Geometric camera models and calibration

15-463, 15-663, 15-862 Computational Photography Fall 2019, Lecture 14

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 4 is out.
 - Due October 25th.
 - Any questions?
- Project logistics:

- Project ideas were due on Piazza yesterday. I'll try to go over them and provide feedback tonight and tomorrow.

- Final project proposals are due on October 20th.
- This week I'll schedule extra office hours for discussing your final project ideas.

Overview of today's lecture

- Reminder about pinhole and lens cameras
- Camera matrix.
- Perspective distortion.
- Other camera models.
- Geometric camera calibration.

Slide credits

Many of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).
- Srinivasa Narasimhan (16-720, Fall 2017).
- Noah Snavely (Cornell).

Some slides inspired from:

• Fredo Durand (MIT).

Pinhole and lens cameras

The lens camera

The pinhole camera

The pinhole camera

Central rays propagate in the same way for both models!

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.

Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

Remember: *focal length* f refers to different things for lens and pinhole cameras.

 In this lecture, we use it to refer to the aperture-sensor distance, as in the pinhole camera case.

Camera matrix

The camera as a coordinate transformation

The camera as a coordinate transformation

point

A camera is a mapping from:

the 3D world

to:

homogeneous coordinates $\vec{x} = \mathbf{p} \mathbf{x}$ 2D image camera 3D world

a 2D image

What are the dimensions of each variable?

matrix

point

The camera as a coordinate transformation

The pinhole camera

real-world object

The (rearranged) pinhole camera

real-world object

The (rearranged) pinhole camera

What is the equation for image coordinate **x** in terms of **X**?

The 2D view of the (rearranged) pinhole camera

What is the equation for image coordinate **x** in terms of **X**?

The 2D view of the (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the camera matrix **P** for a pinhole camera?

 $\boldsymbol{x} = \mathbf{P}\mathbf{X}$

The pinhole camera matrix

Relationship from similar triangles:

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^\top \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^\top$$

General camera model:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What does the pinhole camera projection look like?

The pinhole camera matrix

Relationship from similar triangles:

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^\top \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^\top$$

General camera model:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What does the pinhole camera projection look like?

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

In general, the camera and image have *different* coordinate systems.

In particular, the camera origin and image origin may be different:

How does the camera matrix change?

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

In particular, the camera origin and image origin may be different:

Camera matrix decomposition

We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

What does each part of the matrix represent?

Camera matrix decomposition

We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(homogeneous) transformation from 2D to 2D, accounting for not unit focal length and origin shift (homogeneous) projection from 3D to 2D, assuming image plane at z = 1 and shared camera/image origin

Also written as:
$$\mathbf{P} = \mathbf{K}[\mathbf{I}|\mathbf{0}]$$
 where $\mathbf{K} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix}$

In general, there are three, generally different, coordinate systems.

We need to know the transformations between them.

$$\left(\widetilde{X}_w-\widetilde{C}\right)$$

translate

$$oldsymbol{R} \cdot ig(\widetilde{X}_w - \widetilde{C} ig)$$
rotate translate

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$\widetilde{\mathbf{X}}_{\mathbf{c}} = \mathbf{R} \cdot \left(\widetilde{\mathbf{X}}_{\mathbf{w}} - \widetilde{\mathbf{C}} \right)$$

How do we write this transformation in homogeneous coordinates?

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$\widetilde{\mathbf{X}}_{\mathbf{c}} = \mathbf{R} \cdot \left(\widetilde{\mathbf{X}}_{\mathbf{w}} - \widetilde{\mathbf{C}} \right)$$

In homogeneous coordinates, we have:

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \text{ or } \mathbf{X}_{\mathbf{c}} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\tilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}_{\mathbf{w}}$$
Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{\mathbf{c}} = \mathbf{K}[\mathbf{I}|\mathbf{0}]\mathbf{X}_{\mathbf{c}}$$

We also just derived:

$$\mathbf{X}_{\mathbf{c}} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\tilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}_{\mathbf{w}}$$

Putting it all together

We can write everything into a single projection:

