The Real-World Applications of **3D Reconstruction** in the **Panoptic Studio**

Hanbyul (Han) Joo

The Robotics Institute
Carnegie Mellon University

Basic Knowledge for 3D Reconstruction

You Should Be Familiar with

- Camera Matrix
- Triangulation
- Stereo and Structured Light
- Fundamental Matrix and Essential Matrix
- Camera Pose Estimation (Perspective-n-Point)
- DLT and SVD (Homogeneous Least Square Problem)

Building A System For 3D Reconstruction

An Example with Two Static Cameras

Building A System For 3D Reconstruction

An Example with Two Static Cameras

Computing Geometrical Relation Between Cameras (K, R, t)

Computing Geometrical Relation Between Cameras (K, R, t)

- Read H&Z book
- Read vision/geometry lecture slides
- Open Matlab
- Compute Essential matrix
- •

Computing Geometrical Relation Between Cameras (K, R, t)

- Read H&Z book
- Read 16-720 lecture slides
- Open Matlab
- Compute Essential matrix
- •

Use Calibration Softwares

e.g., Caltech Calibration Toolbox

(http://www.vision.caltech.edu/bouguetj/calib_doc/)

- Print a checkerboard
- Capture multiple images
 - ✓ Patterns should be static or use synchronized cameras
- Run the calibration toolbox
 - ✓ Input: Patterns captured at the same time
 - ✓ Output: K,R,t for each camera

Why Checkerboard?

For more accurate correspondence matching!

Correspondence Matching

SSD, NCC, SIFT, SURF, or Recent Deep Learning Methods

Correspondence Matching

SSD, NCC, SIFT, SURF, or Recent Deep Learning Methods

How can we handle outliers?

Correspondence Matching

SSD, NCC, SIFT, SURF, or Recent Deep Learning Methods

How can we handle outliers? RANSAC (will talk later)

Reconstructing A 3D Point from Image Measurements

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

$$\begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} y\boldsymbol{p}_3^\top - \boldsymbol{p}_2^\top \\ \boldsymbol{p}_1^\top - x\boldsymbol{p}_3^\top \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}_i \mathbf{X} = \mathbf{0}$$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

$$\begin{bmatrix} y\boldsymbol{p}_{3}^{\top} - \boldsymbol{p}_{2}^{\top} \\ \boldsymbol{p}_{1}^{\top} - x\boldsymbol{p}_{3}^{\top} \\ y'\boldsymbol{p}_{3}'^{\top} - \boldsymbol{p}_{2}'^{\top} \\ \boldsymbol{p}_{1}'^{\top} - x'\boldsymbol{p}_{3}'^{\top} \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

S V D!

Recall: Total least squares

(Warning: change of notation. x is a vector of parameters!)

$$E_{ ext{TLS}} = \sum_i (m{a}_i m{x})^2$$
 $= \| \mathbf{A} m{x} \|^2$ (matrix form)
 $\| m{x} \|^2 = 1$ constraint

minimize
$$\|\mathbf{A} \boldsymbol{x}\|^2$$
 subject to $\|\boldsymbol{x}\|^2 = 1$ minimize $\frac{\|\mathbf{A} \boldsymbol{x}\|^2}{\|\boldsymbol{x}\|^2}$ (Rayleigh quotient)

Solution is the eigenvector corresponding to smallest eigenvalue of

$$\mathbf{A}^{\top}\mathbf{A}$$

Recall: Total least squares

(Warning: change of notation. x is a vector of parameters!)

$$E_{ ext{TLS}} = \sum_i (m{a}_i m{x})^2$$
 $= \|m{A} m{x}\|^2$ (matrix form) $\|m{x}\|^2 = 1$ constraint

minimize
$$\| \mathbf{A} \boldsymbol{x} \|^2$$
 subject to $\| \boldsymbol{x} \|^2 = 1$

minimize
$$\frac{\|\mathbf{A}\boldsymbol{x}\|^2}{\|\boldsymbol{x}\|^2}$$
(Rayleigh quotient)

constraint

Solution is the eigenvector corresponding to smallest eigenvalue of

Best solution in this cost function,

Analytical solution:

but may not be the best geometrically

Move **X** to minimize reprojection error (Nonlinear optimization)

