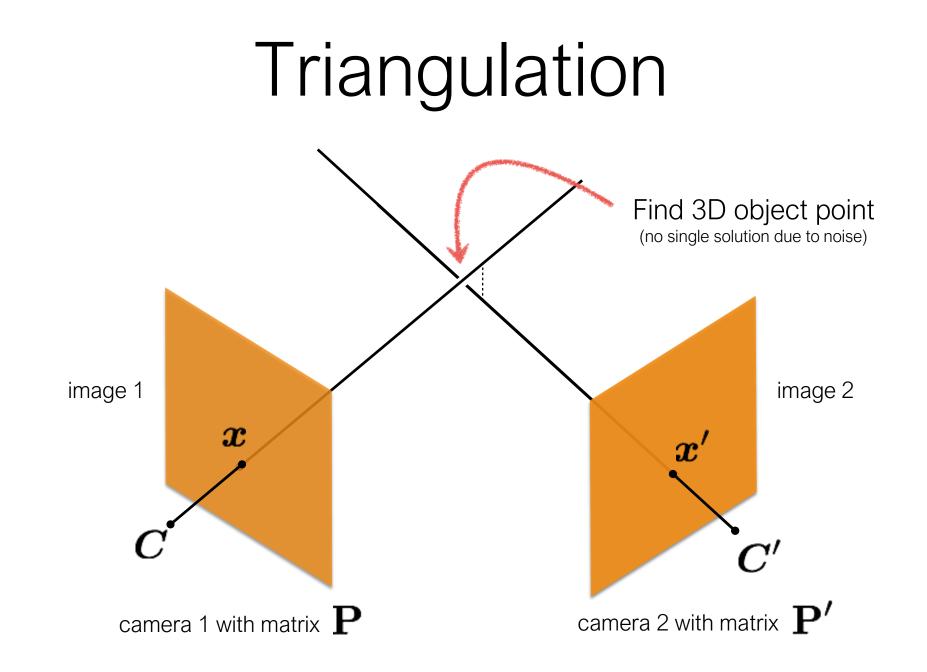










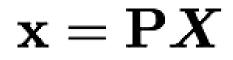


Given a set of (noisy) matched points $\{m{x}_i,m{x}_i'\}$

and camera matrices $\mathbf{P},\mathbf{P'}$

Estimate the 3D point

 \mathbf{X}



Can we compute **X** from a single correspondence **x**?

 $\mathbf{x} = \mathbf{P} \boldsymbol{X}$

Can we compute **X** from <u>two</u> correspondences **x** and **x'**?

 $\mathbf{x} = \mathbf{P} \mathbf{X}$

Can we compute **X** from <u>two</u> correspondences **x** and **x'**?

yes if perfect measurements

 $\mathbf{x} = \mathbf{P} \boldsymbol{X}$

Can we compute **X** from <u>two</u> correspondences **x** and **x'**?

yes if perfect measurements

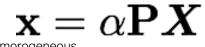
There will not be a point that satisfies both constraints because the measurements are usually noisy

$\mathbf{x}' = \mathbf{P}' \mathbf{X} \quad \mathbf{x} = \mathbf{P} \mathbf{X}$

Need to find the **best fit**

 $\mathbf{x} = \mathbf{P} \boldsymbol{X}$ (homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates



(homorogeneous coordinate)

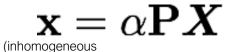
Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$\mathbf{x} = \mathbf{P} \mathbf{X}$

Also, this is a similarity relation because it involves homogeneous coordinates



coordinate)

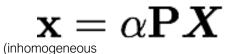
Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$\mathbf{x} = \mathbf{P} \mathbf{X}$

Also, this is a similarity relation because it involves homogeneous coordinates



coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

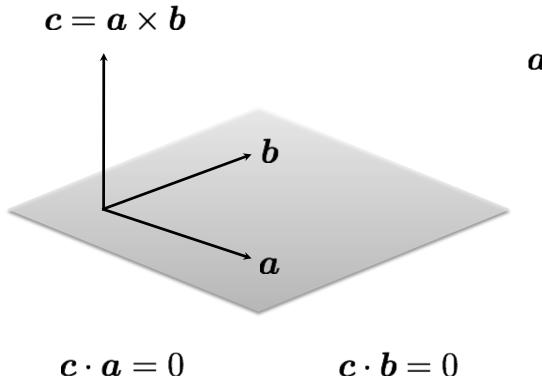
How do we solve for unknowns in a similarity relation?

Remove scale factor, convert to linear system and solve with SVD!

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both



$$m{u} imes m{b} = \left[egin{array}{c} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{array}
ight]$$

cross product of two vectors in the same direction is zero

 $\boldsymbol{a} \times \boldsymbol{a} = 0$

remember this!!!

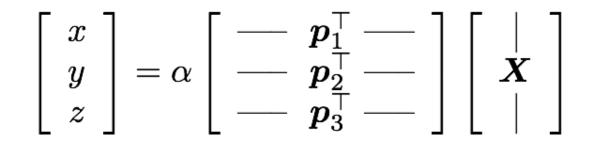
$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

Same direction but differs by a scale factor

$\mathbf{x} \times \mathbf{P} \boldsymbol{X} = \mathbf{0}$

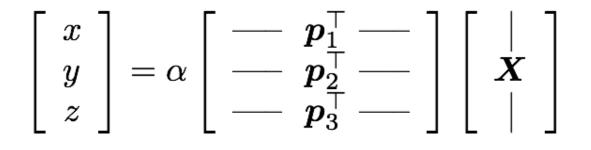
Cross product of two vectors of same direction is zero (this equality removes the scale factor)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$



$\begin{bmatrix} x \end{bmatrix}$		$\left[egin{array}{c} p_1^ op X \end{array} ight]$
y	$= \alpha$	$p_{\underline{2}}^ op X$
$\lfloor z \rfloor$		$\left[\begin{array}{c} p_3^ op X \end{array} ight]$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$



$\begin{bmatrix} x \end{bmatrix}$		$\left[egin{array}{c} p_1^ op X \end{array} ight]$
y	$= \alpha$	$p_2^ op X$
$\lfloor z \rfloor$		$\left[\begin{array}{c} p_3^ op X \end{array} ight]$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^\top \boldsymbol{X} \\ \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_3^\top \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^\top \boldsymbol{X} - \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_1^\top \boldsymbol{X} - x \boldsymbol{p}_3^\top \boldsymbol{X} \\ x \boldsymbol{p}_2^\top \boldsymbol{X} - y \boldsymbol{p}_1^\top \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product should be zero

$$\mathbf{X} \times \mathbf{P} \mathbf{X} = \mathbf{0}$$
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y \mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x \mathbf{p}_3^\top \mathbf{X} \\ x \mathbf{p}_2^\top \mathbf{X} - y \mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

One 2D to 3D point correspondence give you equations

Using the fact that the cross product should be zero

$$\mathbf{X} \times \mathbf{P} \mathbf{X} = \mathbf{0}$$
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y \mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x \mathbf{p}_3^\top \mathbf{X} \\ x \mathbf{p}_2^\top \mathbf{X} - y \mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

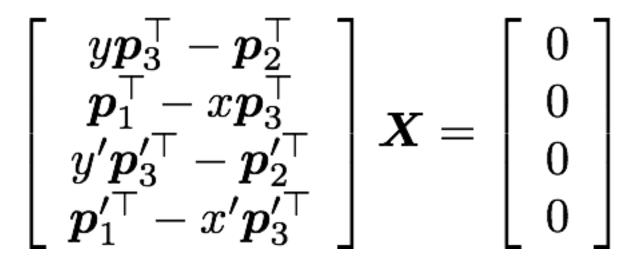
$$\left[\begin{array}{c} y \boldsymbol{p}_3^\top \boldsymbol{X} - \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_1^\top \boldsymbol{X} - x \boldsymbol{p}_3^\top \boldsymbol{X} \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

$$\left[egin{array}{c} y oldsymbol{p}_3^\top - oldsymbol{p}_2^\top \ oldsymbol{p}_1^\top - x oldsymbol{p}_3^\top \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

 $\mathbf{A}_i \boldsymbol{X} = \boldsymbol{0}$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

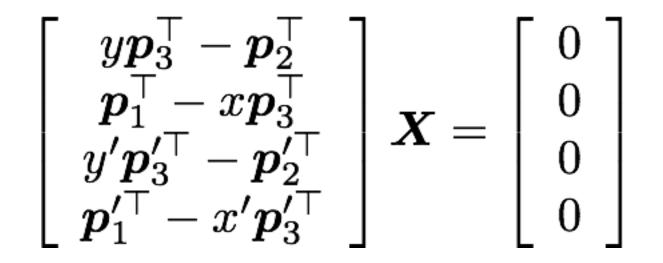


sanity check! dimensions?

 $\mathbf{A}X = \mathbf{0}$

How do we solve homogeneous linear system?

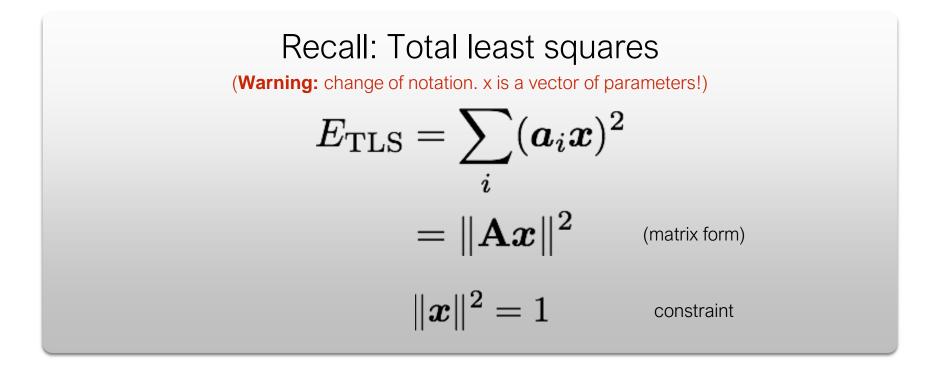
Concatenate the 2D points from both images

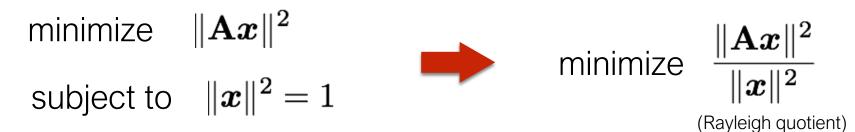


 $\mathbf{A}X = \mathbf{0}$

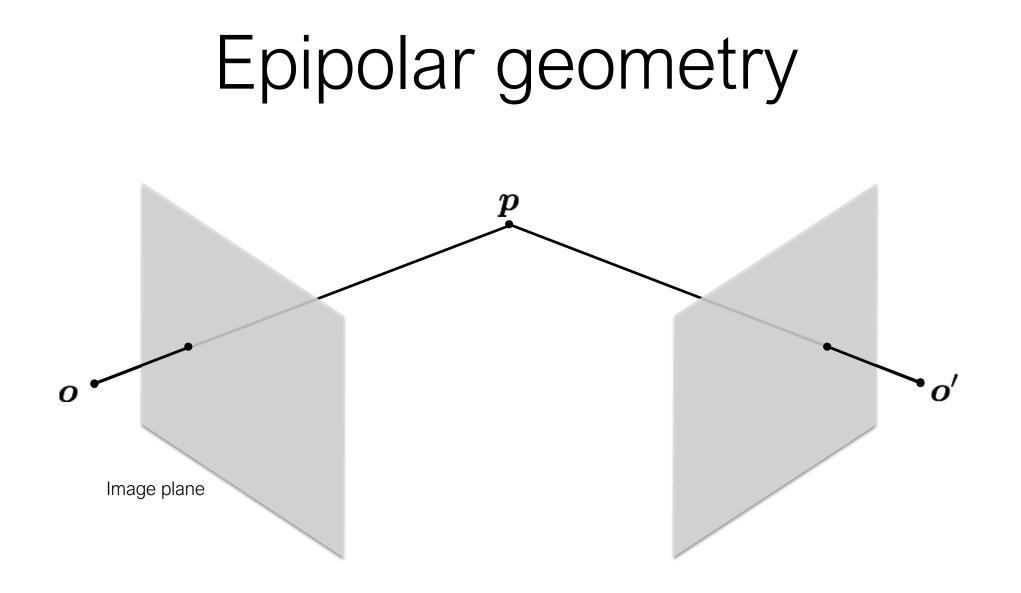
How do we solve homogeneous linear system?