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{\mathbf{w}}$$

The camera matrix now looks like:

(sensor not at

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ 1 \end{bmatrix}$$

intrinsic parameters (3 x 3):
correspond to camera internals
ensor not at f = 1 and origin shift)
$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ \mathbf{R} & -\mathbf{RC} \\ 1 \end{bmatrix}$$

General pinhole camera matrix

We can decompose the camera matrix like this:

$\mathbf{P} = \mathbf{K}\mathbf{R}[\mathbf{I}| - \mathbf{C}]$

(translate first then rotate)

Another way to write the mapping:

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$
 where $\mathbf{t} = -\mathbf{R}\mathbf{C}$

(rotate first then translate)

General pinhole camera matrix $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$ $\mathbf{P} = \left| \begin{array}{ccccc} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{array} \right| \left| \begin{array}{ccccc} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_0 & t_2 \end{array} \right|$ intrinsic extrinsic parameters parameters $\mathbf{R} = \left| \begin{array}{ccc} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ r_7 & r_2 & r_2 \end{array} \right| \qquad \mathbf{t} = \left| \begin{array}{c} t_1 \\ t_2 \\ t_2 \end{array} \right|$ 3D rotation 3D translation

Recap

Recap

Recap

Recap

Recap

intrinsics 3D rotation identity 3D translation

Quiz

The camera matrix relates what two quantities?

Quiz

The camera matrix relates what two quantities?

$x = \mathbf{P}\mathbf{X}$

homogeneous 3D points to 2D image points

Quiz

The camera matrix relates what two quantities?

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

Quiz

The camera matrix relates what two quantities?

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$

intrinsic and extrinsic parameters

The following is the standard camera matrix we saw.

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix}$$

CCD camera: pixels may not be square.

$$\mathbf{P} = \begin{bmatrix} \alpha_x & 0 & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix}$$

How many degrees of freedom?

CCD camera: pixels may not be square.

$$\mathbf{P} = \begin{bmatrix} \alpha_x & 0 & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix}$$

How many degrees of freedom?

10 DOF

Finite projective camera: sensor be skewed.

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix}$$

How many degrees of freedom?

Finite projective camera: sensor be skewed.

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix}$$

How many degrees of freedom?

11 DOF

Perspective distortion

Finite projective camera

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ \mathbf{0} & 1 \end{bmatrix}$$

What does this matrix look like if the camera and world have the same coordinate system?

Finite projective camera

The pinhole camera and all of the more general cameras we have seen so far have *"perspective distortion"*.

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Perspective projection from (homogeneous) 3D to 2D coordinates

The (rearranged) pinhole camera

Perspective projection in 3D

 $x = \mathbf{PX}$

The 2D view of the (rearranged) pinhole camera

L

Forced perspective

The Ames room illusion

The Ames room illusion

The arrow illusion

Other camera models

What if...

... we continue increasing Z and f while maintaining same magnification?

$$f \to \infty$$
 and $\frac{f}{Z} = \text{constant}$

real-world object

Different cameras

perspective camera

weak perspective camera

Weak perspective vs perspective camera

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

• The *perspective* camera matrix can be written as:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• What would the matrix of the weak perspective camera look like?

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

• The *perspective* camera matrix can be written as:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• The *weak perspective* camera matrix can be written as:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z_o \end{bmatrix}$$

Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

• The *finite projective* camera matrix can be written as:

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

where we now have the more general intrinsic matrix

• The *affine* camera matrix can be written as:

$$\mathbf{P} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z_o \end{bmatrix}$$

 $\mathbf{K} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$

In both cameras, we can incorporate extrinsic parameters same as we did before.

When can we assume a weak perspective camera?
When can we assume a weak perspective camera?

1. When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.

When can we assume a weak perspective camera?

2. When we use a telecentric lens.

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.

What is the magnification factor in this case?

When can we assume a weak perspective camera?

2. When we use a telecentric lens.

Place a pinhole at focal length, so that only rays parallel to primary ray pass through.

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1.
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

What is the camera matrix in this case?