A Geometrical Solution

Move **X** to minimize reprojection error

A Geometrical Solution

Move **X** to minimize reprojection error (Nonlinear optimization)

Reprojection error

Final

Initial

A Geometrical Solution

• Find X which minimizes the rerojection errors (slow)

Move **X** to minimize reprojection error

Final

A Geometrical Solution

Outlier Filtering

Blue: correct matching

Red: wrong matching

Outlier Filtering

Blue: correct matching

Red: wrong matching

Inlier, if $||\mathbf{x}_i - P_i(\mathbf{X})||^2 < \tau$

We expect many inliers

Outlier Filtering with RANSAC

Blue: correct matching

Red: wrong matching

Outlier Filtering with RANSAC

Blue: correct matching

Red: wrong matching

Inlier, if $||\mathbf{x}_i - P_i(\mathbf{X})||^2 < \tau$

We expect few inliers

The Basic Idea

Find corresponding 2D points

The Basic Idea

Camera pose estimation by two-view geometry

The Basic Idea

The Problem of Sequential Method

Error accumulation for X, P

Bundle Adjustment

Minimizing reprojection error:

$$\min_{P,\mathbf{X}} \sum_{i} ||\mathbf{x}_i^k - P_k(\mathbf{X}_i)||^2$$

Cool!... But Something Is Missing

Cool!... But Something Is Missing

Cool!... But Something Is Missing

No human in the city, why?

- No multiple views
- Few correspondences

Synchronized Videos from Unique 521 Views

480 VGAs, 31HDs, and 10 RGB+Ds

Software and Hardware Challenges

How to Build the Panoptic Studio

Panoptic Studio Camera Calibration

Run Structure from Motion to get calibration parameters!

Calibration for Panoptic Studio

Based on Structure-from-Motion

Calibration for Panoptic Studio

Based on Structure-from-Motion

VisualSfM by Changchang Wu

Visual Hull

Image from [Cheung et al., 2003]

Image from [Cheung et al., 2003]

Image from [Cheung et al., 2003]

Reconstructing 3D Point Cloud

Reconstructing 3D Trajectory Stream

Reconstructing 3D Trajectory

2D Flow-based Method

Reconstructing 3D Trajectory

Key Issue To Leverage a Large Number of Views

A Core Idea

Reasoning About Time Varying Visibility

Triangulating 3D Skeletons

Fully Automatic Markerless Human Motion Capture

HeadTop/neck/bodyCenter

Left shoulder/elbow/wrist

Generating "Node" Proposals

Fully Automatic Markerless Human Motion Capture

HeadTop/neck/bodyCenter

Left shoulder/elbow/wrist

Right shoulder/elbow/wrist

Fully Automatic Markerless Human Motion Capture

Generating "Skeletal" Proposals

HeadTop/neck/bodyCenter Fully Automatic Markerless Human Motion Capture Left shoulder/elbow/wrist Right shoulder/elbow/wrist Left hip/knee/ankle

Associating with Dense 3D Trajectories Temporal Refinement

Are Body and Face Enough?

Important Nuances are Embedded in Hand Motion

Face+Body+Hand

How To Make A Good 2D Hand Pose Detector

Leveraging Recently Advanced Deep Learning Framework

How To Make A Good 2D Hand Pose Detector

Depends on Availability of A Large Scale Dataset

Human Keypoint Detectors from Single RGB image?

No Available Hand Keypoint Detector and Dataset

MPII with **40K** annotations MS COCO with **250K** annotations

300-VW with **218K** annotations ALFW with **26K** annotations PUT with **10K** annotations MUCT with **3K** annotations

DeepFace 2014, FaceNet 2015 OpenFace 2016

No large scale dataset

Rehg and Kanade 1994, Lu et al., 2003 Stenger et al., 2006, Gorce et al., 2011

ANNOTATORS NEEDED TO LABEL IMAGES

We are looking for people to help annotate landmarks in images and video. The ideal candidate should be consistent, self-motivated, and have great attention to detail. The position will be paid hourly at \$12/hour, hours flexible.