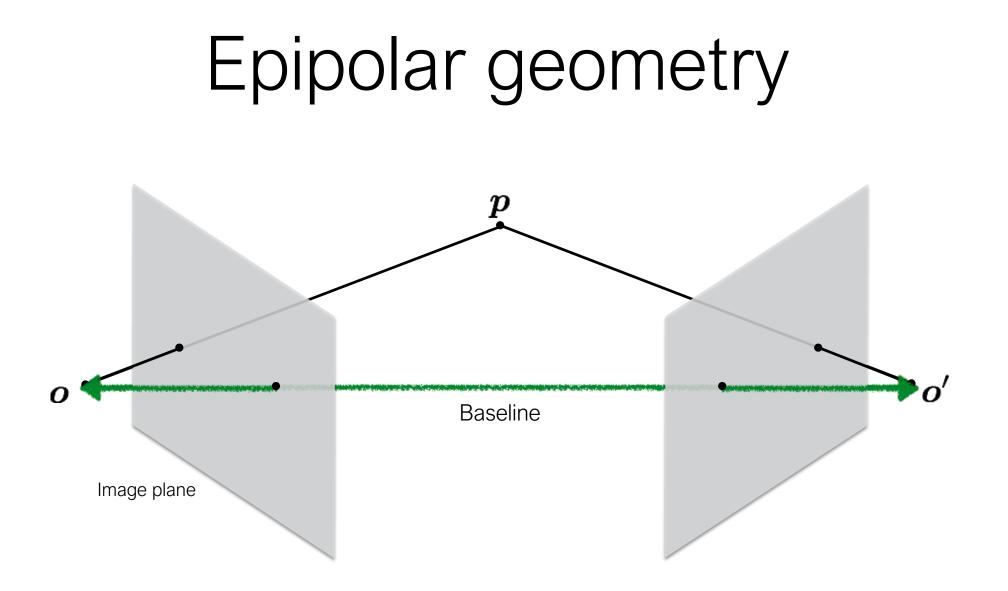
SVD!

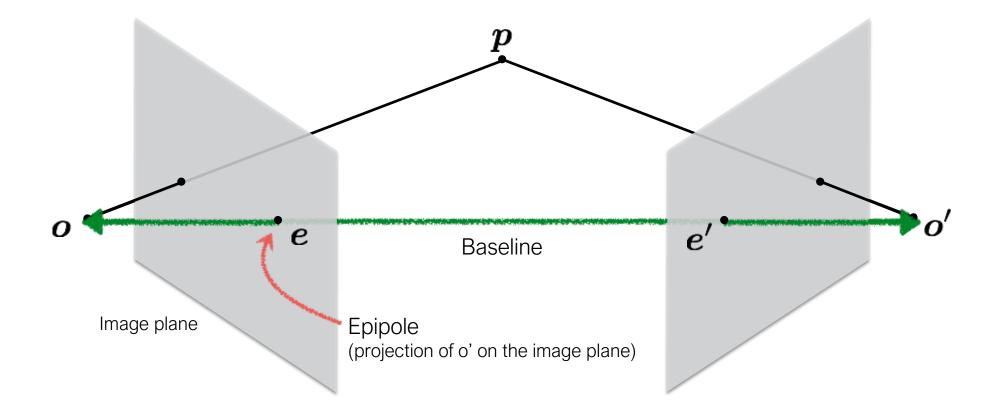


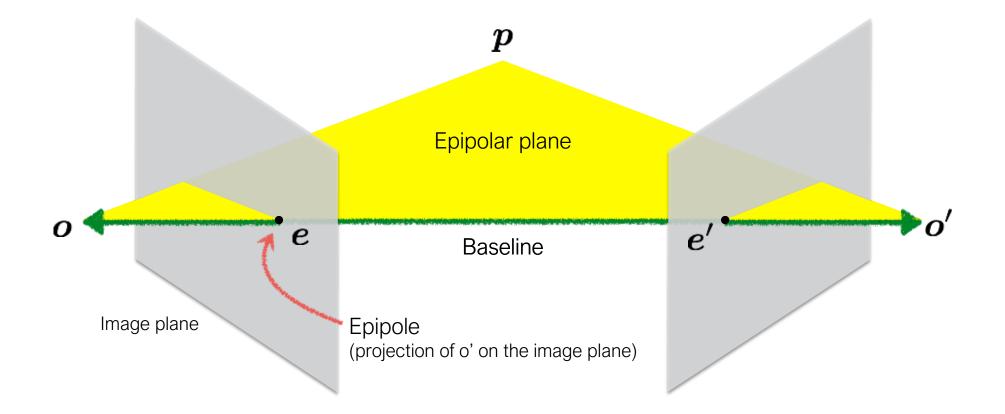


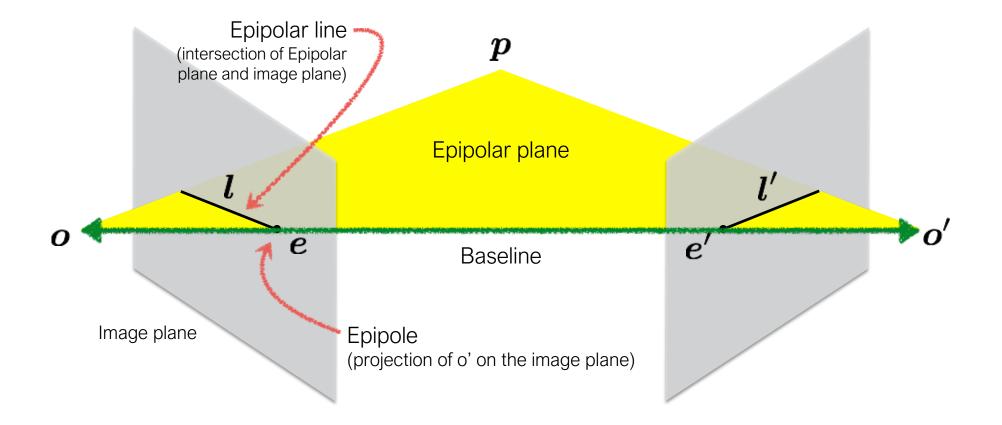
Solution is the eigenvector corresponding to smallest eigenvalue of $\mathbf{A}^{\top}\mathbf{A}$