Orthographic camera

Special case of weak perspective camera where:

- constant magnification is equal to 1.
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.

Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?

Many other types of cameras

Geometric camera calibration

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, \boldsymbol{x}_i\}$

point in 3D point in the space image

and camera model

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$

parameters

projection model Camera matrix

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

Same setup as homography estimation (slightly different derivation here)

Where did we see homography estimation in this class?

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What are the unknowns?

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Heterogeneous coordinates

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

(non-linear relation between coordinates) *How can we make these relations linear?* How can we make these relations linear?

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

Make them linear with algebraic manipulation...

$$oldsymbol{p}_2^ op oldsymbol{X} - oldsymbol{p}_3^ op oldsymbol{X} y' = 0$$

 $oldsymbol{p}_1^ op oldsymbol{X} - oldsymbol{p}_3^ op oldsymbol{X} x' = 0$

Now we can setup a system of linear equations with multiple point correspondences

$$oldsymbol{p}_2^{ op} oldsymbol{X} - oldsymbol{p}_3^{ op} oldsymbol{X} y' = 0$$

 $oldsymbol{p}_1^{ op} oldsymbol{X} - oldsymbol{p}_3^{ op} oldsymbol{X} x' = 0$

How do we proceed?

$$p_{2}^{\top} X - p_{3}^{\top} X y' = 0$$

$$p_{1}^{\top} X - p_{3}^{\top} X x' = 0$$
In matrix form ...
$$\begin{bmatrix} X^{\top} & \mathbf{0} & -x' X^{\top} \\ \mathbf{0} & X^{\top} & -y' X^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$

How do we proceed?

$$p_{2}^{\top} X - p_{3}^{\top} X y' = 0$$

$$p_{1}^{\top} X - p_{3}^{\top} X x' = 0$$
In matrix form ...
$$\begin{bmatrix} X^{\top} & \mathbf{0} & -x' X^{\top} \\ \mathbf{0} & X^{\top} & -y' X^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
For N points ...
$$\begin{bmatrix} X_{1}^{\top} & \mathbf{0} & -x' X_{1}^{\top} \\ \mathbf{0} & X_{1}^{\top} & -y' X_{1}^{\top} \\ \vdots & \vdots & \vdots \\ X_{N}^{\top} & \mathbf{0} & -x' X_{N}^{\top} \\ \mathbf{0} & X_{N}^{\top} & -y' X_{N}^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
Here

How do we solve this system?

Solve for camera matrix by

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} \|\mathbf{A}x\|^2$$
 subject to $\|x\|^2 = 1$

$$\mathbf{A} = egin{bmatrix} oldsymbol{X}_1^{ op} & oldsymbol{0} & -x'oldsymbol{X}_1^{ op} \ oldsymbol{0} & oldsymbol{X}_1^{ op} & -y'oldsymbol{X}_1^{ op} \ dots & dots & dots & dots \ oldsymbol{p}_2 \ oldsymbol{X}_N^{ op} & oldsymbol{0} & -x'oldsymbol{X}_N^{ op} \ oldsymbol{0} & oldsymbol{X}_N^{ op} & -y'oldsymbol{X}_N^{ op} \end{bmatrix} \qquad oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix}$$

SVD!

Solve for camera matrix by

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} \|\mathbf{A}x\|^2$$
 subject to $\|x\|^2 = 1$

$$\mathbf{A} = egin{bmatrix} oldsymbol{X}_1^{ op} & oldsymbol{0} & oldsymbol{X}_1^{ op} & -x'oldsymbol{X}_1^{ op} \ oldsymbol{0} & oldsymbol{X}_1^{ op} & -y'oldsymbol{X}_1^{ op} \ oldsymbol{\vdots} & oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix} & oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix}$$

Solution **x** is the column of **V** corresponding to smallest singular value of