- Work from home using any browser.
- ATTENTION TO DETAIL required.
- Proofreading and/or editing skills helpful
- Payment is up to \$12 per hour

Contact: Tomas Simon (tsimon@cs.cmu.edu)

| mas Simon | Simo | Tomas Simon |
|--------------|------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| mon@cs.cmu.e | | (tsimon@cs.cmu.edu) |

How To Make A Good 2D Hand Pose Detector

Difficulties in Labeling Hand Joints

Annotator 1

Annotator 2

Occluded joints should be guessed We ended up generating **2K** images

Multiview Bootstrapping

Geometric Cues as A Supervision

Multiview Bootstrapping

View 7

An Example

View 6

View 5

• View 3

View 1

• View 2

Multiview Bootstrapping View 6 Checking Ray Intersection View 5 View 7 View 3 \mathbf{x}_1 View 1 \mathbf{X}_2 $\sum ||\mathbf{x}_i - P_i(\mathbf{X})||^2 < \tau$ View 2

Multiview Bootstrapping Outlier Filtering by RANSAC

View 6

View 3

Multiview Bootstrapping • View 6 Reprojection • View 5 View 7 View 3 View 1

View 2

Multiview Bootstrapping

A Method to Automatically Generate Annotations

2D Detection (Initial)

2D Detection (Iteration 1)

Comparison Between Iterations Initial (Iteration 0) Iteration 1 Iteration 2

Multiview Bootstrapping

Applied For Face Keypoint Detector

Initial Detections (Iteration 0 --- Manual labels MultiPIE, Helen, AFW, ...)

Retrained Detections (Iteration 1)

Adam Model with A Unified Parameterization

With Much Simpler Parameterization

I (64bit) - Main.unity - unitydemo - PC, Mac & Linux Standalone* < DX11>

^{*} See the full length version of this video here

Massively Multiview System

- 480 VGA camera views
- > 30+ HD views
- > 10 RGB-D sensors
- Hardware-based sync
- > Calibration

Interesting Scenes with Labels

- Multiple people
- Socially interacting groups
- > 3D body pose
- 3D facial landmarks
- > Transcripts + speaker ID

Dataset Size

Currently, 65 sequences (5.5 hours) and 1.5 millions of 3D skeletons are available.

What's New

Dec. 2017 Hand Keypoint Dataset Page has been added. More data will be coming soon.

Jun. 2017 We organize a tutorial in conjunction with CVPR 2017: "DIY A Multiview Camera System: Panoptic Studio Teardown"

Jun. 2017 Hand keypoint detection and reconstruction paper will be presented in CVPR 2017: Project Page.

Dec. 2016 Panoptic Studio is featured on The Verge. You can also see the video version here.

Dec. 2016 The social interaction capture paper (extended version of ICCV15) is available on arXiv.

The CMU PanopticStudio Dataset is now publicly released.

Sep. 2016 Currently, 480 VGA videos, 31 HD videos, 3D body pose, and calibration data are available.

Dense point cloud (from 10 Kinects) and 3D face reconstruction will be available soon.

Please contact Hanbyul Joo and Tomas Simon for any issue of our dataset.

Sep. 2016 The PanopticStudio Toolbox is available on GitHub.

Aug. 2016 Our dataset website is open. Dataset and tools will be available soon.

Dataset Examples

Panoptic Studio Dataset

http://domedb.perception.cs.cmu.edu/

- 30HDs + 10 RGBDs + Calibration + Point Clouds + 3D Keypoints (bodies + faces + hands)
- 6 hours of diverse scenes (social games, range of motion, musical instruments, etc.)

3D Point Clouds

3D Keypoints (Bodies+ Faces + Hands)

Do We Really Need 500 Cameras?

iPhone Video

Our Result

Overlay

[Wu et al. 2016]

The Face Part Model

FaceWarehouse [Cao et al., TVCG 2014]

$$\mathbf{Y}^F = M^F(oldsymbol{\phi}^F, oldsymbol{ heta}^F, \mathbf{T}^F)_{ ext{Rigid transformation}}$$

Model based Monocular Face Capture

The Basic Idea

Monocular Total Capture: Posing Face, Body, and Hands

Input image

Predict 2D keypoint and 3D Part Orientation Field (POF)

Deformable Model Fitting

Parametric Space

work by Donglai Xiang

Question?

Hanbyul (Han) Joo (hanbyulj@cs.cmu.edu)