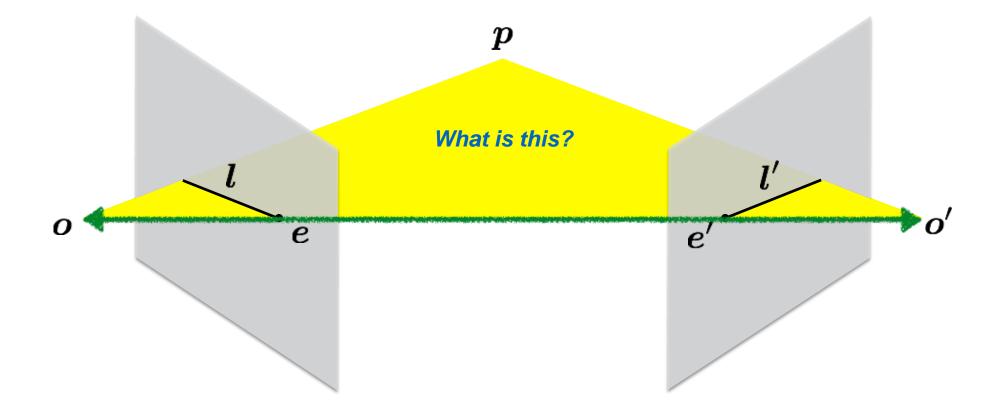


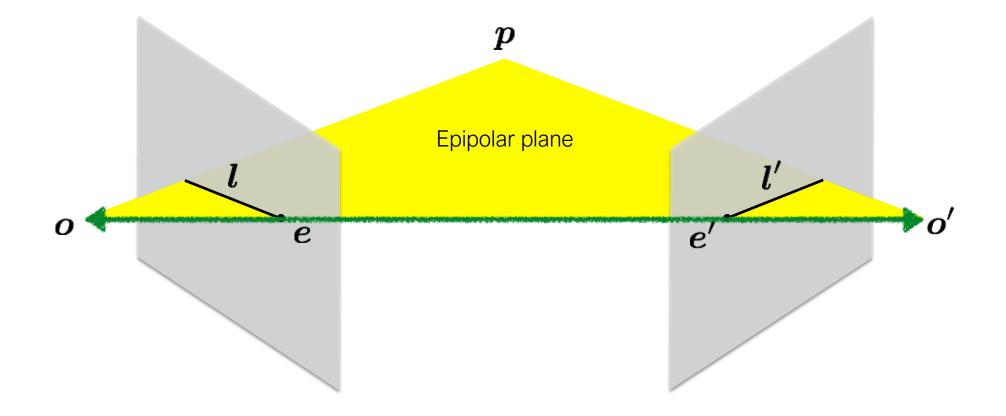


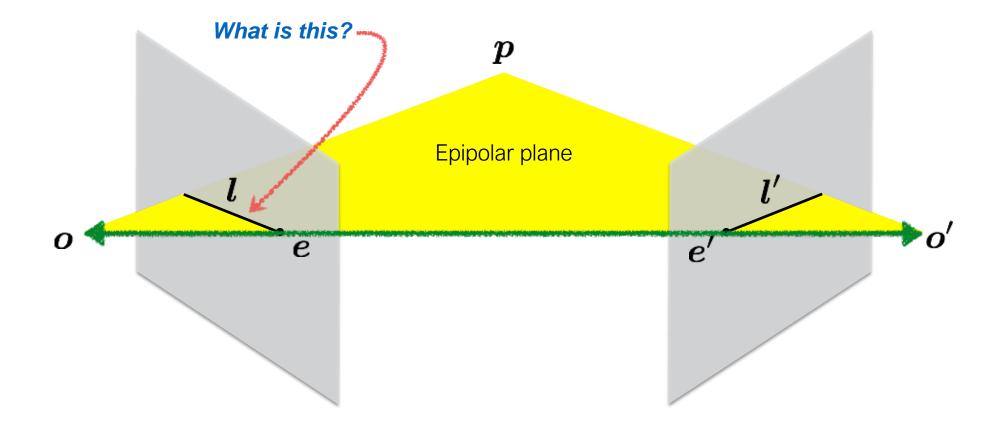




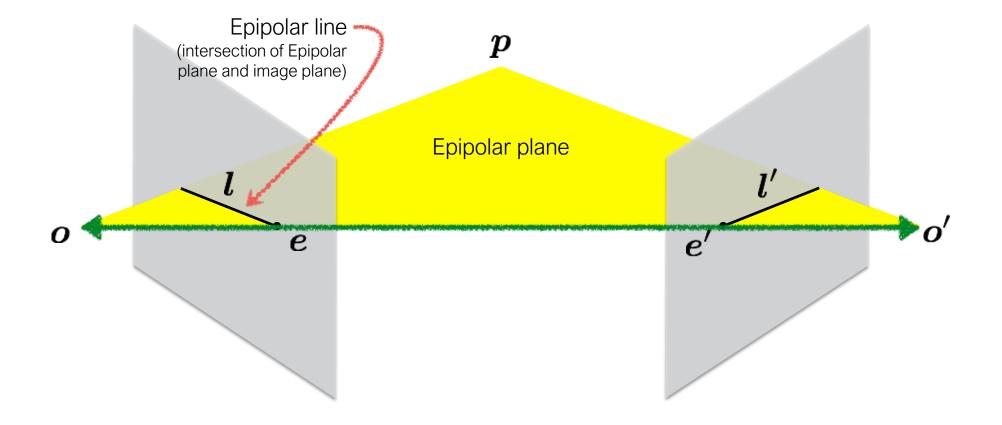




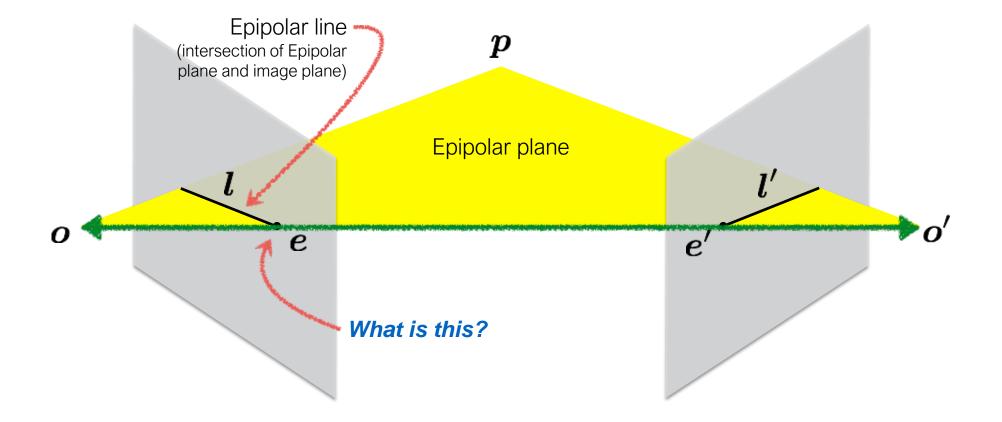


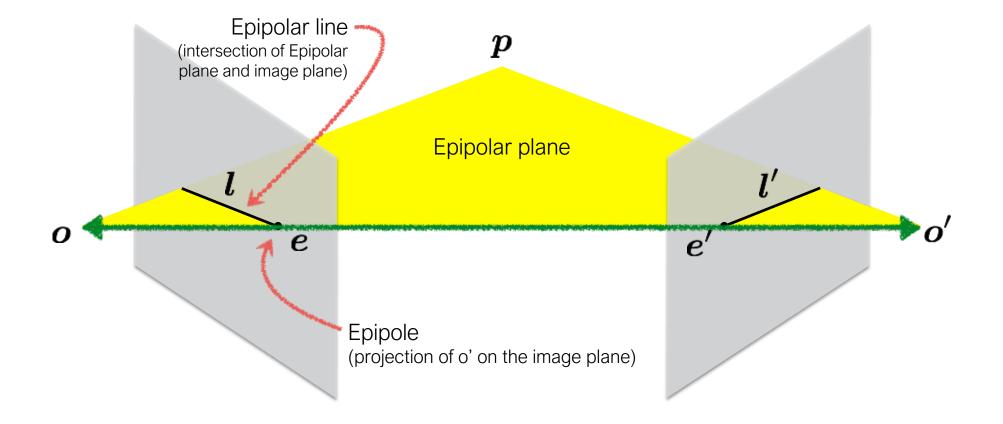


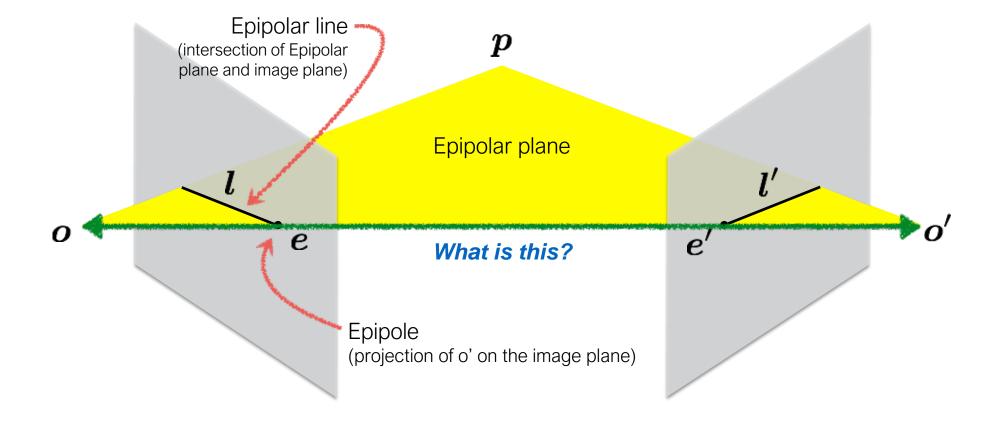
Quiz

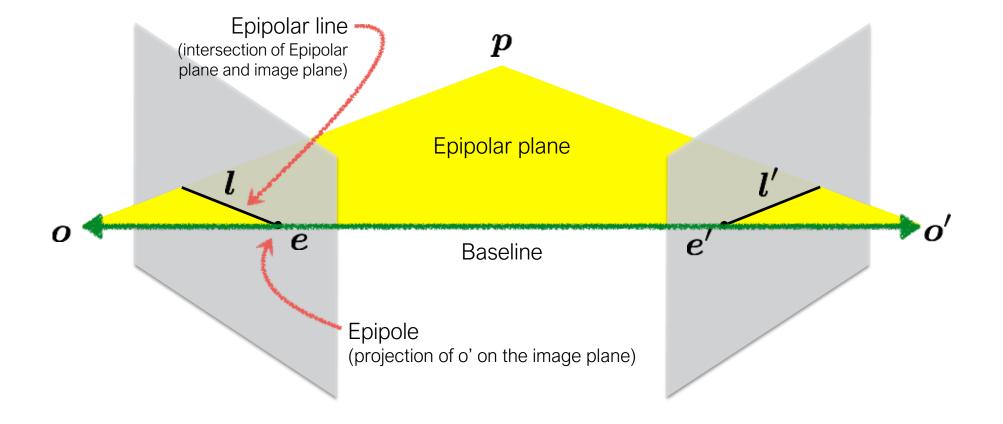


Quiz

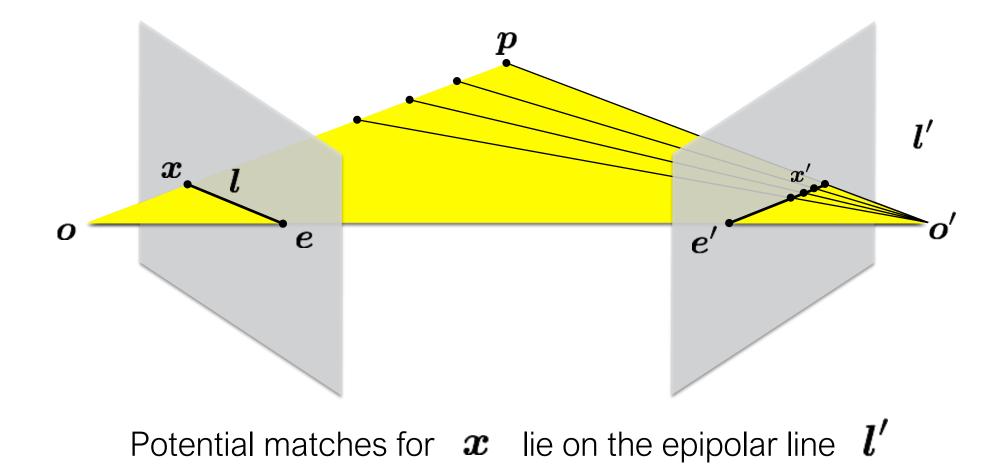




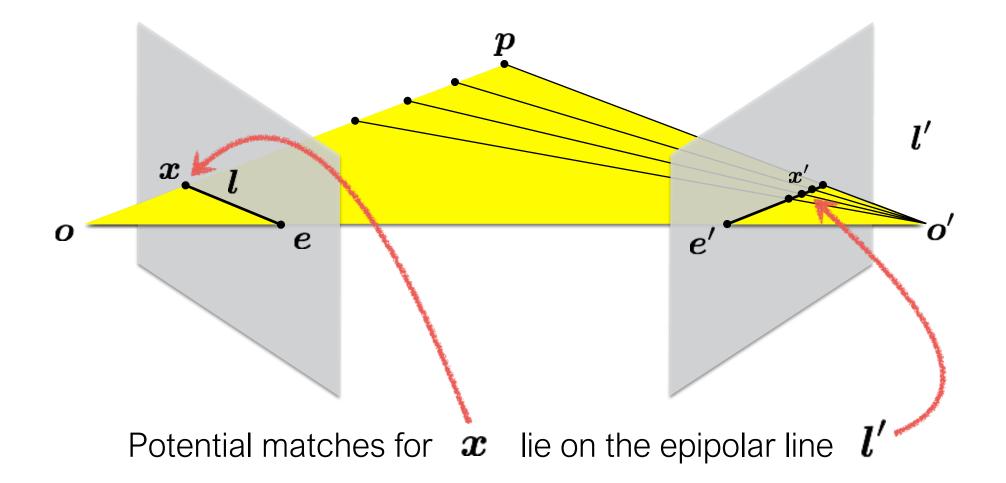




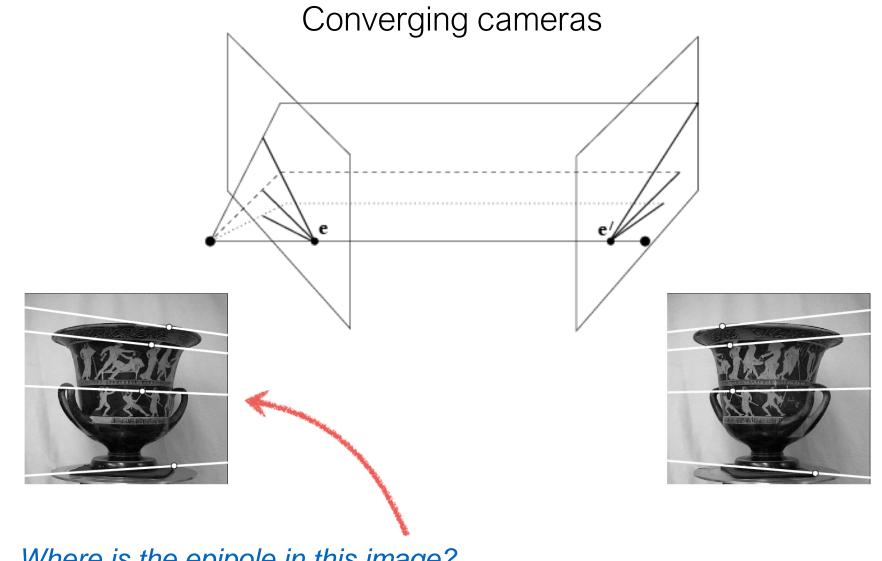
Epipolar constraint



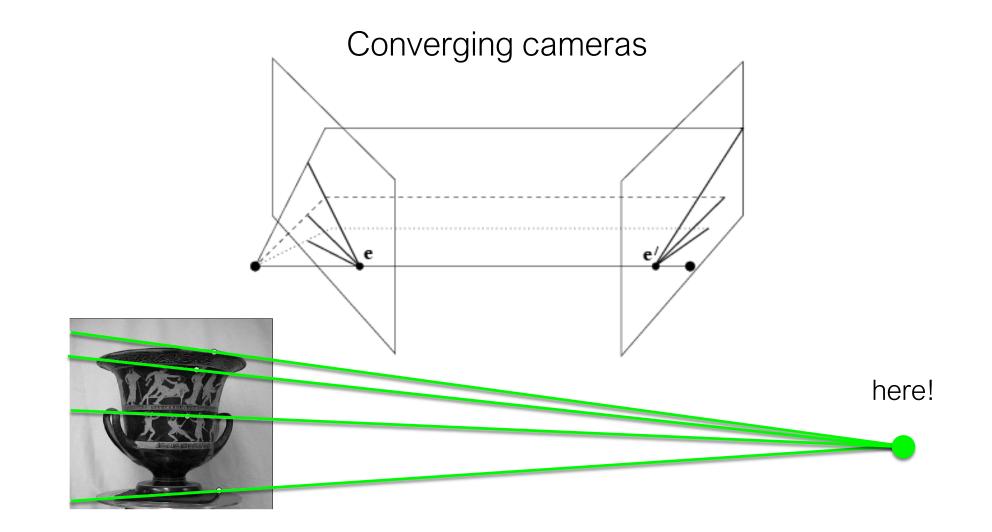
Epipolar constraint



The point x (left image) maps to a	_ in the right image
The baseline connects the and	
An epipolar line (left image) maps to a	in the right image
An epipole e is a projection of the	_ on the image plane
All epipolar lines in an image intersect at the	