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

Solve for camera matrix by

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} \|\mathbf{A}x\|^2$$
 subject to $\|x\|^2 = 1$

$$\mathbf{A} = \begin{bmatrix} \boldsymbol{X}_1^\top & \boldsymbol{0} & -x' \boldsymbol{X}_1^\top \\ \boldsymbol{0} & \boldsymbol{X}_1^\top & -y' \boldsymbol{X}_1^\top \\ \vdots & \vdots & \ddots \\ \boldsymbol{X}_N^\top & \boldsymbol{0} & -x' \boldsymbol{X}_N^\top \\ \boldsymbol{0} & \boldsymbol{X}_N^\top & -y' \boldsymbol{X}_N^\top \end{bmatrix} \qquad \boldsymbol{x} = \begin{bmatrix} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \\ \boldsymbol{p}_3 \end{bmatrix}$$

Equivalently, solution **x** is the Eigenvector corresponding to smallest Eigenvalue of

 $\mathbf{A}^\top \mathbf{A}$

Now we have:
$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

Are we done?

Almost there ...
$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

How do you get the intrinsic and extrinsic parameters from the projection matrix?

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
 $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

$$egin{aligned} \mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ &= \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ &= [\mathbf{M} | - \mathbf{Mc}] \end{aligned}$$

Find the camera center C

What is the projection of the camera center?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{Pc} = \mathbf{0}$

How do we compute the camera center from this?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}] \ = \mathbf{K}[\mathbf{R}|-\mathbf{Rc}] \ = [\mathbf{M}|-\mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic **K** and rotation **R**

 $\mathbf{M}=\mathbf{K}\mathbf{R}$

Any useful properties of K and R we can use?

$$f{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ f{P} = f{K}[f{R}|f{t}] \ = f{K}[f{R}|-f{Rc}] \ = [f{M}|-f{Mc}] \end{cases}$$

How do we find K and R?

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic **K** and rotation **R**

$$\mathbf{M} = \mathbf{K}\mathbf{R}$$

QR decomposition

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, oldsymbol{x}_i\}$

point in the

image

Where do we get these matched points from?

and camera model

point in 3D

space

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$ Camera parameters

projection model

matrix

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
 - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Minimizing reprojection error

we were doing previously?

Radial distortion

What causes this distortion?

no distortion

barrel distortion p

pincushion distortion
Radial distortion model

Ideal:

Distorted:

$$x' = f \frac{x}{z} \qquad x'' = \frac{1}{\lambda} x' \qquad \lambda = 1 + k_1 r^2 + k_2 r^4 + \cdots$$
$$y' = f \frac{y}{z} \qquad y'' = \frac{1}{\lambda} y'$$

Minimizing reprojection error with radial distortion

Correcting radial distortion

before

Alternative: Multi-plane calibration

Advantages:

- Only requires a plane
- Don't have to know positions/orientations
- Great code available online!
 - Matlab version: <u>http://www.vision.caltech.edu/bouguetj/calib_doc/index.html</u>
 - Also available on OpenCV.

Disadvantage: Need to solve non-linear optimization problem.

Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

Click on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1 Click on the four extreme corners of the rectangular pattern (first corner = origin)... Image 1

400

500

600

What does it mean to "calibrate a camera"?

What does it mean to "calibrate a camera"?

Many different ways to calibrate a camera:

lecture 4 Radiometric calibration. \bullet lecture 5 Color calibration. ulletlecture 14 Geometric calibration. ٠ lecture 6 Noise calibration. • lecture 12, (maybe) later lecture Lens (or aberration) calibration. •

References

Basic reading:

- Szeliski textbook, Section 2.1.5, 6.2.
- Bouguet, "Camera calibration toolbox for Matlab," available at

http://www.vision.caltech.edu/bouguetj/calib_doc/

The main resource for camera calibration in Matlab, where the screenshots in this lecture were taken from. It also has a detailed of the camera calibration algorithm and an extensive reference section.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004. Chapter 6 of this book has a very thorough treatment of camera models.
- Gortler, "Foundations of 3D Computer Graphics," MIT Press 2012.
 - Chapter 10 of this book has a nice discussion of pinhole cameras from a graphics point of view.
- Zhang, "A flexible new technique for camera calibration," PAMI 2000.

The paper that introduced camera calibration from multiple views of a planar target.