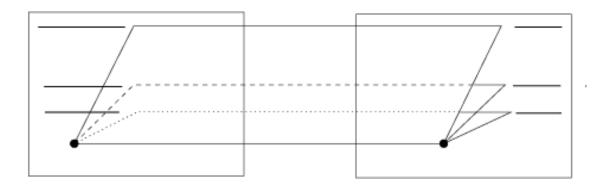
Where is the epipole in this image?



Where is the epipole in this image?

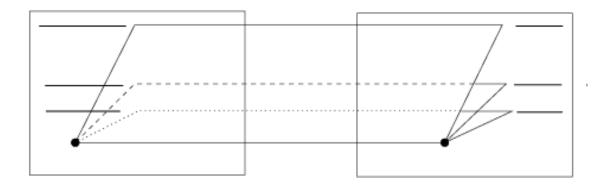
It's not always in the image

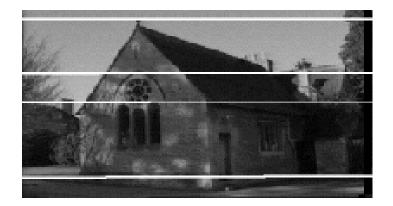
Parallel cameras



Where is the epipole?

Parallel cameras





epipole at infinity

The epipolar constraint is an important concept for stereo vision

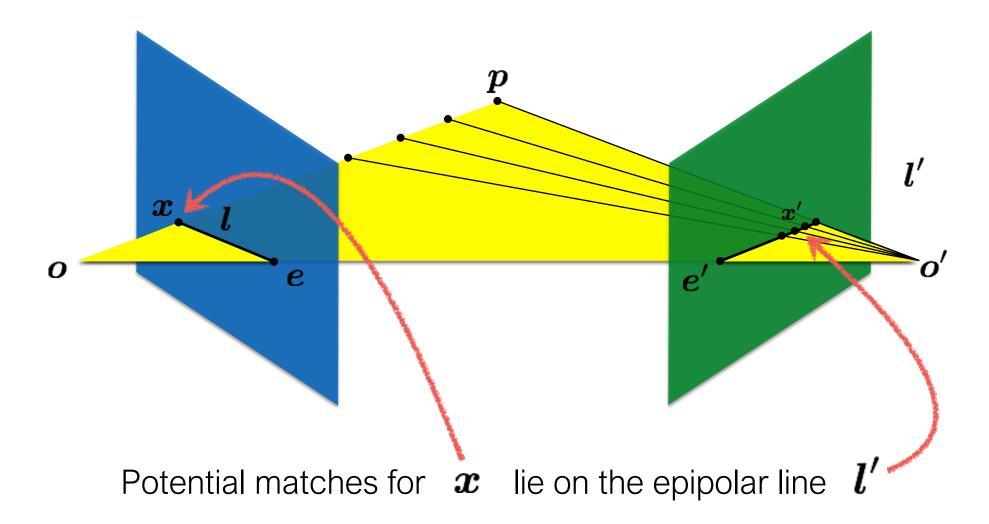
Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Recall: Epipolar constraint



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image

Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

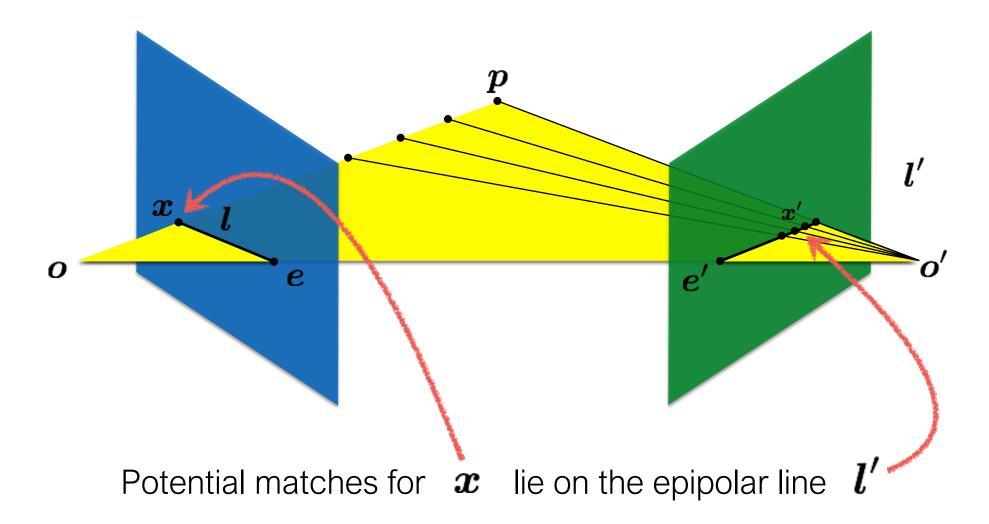
Right image

Want to avoid search over entire image Epipolar constraint reduces search to a single line

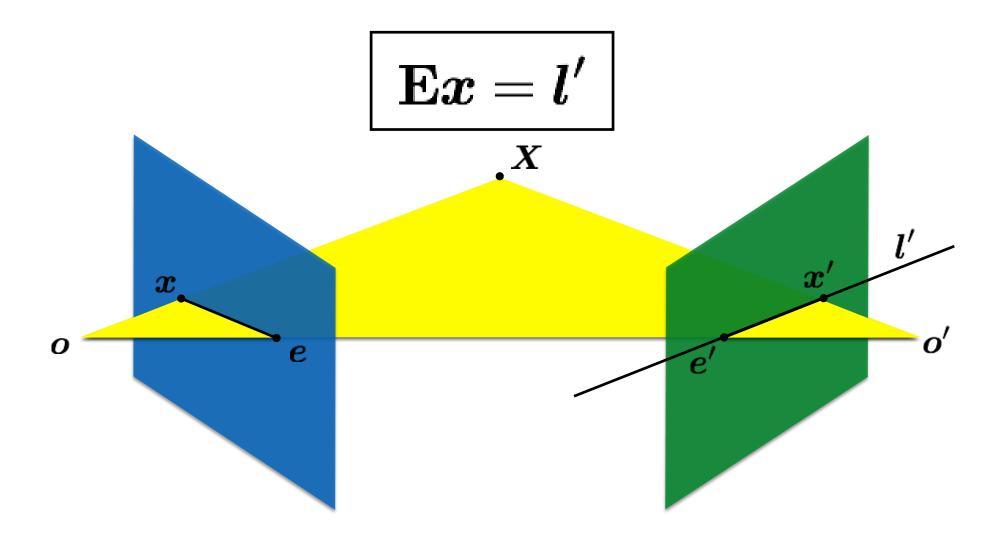
How do you compute the epipolar line?

The essential matrix

Recall: Epipolar constraint



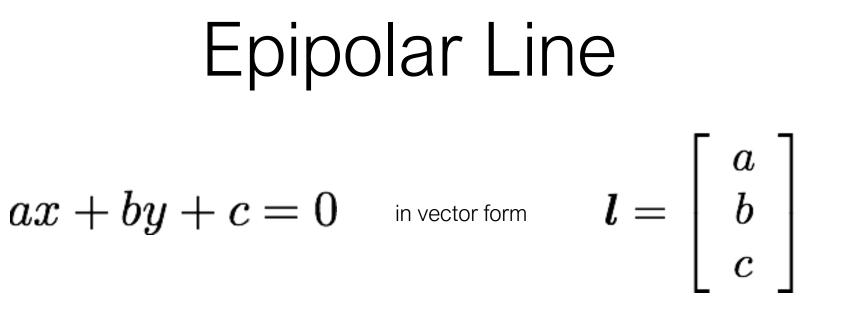
Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

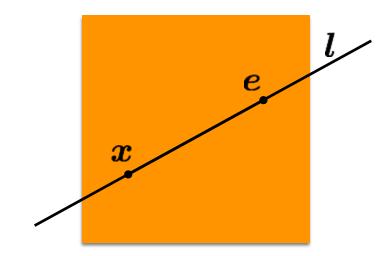


Motivation

The Essential Matrix is a 3 x 3 matrix that encodes **epipolar geometry**

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view. Representing the ...

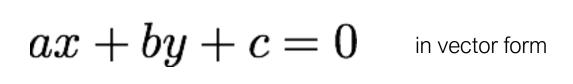


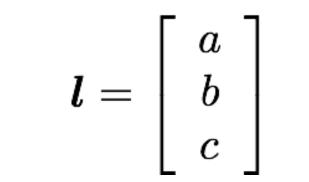


If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$x^{\top}l = ?$$

Epipolar Line

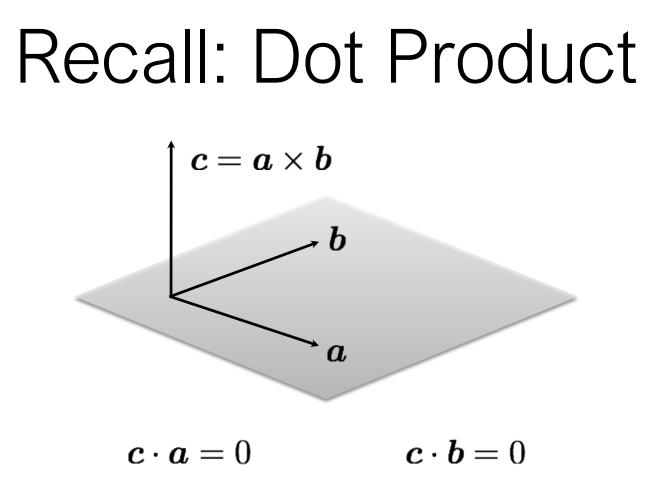




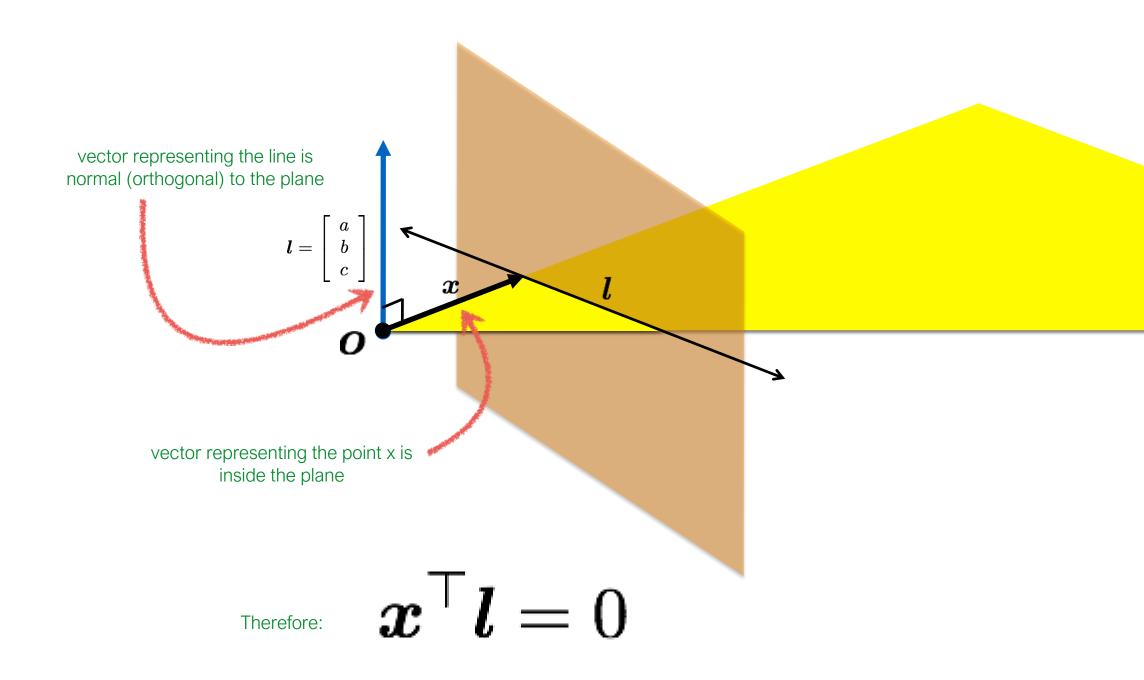


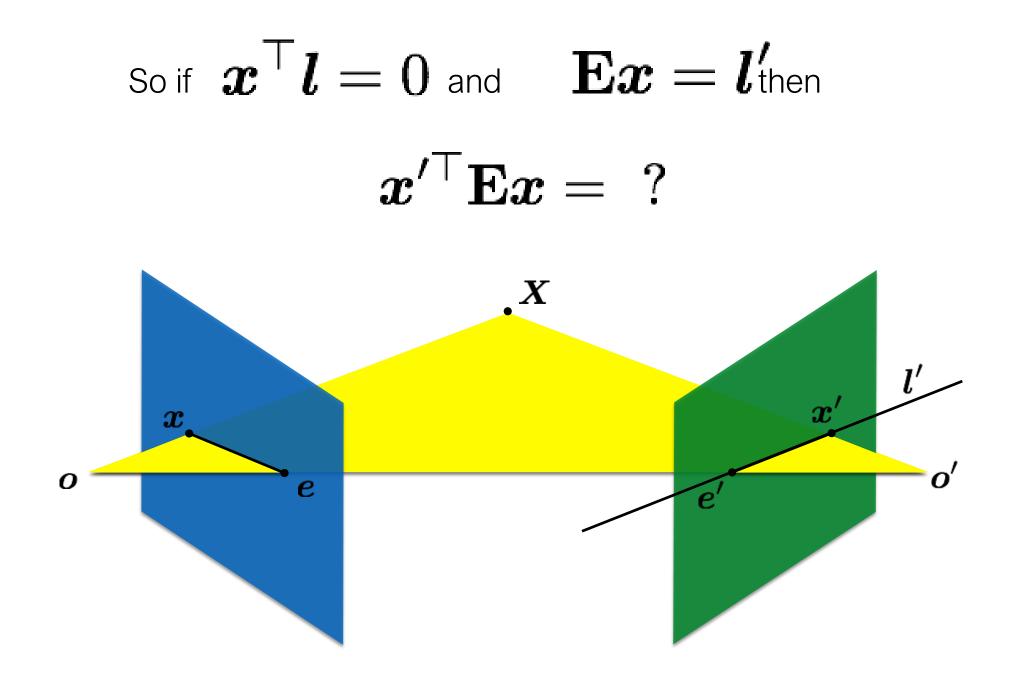
If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

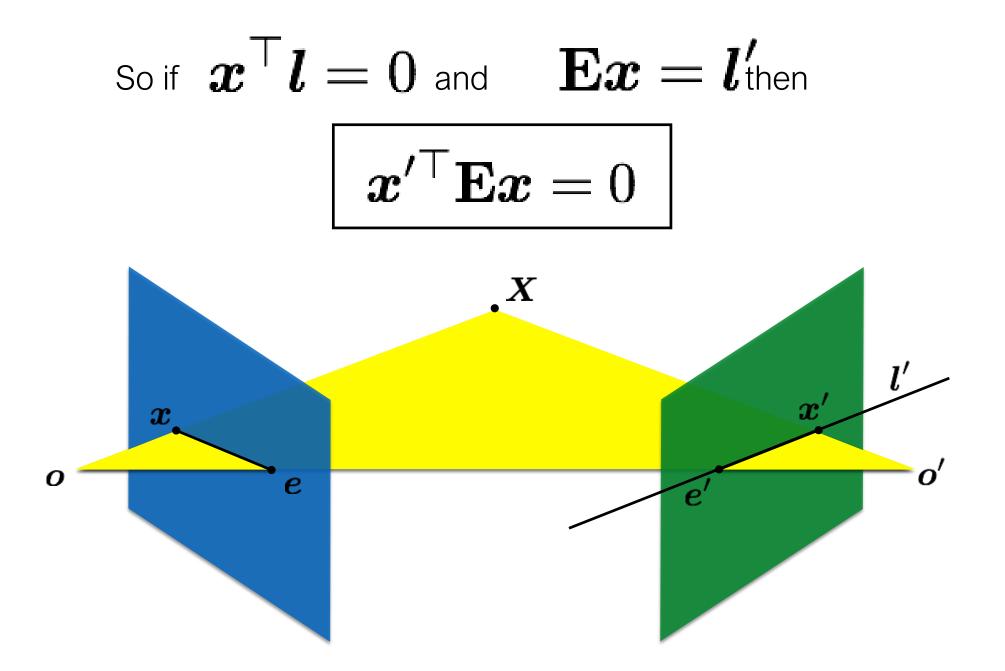
 $\boldsymbol{x}^{ op} \boldsymbol{l} = 0$



dot product of two orthogonal vectors is zero







Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

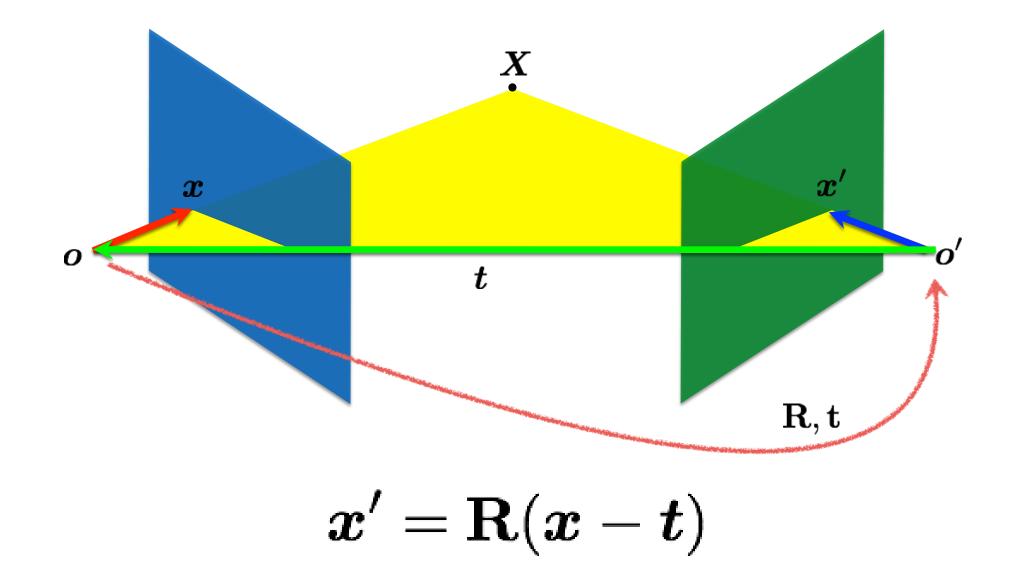
 $l' = \mathbf{E} x$

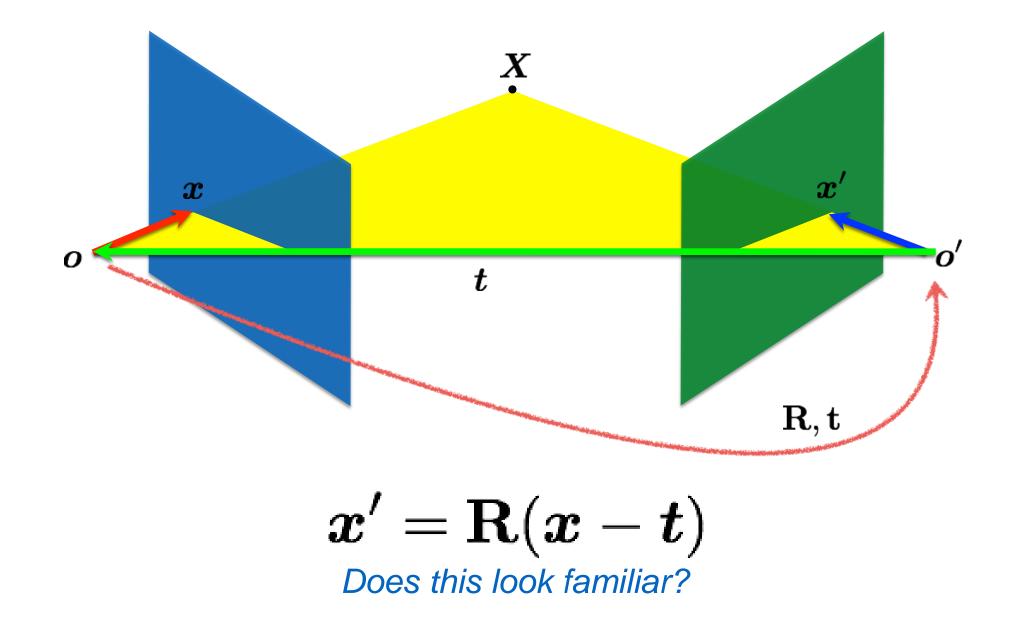
Essential matrix maps a **point** to a **line**

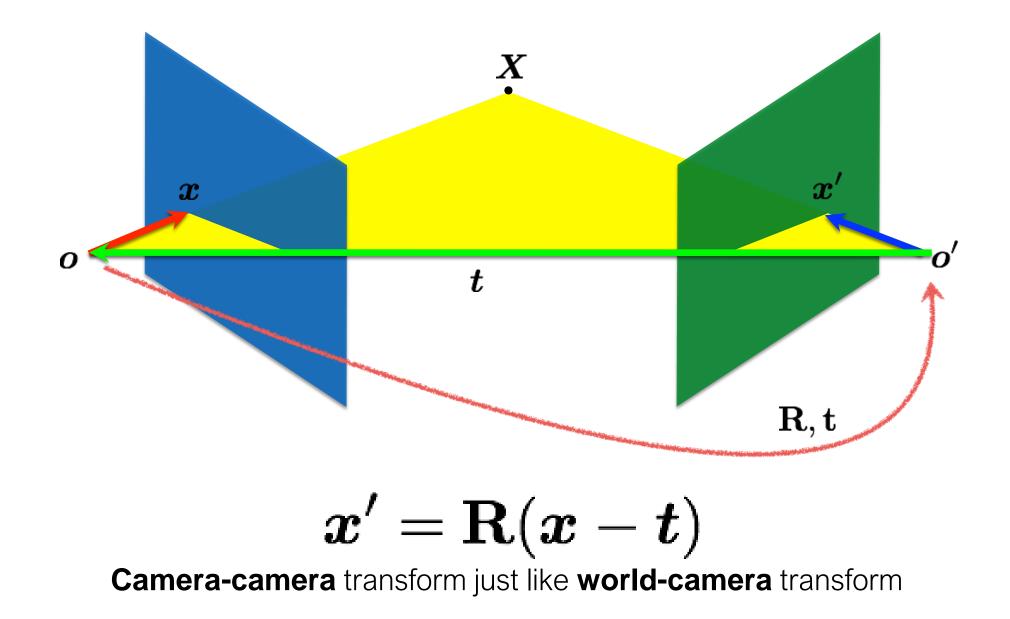
x' = Hx

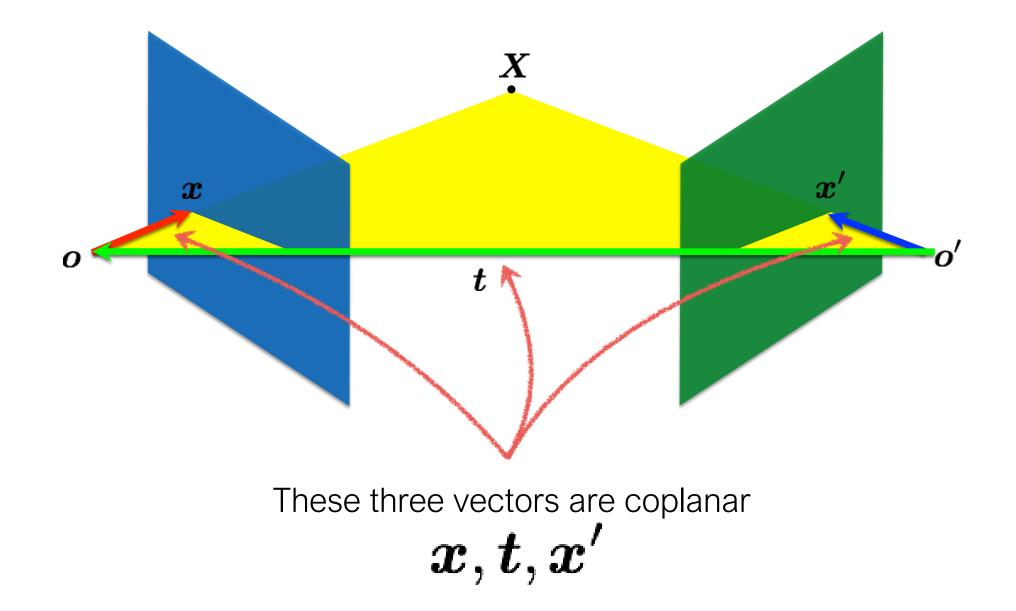
Homography maps a **point** to a **point**

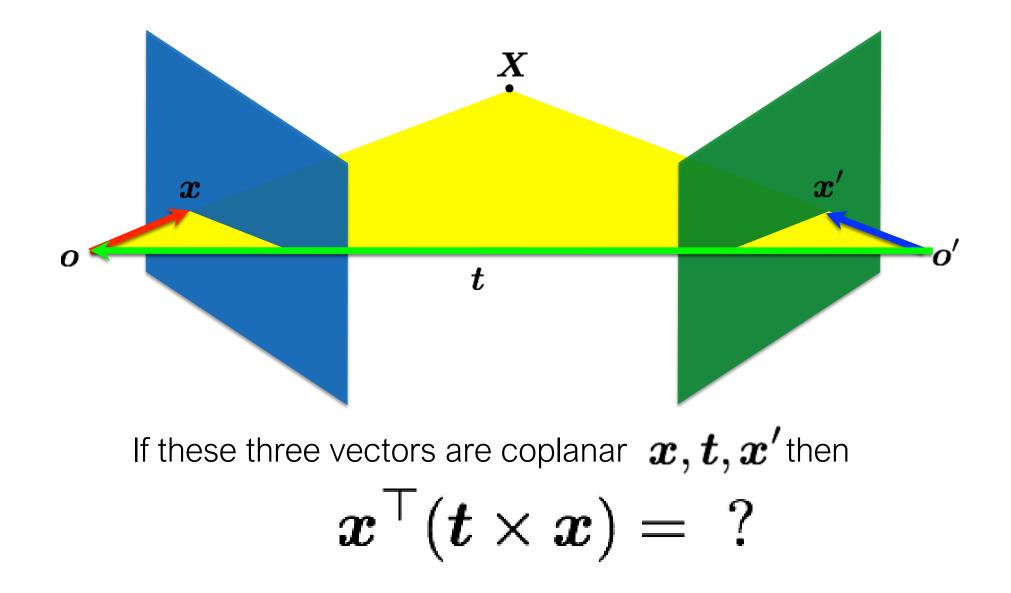
Where does the Essential matrix come from?

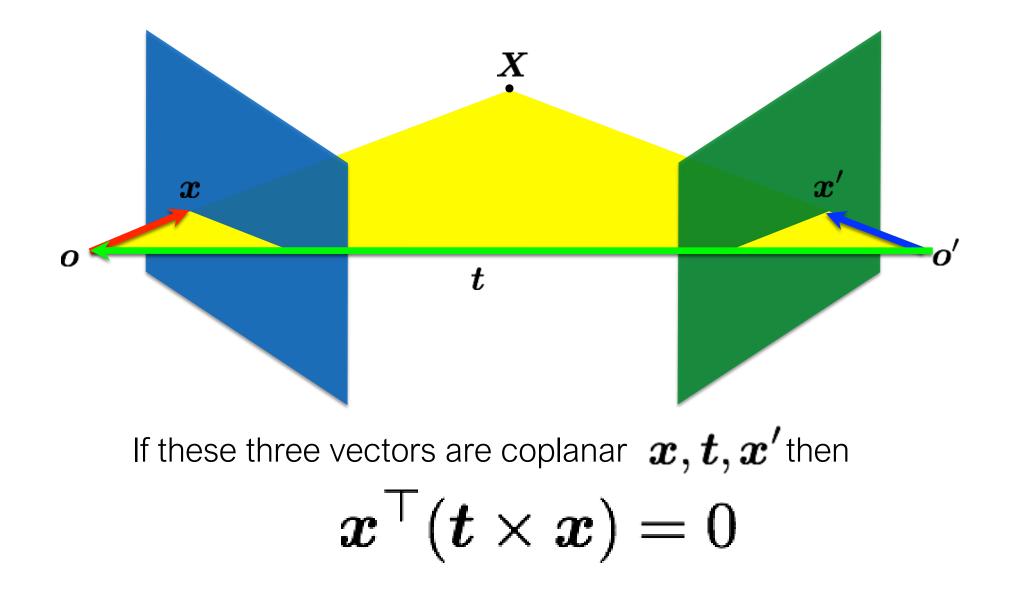








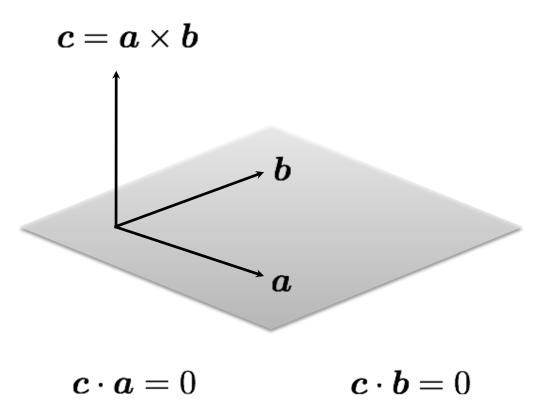


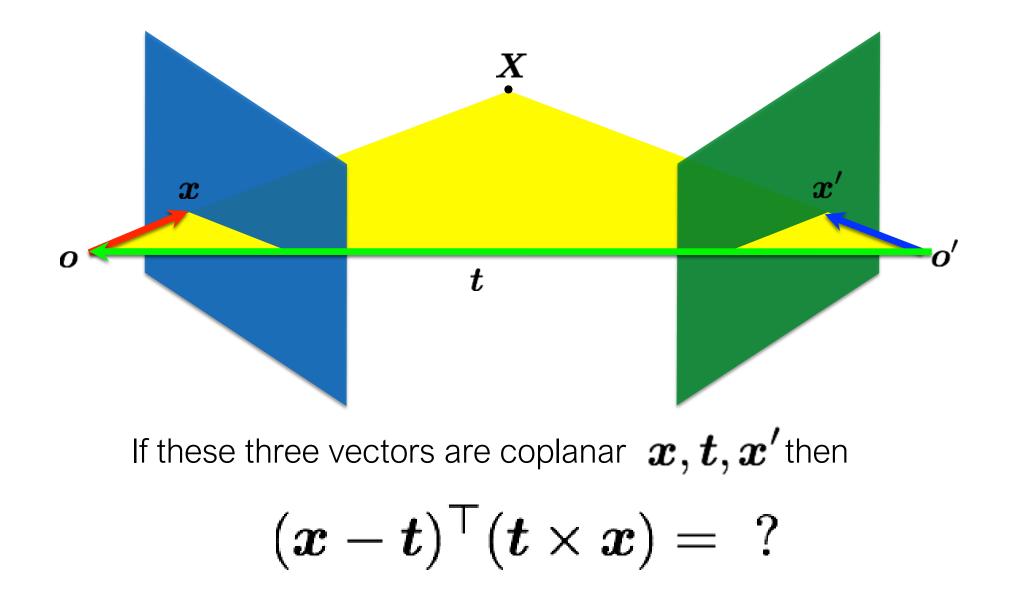


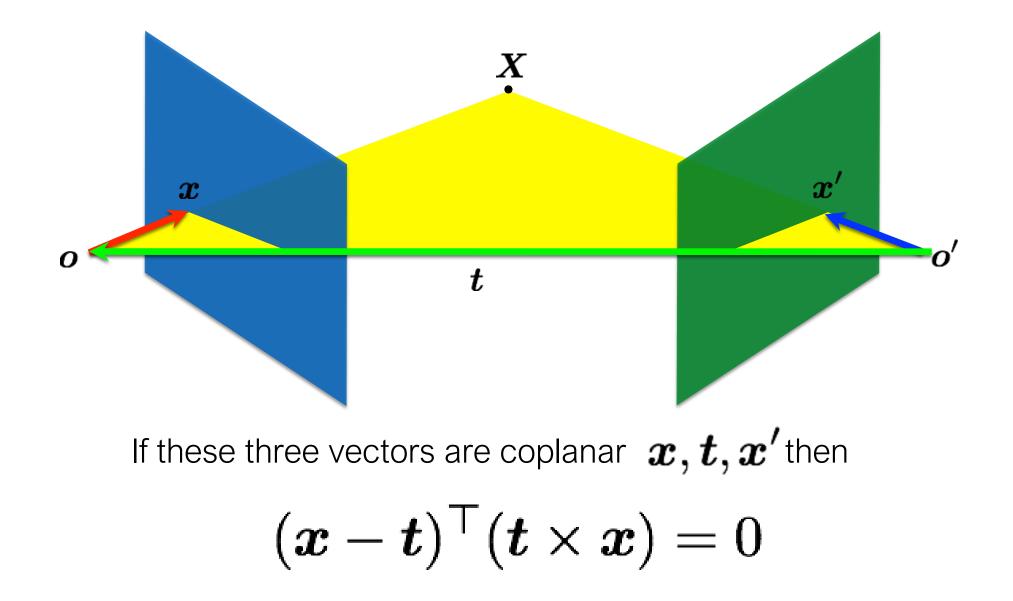
Recall: Cross Product

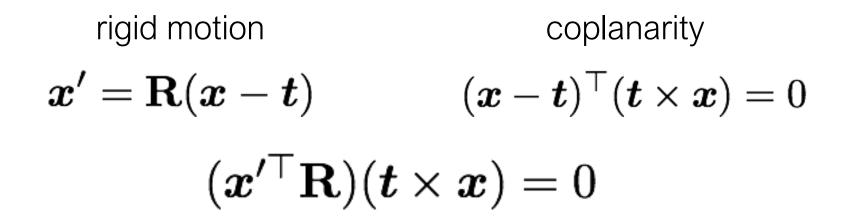
Vector (cross) product

takes two vectors and returns a vector perpendicular to both









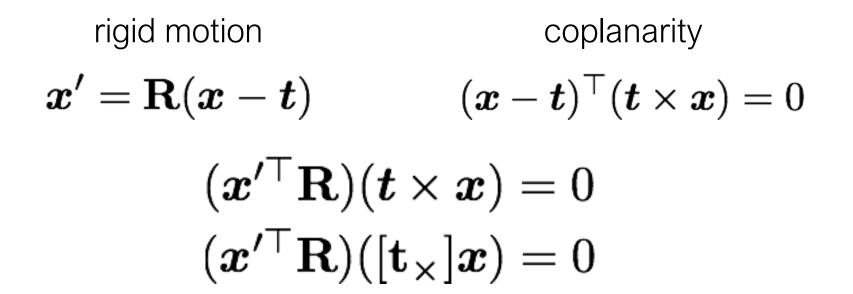
Cross product

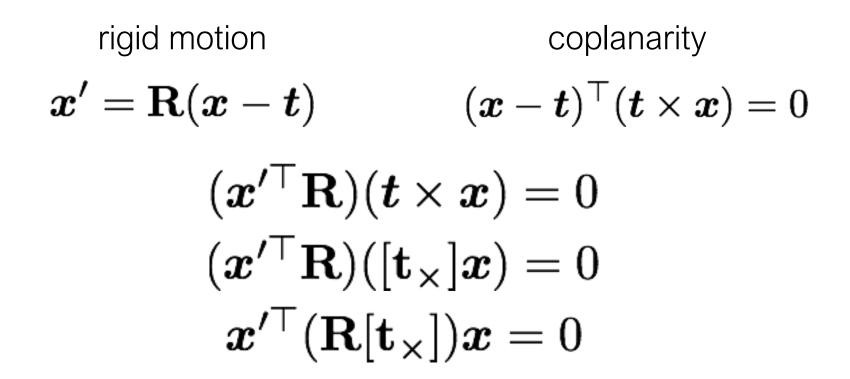
$$m{a} imes m{b} = \left[egin{array}{c} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{array}
ight]$$

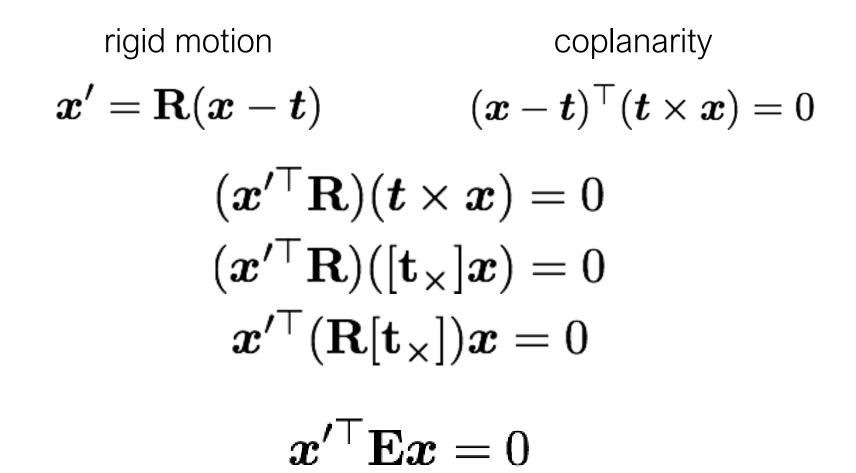
Can also be written as a matrix multiplication

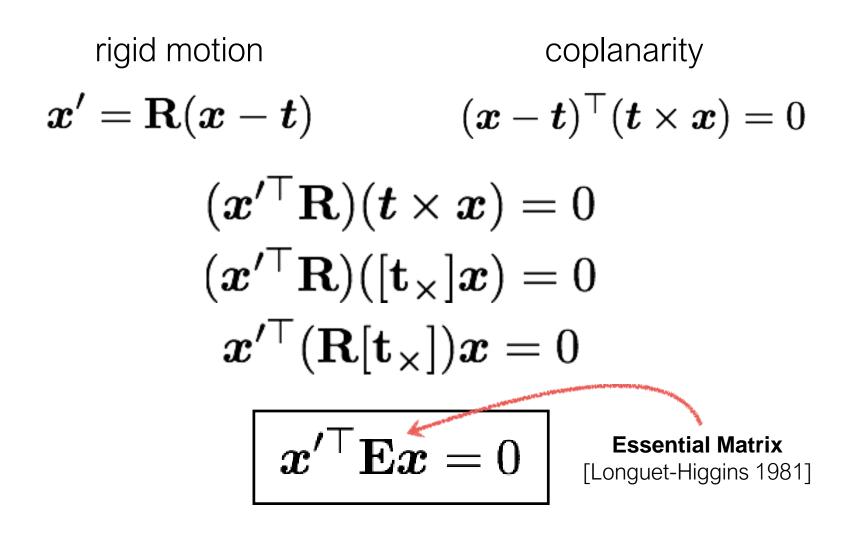
$$m{a} imes m{b} = [m{a}]_{ imes} m{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$$

Skew symmetric









 $x'^{\top}\mathbf{E}x=0$

Longuet-Higgins equation

(points in normalized coordinates)

Longuet-Higgins equation

$$\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x} = 0$$

Epipolar lines $egin{array}{ccc} m{x}^ op m{l} = 0 & m{x}'^ op m{l}' = 0 \ m{l}' = m{E}m{x} & m{l} = m{E}^Tm{x}' \end{array}$

(points in normalized coordinates)

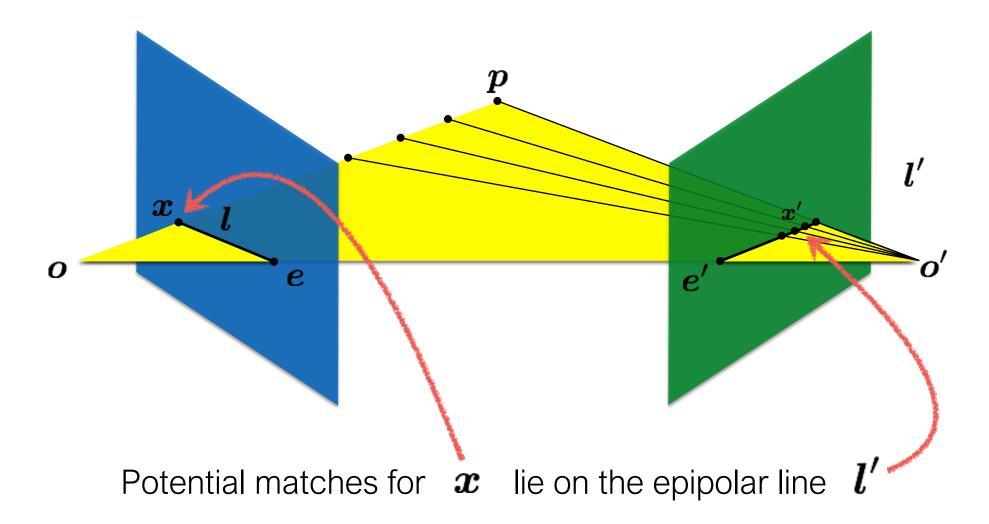
Longuet-Higgins equation

- $\boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x} = 0$
- Epipolar lines $egin{array}{ccc} m{x}^ op m{l} = 0 & m{x}'^ op m{l}' = 0 \ m{l}' = m{E}m{x} & m{l} = m{E}^Tm{x}' \end{array}$

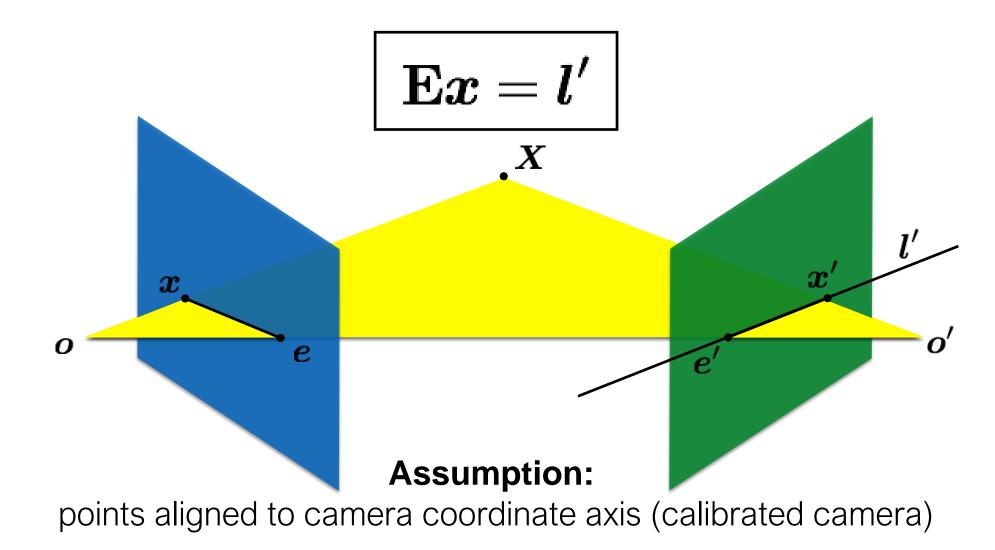
Epipoles
$$e'^ op \mathbf{E} = \mathbf{0}$$
 $\mathbf{E} e = \mathbf{0}$

(points in normalized <u>camera</u> coordinates)

Recall: Epipolar constraint



Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.



How do you generalize to uncalibrated cameras?

The fundamental matrix

The **Fundamental matrix** is a generalization of the **Essential matrix**, where the assumption of calibrated cameras is removed

 $\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}} = 0$

The Essential matrix operates on image points expressed in **normalized coordinates**

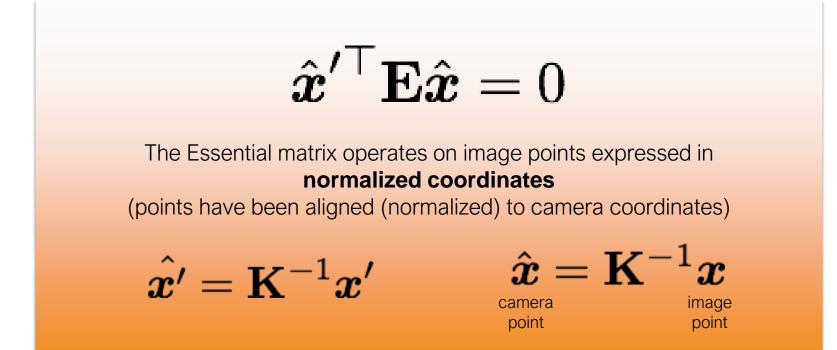
(points have been aligned (normalized) to camera coordinates)

$$\hat{x'} = \mathbf{K}^{-1} x$$

$$\hat{\boldsymbol{x}} = \mathbf{K}^{-1} \boldsymbol{x}$$

camera point

image point



Writing out the epipolar constraint in terms of image coordinates

$$\begin{aligned} \mathbf{x}^{\prime \top} \mathbf{K}^{\prime - \top} \mathbf{E} \mathbf{K}^{-1} \mathbf{x} &= 0 \\ \mathbf{x}^{\prime \top} (\mathbf{K}^{\prime - \top} \mathbf{E} \mathbf{K}^{-1}) \mathbf{x} &= 0 \\ \mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x} &= 0 \end{aligned}$$

Same equation works in image coordinates!

$\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x} = 0$

it maps pixels to epipolar lines

Longuet-Higgins equation

$$x'^{ op} \mathbf{E} x = 0$$

Epipolar lines $egin{array}{ccc} m{x}^{ op}m{l}=0 & m{x}'^{ op}m{l}'=0 \ m{l}=m{l}=m{r}^Tm{x}' & m{l}=m{l}=m{r}^Tm{x}' \end{array}$

Epipoles
$$e'^ op \mathbf{E} = \mathbf{0}$$
 $\mathbf{E} e = \mathbf{0}$

(points in **image** coordinates)

Breaking down the fundamental matrix

$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

The 8-point algorithm

Assume you have *M* matched *image* points

$$\{\boldsymbol{x}_m, \boldsymbol{x}_m'\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Assume you have *M* matched *image* points

$$\{\boldsymbol{x}_m, \boldsymbol{x}_m'\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

S V D

Assume you have *M* matched *image* points

$$\{\boldsymbol{x}_m, \boldsymbol{x}_m'\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

 $\boldsymbol{x}_m^{\prime op} \mathbf{F} \boldsymbol{x}_m = 0$

How would you solve for the 3 x 3 **F** matrix?

Set up a homogeneous linear system with 9 unknowns

$$oldsymbol{x}_m^{\prime \mid} \mathbf{F} oldsymbol{x}_m = 0$$

 $\left[egin{array}{cccc} x_m^{\prime \mid} & y_m^{\prime \mid} & 1 \end{array}
ight] \left[egin{array}{cccc} f_1 & f_2 & f_3 \ f_4 & f_5 & f_6 \ f_7 & f_8 & f_9 \end{array}
ight] \left[egin{array}{cccc} x_m \ y_m \ 1 \end{array}
ight] = 0$

How many equation do you get from one correspondence?

$$\begin{bmatrix} x'_{m} & y'_{m} & 1 \end{bmatrix} \begin{bmatrix} f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9} \end{bmatrix} \begin{bmatrix} x_{m} \\ y_{m} \\ 1 \end{bmatrix} = 0$$

ONE correspondence gives you ONE equation

$$\begin{aligned} x_m x'_m f_1 + x_m y'_m f_2 + x_m f_3 + \\ y_m x'_m f_4 + y_m y'_m f_5 + y_m f_6 + \\ x'_m f_7 + y'_m f_8 + f_9 &= 0 \end{aligned}$$

$$\begin{bmatrix} x'_{m} & y'_{m} & 1 \end{bmatrix} \begin{bmatrix} f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9} \end{bmatrix} \begin{bmatrix} x_{m} \\ y_{m} \\ 1 \end{bmatrix} = 0$$

Set up a homogeneous linear system with 9 unknowns

How many equations do you need?

Each point pair (according to epipolar constraint) contributes only one <u>scalar</u> equation

$$oldsymbol{x}_m^{\prime op} \mathbf{F} oldsymbol{x}_m = 0$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

How do you solve a homogeneous linear system?

$\mathbf{A} \mathbf{X} = \mathbf{0}$

How do you solve a homogeneous linear system?

$\mathbf{A} \mathbf{X} = \mathbf{0}$

Total Least Squaresminimize $\|\mathbf{A}\mathbf{x}\|^2$ subject to $\|\mathbf{x}\|^2 = 1$

How do you solve a homogeneous linear system?

$\mathbf{A} \mathbf{X} = \mathbf{0}$

Total Least Squares minimize $\|\mathbf{A}\mathbf{x}\|^2$ subject to $\|\mathbf{x}\|^2 = 1$

SVD!

0. (Normalize points)

- 1. Construct the M x 9 matrix **A**
- 2. Find the SVD of $\boldsymbol{\mathsf{A}}$
- 3. Entries of ${\bf F}$ are the elements of column of ${\bf V}$

corresponding to the least singular value

- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

0. (Normalize points)

- 1. Construct the M x 9 matrix **A**
- 2. Find the SVD of $\boldsymbol{\mathsf{A}}$
- 3. Entries of ${\bf F}$ are the elements of column of ${\bf V}$

corresponding to the least singular value

- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

See Hartley-Zisserman for why we do this

0. (Normalize points)

- 1. Construct the M x 9 matrix **A**
- 2. Find the SVD of $\boldsymbol{\mathsf{A}}$
- 3. Entries of ${\bf F}$ are the elements of column of ${\bf V}$

corresponding to the least singular value

4. (Enforce rank 2 constraint on F)

5. (Un-normalize F)

How do we do this?

0. (Normalize points)

- 1. Construct the M x 9 matrix **A**
- 2. Find the SVD of $\boldsymbol{\mathsf{A}}$
- 3. Entries of ${\bf F}$ are the elements of column of ${\bf V}$

corresponding to the least singular value

- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

How do we do this?

SVD!

Enforcing rank constraints

Problem: Given a matrix F, find the matrix F' of rank k that is closest to F,

$$\min_{F'} ||F - F'||^2$$
$$\operatorname{rank}(F') = k$$

Solution: Compute the singular value decomposition of F,

$$F = U\Sigma V^T$$

Form a matrix Σ ' by replacing all but the k largest singular values in Σ with 0.

Then the problem solution is the matrix **F'** formed as,

$$F' = U\Sigma' V^T$$

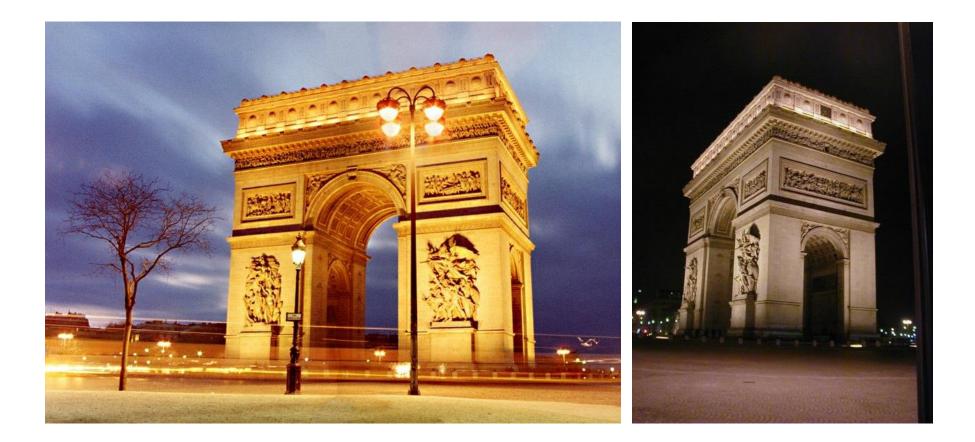
0. (Normalize points)

- 1. Construct the M x 9 matrix **A**
- 2. Find the SVD of $\boldsymbol{\mathsf{A}}$
- 3. Entries of ${\bf F}$ are the elements of column of ${\bf V}$

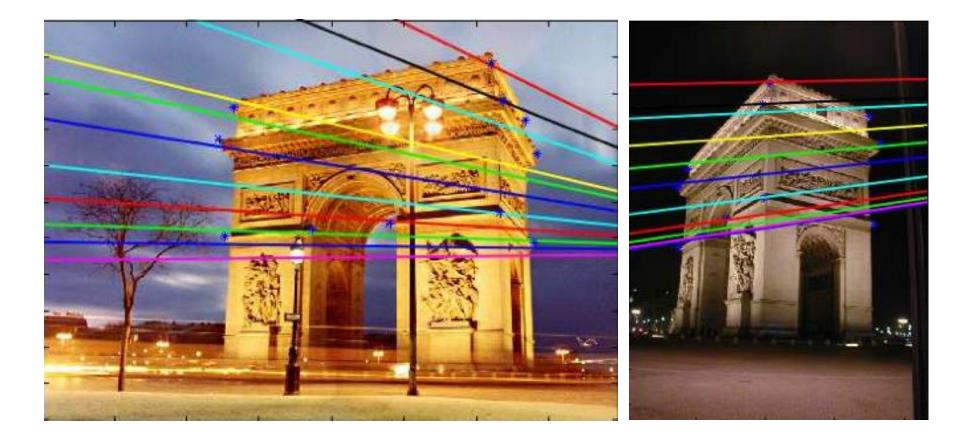
corresponding to the least singular value

- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

Example



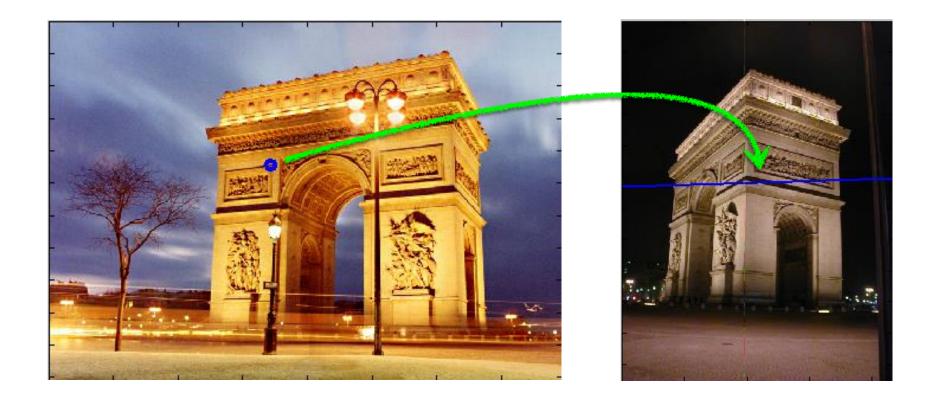
epipolar lines



$$\mathbf{F} = \begin{bmatrix} -0.00310695 & -0.0025646 & 2.96584 \\ -0.028094 & -0.00771621 & 56.3813 \\ 13.1905 & -29.2007 & -9999.79 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 343.53\\221.70\\1.0 \end{bmatrix}$$
$$\mathbf{l}' = \mathbf{F}\mathbf{x}$$
$$= \begin{bmatrix} 0.0295\\0.9996\\-265.1531 \end{bmatrix}$$

$${}^{\prime} = \mathbf{F} oldsymbol{x} \ = \left[egin{array}{c} 0.0295 \ 0.9996 \ -265.1531 \end{array}
ight]$$



Where is the epipole?

How would you compute it?

$\mathbf{F} \boldsymbol{e} = \boldsymbol{0}$

The epipole is in the right null space of ${\bf F}$

How would you solve for the epipole?

$\mathbf{F} \boldsymbol{e} = \boldsymbol{0}$

The epipole is in the right null space of ${\bf F}$

How would you solve for the epipole?

SVD!

References

Basic reading:

- Szeliski textbook, Section 8.1 (not 8.1.1-8.1.3), Chapter 11, Section 12.2.
- Hartley and Zisserman, Section 11.12.